JPS6249164A - Air-conditioning heat generator - Google Patents

Air-conditioning heat generator

Info

Publication number
JPS6249164A
JPS6249164A JP18694185A JP18694185A JPS6249164A JP S6249164 A JPS6249164 A JP S6249164A JP 18694185 A JP18694185 A JP 18694185A JP 18694185 A JP18694185 A JP 18694185A JP S6249164 A JPS6249164 A JP S6249164A
Authority
JP
Japan
Prior art keywords
reaction
pressure
cooling
absorption
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18694185A
Other languages
Japanese (ja)
Inventor
猛 富澤
下田 久則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18694185A priority Critical patent/JPS6249164A/en
Publication of JPS6249164A publication Critical patent/JPS6249164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖空調、排熱回収専行なうヒートポンプシス
テムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump system exclusively for cooling/heating air conditioning and exhaust heat recovery.

従来の技1・トチ 従来ヒートポンプシステムについては、様々な方法が提
案されているが、フロンを用いた蒸気圧縮式、リチウム
ブロマイドと水を用いた吸収式が主として実用されてい
るにすぎない。
Conventional Technique 1: Various methods have been proposed for conventional heat pump systems, but only the vapor compression type using fluorocarbons and the absorption type using lithium bromide and water are mainly used.

発明が解決しようとする問題点 しかしながら前者については、効率は良いのであるが、
その作動圧力が高いために、騒音、振動も高く、また配
管等も耐圧を要するために堅4二かつ精密な造りにする
必要があり、高価な製品にならざるを得なかった。さら
に、フロンについてはオゾン層の破壊の懸念が持たれ、
その使用については、沿を削減しようという全世界的な
動きもあり、少なからず問題を内在l−でいた。また1
後渚についても、効率がそれほど高くなく(入カニ′こ
り11する出力が100%前後である)、空冷が困難。
Problems that the invention aims to solveHowever, although the former is efficient,
Because the operating pressure is high, noise and vibration are high, and the piping, etc., must also be pressure resistant, so they must be made of rigid and precise construction, resulting in an expensive product. Furthermore, there are concerns about fluorocarbons destroying the ozone layer.
Regarding its use, there was a worldwide movement to reduce its use, and there were some problems inherent in its use. Also 1
As for the backside, the efficiency is not very high (the output for input crab's 11 is around 100%), and air cooling is difficult.

小形化が困難等の問題があった。There were problems such as difficulty in downsizing.

問題点を解決するだめの手段 本発明は前記問題点を解決するために、炭酸ガスの液相
物質への吸収および脱離の可逆反応を利用し、吸収反応
側で暖熱を、脱離反応側で冷z4を取り出すよう構成し
たものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention utilizes a reversible reaction of absorption and desorption of carbon dioxide gas into a liquid phase substance, and heat is applied on the absorption reaction side to the desorption reaction. It is configured so that the cold Z4 can be taken out from the side.

作用 上記構成における作用について以下に説明する。action The operation of the above configuration will be explained below.

一般に可逆的化学反応系においては、高温で吸熱、低温
で発熱反応が進行するのでちるが、系の圧力を変化させ
ることによって逆の反応を起こさせることも可能である
。つまり、ある系において、高温高圧で発熱反応、低温
低圧で吸熱反応を進行サセラれる。本発明はこのような
系を利用して新方式ヒートポンプシステムを形成するも
のであり、反応系として炭酸ガスの液相−の吸収および
脱離の可逆反応を利用する。即ち、高温高圧での炭酸ガ
スの液相への吸収反応時の発熱を暖熱として取り出し、
低温低圧での炭酸ガスの液相からの脱離反応時の吸熱を
冷熱として取り出すこととなる。
Generally, in a reversible chemical reaction system, an endothermic reaction occurs at a high temperature and an exothermic reaction proceeds at a low temperature, but it is also possible to cause the opposite reaction to occur by changing the pressure of the system. In other words, in a certain system, an exothermic reaction proceeds at high temperature and high pressure, and an endothermic reaction proceeds at low temperature and pressure. The present invention utilizes such a system to form a new heat pump system, and utilizes a reversible reaction of absorption and desorption of liquid phase carbon dioxide gas as a reaction system. That is, the heat generated during the absorption reaction of carbon dioxide into the liquid phase at high temperature and high pressure is extracted as warm heat,
The heat absorbed during the desorption reaction of carbon dioxide from the liquid phase at low temperature and low pressure is extracted as cold heat.

実施例 本発明による冷暖熱発生機の概念図を図に示す。Example A conceptual diagram of the cooling/heating heat generator according to the present invention is shown in the figure.

図において、1は炭酸ガスの脱離反応による冷熱を発生
させる第一反応器であり、2が吸収反応による暖熱を発
生させる第二反応器であり、両反応器は1外界と熱交換
が可能であわ、また途中に気体圧送機6を設けた気体輸
送路3.液体圧送機γを設けた液体輸送路4.減圧弁、
キャビラリイ等からなる圧力開放機8を設けだ液体返送
路5でそれぞれ結ばれる。9,10は気体輸送路3と液
体輸送路4の両方と、液体返送路5との間で熱交換を行
なう熱回収器である。図中の矢印は反応物あるいは反応
生成物の流れ方向をしめす。
In the figure, 1 is the first reactor that generates cold heat due to the desorption reaction of carbon dioxide, and 2 is the second reactor that generates warm heat due to the absorption reaction. If possible, a gas transport path with a gas pump 6 installed along the way 3. Liquid transport path provided with liquid pumping machine γ 4. Pressure reducing valve,
A pressure release device 8 consisting of a cavity or the like is provided and connected by a liquid return path 5. Reference numerals 9 and 10 designate heat recovery units that perform heat exchange between both the gas transport path 3 and the liquid transport path 4 and the liquid return path 5. The arrows in the figure indicate the flow direction of reactants or reaction products.

次に反応系について説明する。Next, the reaction system will be explained.

炭酸ガスと反応する液相については、基本的には目的と
する温度レベルに合わせて、また系の圧力とともに考え
合わせて決定すべきであるが、つぎのような液相が有効
である。モノエタノールアミン等のアルカノールアミン
類の水溶液、あるいは炭酸カリウム、水酸化ナトリウム
、アンモニアなどアルカリ塩等のアルカリ性水溶液であ
る液相。
The liquid phase that reacts with carbon dioxide gas should basically be determined in accordance with the target temperature level and the pressure of the system, but the following liquid phases are effective. The liquid phase is an aqueous solution of alkanolamines such as monoethanolamine, or an alkaline aqueous solution of alkali salts such as potassium carbonate, sodium hydroxide, and ammonia.

しゅう酸等の弱酸性水溶液、スルフオラン、ポリエチレ
ングリコールジメチルエーテル、プロピレンカーボネイ
ト、メタノール等の有機剤である液相等である。これら
のうちから、炭酸ガスとジェタノールアミンとの反応系
を用いてサイクルを作動したときの成績例について以下
に示す。
These include a weakly acidic aqueous solution such as oxalic acid, and a liquid phase containing an organic agent such as sulfuran, polyethylene glycol dimethyl ether, propylene carbonate, and methanol. Among these, examples of results when a cycle is operated using a reaction system of carbon dioxide gas and jetanolamine are shown below.

炭酸ガスと3.6N(規定度)ジェタノールアミンから
成る系において、低温低圧側:6°C1α07ata 
、高温高圧側:50°C+ 4.0 atz、なる条件
において1気体液体圧送機の軸入力に対する第一反応器
からの冷房出力で約300%を得た。このときの炭酸ガ
ス循環量は70 N (17m 1n であり、液循環
量ば12 d/minであった。このときの反応は次式
で表わされる。
In a system consisting of carbon dioxide gas and 3.6N (normality) jetanolamine, low temperature and low pressure side: 6°C1α07ata
, high temperature and high pressure side: 50°C + 4.0 atz, the cooling output from the first reactor was approximately 300% of the shaft input of the 1 gas/liquid pumping machine. The amount of carbon dioxide gas circulated at this time was 70 N (17 m 1n ), and the amount of liquid circulated was 12 d/min.The reaction at this time is expressed by the following equation.

RNH+HO+CQ→RNH+・Heo−+△Hここで
Rは(OH−CH,、−CH2)2を示し1△Hは反応
熱を示す。
RNH+HO+CQ→RNH+・Heo−+ΔH where R represents (OH-CH,,-CH2)2 and 1ΔH represents the heat of reaction.

発明の効果 以上のように本発明によれば次のような効果が得られる
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(乙)作動ガスとして炭酸ガスを用いているため、低温
から高温まで熱安定性に優れ、安価であり、漏洩時にも
安全性に優れる。
(B) Since carbon dioxide gas is used as the working gas, it has excellent thermal stability from low to high temperatures, is inexpensive, and has excellent safety even in the event of a leak.

(b)  作動圧力が低いために、配管等にそれほどの
4圧構造がいらず、安価にシステムを(j/)成できる
(b) Since the operating pressure is low, there is no need for a 4-pressure structure such as piping, and the system can be constructed at low cost (j/).

(C)  フロンを用いないため、オゾン層破壊云々と
いう懸念がない。
(C) Since no fluorocarbons are used, there is no concern about ozone layer depletion.

(d)  気体および液体という流体で反応系が構成さ
れるため、サイクルを組むのが簡単でちる。
(d) Since the reaction system is composed of gas and liquid fluids, it is easy to set up a cycle.

(e)結晶等固体の析出が起こりにくいので、空冷水冷
等の熱交換の形態が自由であり、また小型から大型まで
機器の大きさに関しても自由度が大きい。
(e) Since the precipitation of solids such as crystals is difficult to occur, there is freedom in the form of heat exchange such as air cooling and water cooling, and there is also a large degree of freedom in terms of the size of the equipment, from small to large.

(0動力源は電気のみであり制御性が良い。(The power source is electricity only and has good controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における冷暖熱発生装置の概′念
図である。 1・・・・・・第一反応器、2・・・・・・第二反応器
13・・・・・・気体輸送路、4・・・・・・液体輸送
路、5・・・・・・液体返送路、6・・・・・・気体圧
送機、7・・・・・・液体圧送機、8・・・・・圧力開
放器。
The figure is a conceptual diagram of a cooling/heating heat generating device in one embodiment of the present invention. 1...First reactor, 2...Second reactor 13...Gas transport path, 4...Liquid transport path, 5... ...Liquid return path, 6...Gas pressure feeder, 7...Liquid pressure feeder, 8...Pressure release device.

Claims (3)

【特許請求の範囲】[Claims] (1)炭酸ガスの液相物質への吸収および脱離の可逆反
応を利用し、吸収反応側で暖熱を、脱離反応側で冷熱を
取り出すよう構成した冷暖熱発生装置。
(1) A cooling/heating heat generating device configured to utilize a reversible reaction of absorption and desorption of carbon dioxide gas into a liquid phase substance, and to extract warm heat from the absorption reaction side and extract cold heat from the desorption reaction side.
(2)前記液相物質は水溶液、あるいは有機剤、あるい
は両者の混合物の中から選ばれたものである特許請求の
範囲第1項記載の冷暖熱発生装置。
(2) The cooling/heating heat generating device according to claim 1, wherein the liquid phase substance is selected from an aqueous solution, an organic agent, or a mixture of both.
(3)吸収反応側は、脱離反応側よりも圧力を高くした
特許請求の範囲第1項記載の冷暖熱発生装置。
(3) The cooling/heating heat generating device according to claim 1, wherein the pressure on the absorption reaction side is higher than that on the desorption reaction side.
JP18694185A 1985-08-26 1985-08-26 Air-conditioning heat generator Pending JPS6249164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18694185A JPS6249164A (en) 1985-08-26 1985-08-26 Air-conditioning heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18694185A JPS6249164A (en) 1985-08-26 1985-08-26 Air-conditioning heat generator

Publications (1)

Publication Number Publication Date
JPS6249164A true JPS6249164A (en) 1987-03-03

Family

ID=16197399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18694185A Pending JPS6249164A (en) 1985-08-26 1985-08-26 Air-conditioning heat generator

Country Status (1)

Country Link
JP (1) JPS6249164A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824767A (en) * 1981-07-16 1983-02-14 アンステイテユ・フランセ・デユ・ペトロ−ル Generation method for cold air and (or) heat using absorption cycle employing carbon dioxide as working fluid
JPS5848820A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Measuring device for intensity of laser light

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824767A (en) * 1981-07-16 1983-02-14 アンステイテユ・フランセ・デユ・ペトロ−ル Generation method for cold air and (or) heat using absorption cycle employing carbon dioxide as working fluid
JPS5848820A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Measuring device for intensity of laser light

Similar Documents

Publication Publication Date Title
JPH0228232B2 (en)
WO2013114937A1 (en) Carbon dioxide recovery system
JPS6249164A (en) Air-conditioning heat generator
JPS6246172A (en) Air-conditioning heat generator
FR2178386A5 (en) Carbon dioxide heat engine - with compounded thermal cycle for optimized efficiency
JP2766027B2 (en) heat pump
JPS62266368A (en) Air-conditioning heat generator
JPS62266367A (en) Air-conditioning heat generator
JPS636356A (en) Cold and hot heat generator
JPS63163743A (en) Cold and hot heat generator
US3469555A (en) Underwater power plant
Baughn et al. Solar energy storage within the absorption cycle
JPH11132010A (en) Steam cycle system
JPS636357A (en) Heat pump system
JPS6298157A (en) Heat pump device
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
CN207161161U (en) A kind of adipic acid low-temp tail gas waste heat recovery generating device
JPS63134805A (en) Absorbing and condensing device of working fluid at turbine exit
FI81967C (en) OVER ANALYZING FOR SEPARATION OF OAKING CONDITIONERS GASER AND AONGA.
JPS55149641A (en) Recovery of heat energy
JPS61138059A (en) Heat pump for high temperature
JPH0228231B2 (en)
JP2003161115A (en) Exhaust heat recovery system by gas turbine
JPS54155395A (en) Cooling system at reactor stop
JPS52133446A (en) Hot water transporting system