JPS636356A - Cold and hot heat generator - Google Patents

Cold and hot heat generator

Info

Publication number
JPS636356A
JPS636356A JP15029486A JP15029486A JPS636356A JP S636356 A JPS636356 A JP S636356A JP 15029486 A JP15029486 A JP 15029486A JP 15029486 A JP15029486 A JP 15029486A JP S636356 A JPS636356 A JP S636356A
Authority
JP
Japan
Prior art keywords
liquid
reactor
pressure
gas
transport path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15029486A
Other languages
Japanese (ja)
Inventor
猛 富澤
下田 久則
足立 欣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15029486A priority Critical patent/JPS636356A/en
Publication of JPS636356A publication Critical patent/JPS636356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖房空調、排熱回収吟行なうヒートポンプシ
ステムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump system for cooling, heating, and air conditioning, and for recovering exhaust heat.

従来の技術 従来ヒートポンプシステムについては、様々な方法が提
案されているが、フロンを用いた蒸気圧縮式、リチウム
ブロマイドと水を用いた吸収式が、主として実用されて
いるにすぎない。そして、前者は高圧系システムであり
、後者は真空系に近い低圧系システムであった。
BACKGROUND OF THE INVENTION Various methods have been proposed for conventional heat pump systems, but only the vapor compression type using fluorocarbons and the absorption type using lithium bromide and water have been mainly put into practical use. The former was a high-pressure system, and the latter was a low-pressure system similar to a vacuum system.

発明が解決しようとする問題点 しかしながら前者は、効率は良いのであるが、その作動
圧力が高いために、騒音、撮動も高く、また配管等も耐
圧を要するためて堅牢かつ精密な造りにする必要があり
、高価な製品にならざるを得なかった。さらに、フロン
についてはオゾン層の破壊の懸念が持たれ、その使用に
ついては、量を削減しようという全世界的な動きもあり
、少なからず問題を内在していた。また、後者について
も、効率がそれほど高くなく(入力に対する出力が10
0%前後である)、空冷化が困難、真空系に近いために
配管類が大型化し装置全体の小型化が困難であり、また
恒常的な低圧の維持も難しい等の問題があった。
Problems to be Solved by the Invention However, although the former is highly efficient, the high operating pressure makes noise and photography high, and the piping, etc., must be made to be robust and precise, as they must be able to withstand pressure. It was necessary, and the product had to be expensive. Furthermore, there were concerns about the depletion of the ozone layer with regard to fluorocarbons, and there was a worldwide movement to reduce the amount of fluorocarbons used, so there were some inherent problems. Also, the efficiency of the latter is not so high (output for input is 10
(around 0%), air cooling is difficult, the piping becomes large because it is close to a vacuum system, making it difficult to downsize the entire device, and it is also difficult to maintain constant low pressure.

問題点を解決するための手段 本発明は前記問題点を解決するために、熱交換機能を有
する低圧の第一反応器および高圧の第二反応器と、両反
応器を連結する気体輸送路、液体輸送路、液体返送路と
、その気体輸送路には気体圧送機を、液体輸送路には液
体圧送機を、液体返送路には圧力開放器をそれぞれ設け
、第一反応器では液体からの気体の脱離に伴う吸熱反応
を、第二反応器では、液体への気体の吸収に伴う発熱反
応を行なわせしめ、第一反応器からは冷熱を、第二反応
器からは暖熱を取り出せるよう構成し、第一、第二反応
器内あるいは反応器の内部を臨む場所に液体微粒化装置
を設けたものであり、つまり系の圧力が比較的大気圧に
近い状態で動作する化学反応を利用したヒートポンプシ
ステムを提供するものである。
Means for Solving the Problems The present invention solves the above problems by providing a low-pressure first reactor and a high-pressure second reactor having a heat exchange function, a gas transport path connecting both reactors, The liquid transport path, the liquid return path, and the gas transport path are equipped with a gas pressure feeder, the liquid transport path is equipped with a liquid pressure feeder, and the liquid return path is equipped with a pressure release device. The endothermic reaction associated with the desorption of gas is caused to occur in the second reactor as an exothermic reaction associated with the absorption of gas into the liquid, so that cold heat can be extracted from the first reactor and warm heat can be extracted from the second reactor. A liquid atomization device is installed in the first and second reactors or in a location facing the inside of the reactor. In other words, it utilizes a chemical reaction that operates under conditions where the system pressure is relatively close to atmospheric pressure. This provides a heat pump system with

作  用 上記構成における作用について以下に述べる。For production The operation of the above configuration will be described below.

−般に可逆的化学反応系においては、高温で吸熱、低温
で発熱反応が進行するのであるが、系の圧力を変化させ
ることによって逆の反応を起こさせることも可能である
。つまり、ある系において、高温高圧で発熱反応、低温
低圧で吸熱反応を進行させられる。本発明はこのような
系を利用して新方式ヒートポンプシステムを形成するも
のであり、特だ反応系として、 気体+液体≠液体+反応熱(発熱) となるものを選んで構成している。右向きが発熱反応で
あり、左向きが吸熱反応となる。よって、低圧の第一反
応器で左向き、高圧の第二反応器で右向きの反応を進行
させ、それぞれの反応器から熱交換によって冷暖熱を目
的に応じて取り出すことが可能となる。
-Generally, in reversible chemical reaction systems, an endothermic reaction proceeds at high temperatures and an exothermic reaction proceeds at low temperatures, but it is also possible to cause the opposite reaction to occur by changing the pressure of the system. In other words, in a certain system, an exothermic reaction can proceed at high temperature and high pressure, and an endothermic reaction can proceed at low temperature and low pressure. The present invention utilizes such a system to form a new heat pump system, and in particular, it is constructed by selecting a reaction system in which gas + liquid≠liquid + heat of reaction (heat generation). The reaction to the right is an exothermic reaction, and the reaction to the left is an endothermic reaction. Therefore, it is possible to proceed with a leftward reaction in the low-pressure first reactor and a rightward reaction in the high-pressure second reactor, and to extract heating and cooling heat from each reactor by heat exchange according to the purpose.

実施例 本発明による冷暖熱発生装置の概念図を第1図に示す。Example A conceptual diagram of the cooling/heating heat generating device according to the present invention is shown in FIG.

1は第一反応器であり、2が第二反応器であり、両反応
器は、空気、水等の媒体を介して外界との熱交換が可能
であるとともに、途中に気体圧送機6を設けた気体輸送
路3、液体圧送機7を設けた液体輸送路4、そして液体
返送路6でそれぞれ結ばれる。このとき両反応器中での
吸収および脱離反応を速やかに行なわせるために、気液
の接触面積を増加させるような充填物あるいは触媒など
を充填したシ、流れを撹乱させるような操作、構造にす
るなどの配慮も有効である。9.10は気体輸送路3と
液体輸送路4の両方と、液体返送路6との間で熱交換を
行なう熱回収器であるが、必要に応じて液体輸送路4と
液体返送路6との間だけで熱交換するようにしてもよい
。図中の矢印は反応物あるいは反応生成物の流れ方向を
しめす。そして、11,12が噴霧ノズルであり反応液
体がそれぞれ第一、第二反応器に入るとき通過し、液体
圧送機7あるいは系(第二反応器)の加圧力によって微
粒化されながら器内に噴霧される。このとき噴霧ノズル
11は圧力開放器の働きを兼ねることになる。
1 is a first reactor, 2 is a second reactor, and both reactors are capable of exchanging heat with the outside world via a medium such as air or water, and are equipped with a gas pump 6 in the middle. A gas transport path 3 provided therein, a liquid transport path 4 provided with a liquid pressure feeder 7, and a liquid return path 6 are connected to each other. At this time, in order to speed up the absorption and desorption reactions in both reactors, the reactors are filled with packings or catalysts that increase the contact area of gas and liquid, and operations and structures that disturb the flow are used. It is also effective to take measures such as 9.10 is a heat recovery device that performs heat exchange between both the gas transport path 3 and the liquid transport path 4, and the liquid return path 6; Heat exchange may be performed only between the two. The arrows in the figure indicate the flow direction of reactants or reaction products. Reference numerals 11 and 12 are spray nozzles through which the reaction liquid enters the first and second reactors, respectively, and is atomized by the pressurizing force of the liquid pump 7 or the system (second reactor). Sprayed. At this time, the spray nozzle 11 also functions as a pressure release device.

第2図は本発明によるもう一つの実施例の概念図を示す
ものであり、図番1−7.9.1oは第1図と共通であ
り、8は圧力開放器、20.21はそれぞれ第一、第二
反応器内に設けられた超音波霧化器を示している。
FIG. 2 shows a conceptual diagram of another embodiment according to the present invention, and the drawing numbers 1-7.9.1o are the same as in FIG. 1, 8 is a pressure reliever, and 20.21 are respectively It shows the ultrasonic atomizers installed in the first and second reactors.

このような構成により、液体反応物はそれぞれの反応器
に入る際あるいは入った後に微粒化され気体の吸収、脱
離速度を速めることになる。とこで第1図においては、
噴霧圧力は15kq/Ca程度が適当であり、また吸収
、脱離の速度はどちらの実施例においても静止状態知比
較して20−30倍に上昇するという著しい効果が得ら
れた。
With this configuration, the liquid reactant is atomized upon or after entering each reactor, thereby increasing the rate of gas absorption and desorption. However, in Figure 1,
The appropriate spray pressure was about 15 kq/Ca, and in both examples, a remarkable effect was obtained in that the rate of absorption and desorption was increased 20 to 30 times compared to the static state.

次にヒートポンプシステムとして機能させるためにどの
ような反応系を選ぶかについて簡単に記す。
Next, we will briefly describe what kind of reaction system to choose in order to function as a heat pump system.

基本的には目的とする得たい温度レベルに応じて、反応
系を選ぶべきであり、また反応圧力も設定すべきもので
あるが、可能な系として次のようなものがある。
Basically, the reaction system should be selected depending on the desired temperature level, and the reaction pressure should also be set. Possible systems include the following.

たとえば、炭酸ガス、硫化水素等の酸性ガスと、アルカ
ノールアミン類あるいはアルカリ塩類のどちらかまたは
両者の混合であるアルカリ性水溶液から成る反応系、ま
たはその後者が、スルフオラン、ポリエチレンクリコー
ルジメチルエーテル、プロピレンカーボネイト、メタノ
ール等の有機剤である反応系、アンモニアと水から成る
反応系、比較的低い蒸気圧のハロゲン化炭化水素か・・
ロゲン化アルコールと有機剤から成る反応系などである
。これらのうちから具体的に反応物を選んで、ヒートポ
ンプとして作動したときの成績例について鯵下に示す。
For example, a reaction system consisting of an alkaline aqueous solution consisting of an acidic gas such as carbon dioxide gas or hydrogen sulfide, and an alkanolamine or an alkali salt, or a mixture of both, or the latter may contain sulfuran, polyethylene glycol dimethyl ether, propylene carbonate, A reaction system consisting of an organic agent such as methanol, a reaction system consisting of ammonia and water, a halogenated hydrocarbon with a relatively low vapor pressure...
These include reaction systems consisting of rogogenated alcohols and organic agents. Examples of results obtained when a reactant is specifically selected from these and operated as a heat pump are shown below.

なお、気体圧送機、液体圧送機、圧力開放器は、反応を
進行させるだめの高圧低圧条件を作るために用いるので
あるが、反応物質である気体、液体それぞれおよび組み
合わせ、濃度等は、目的とする温度レベル等に応じて適
切だ選ばれる。そして液体微粒化装置は、反応物である
液体を微粒化することによって気液の接触面積を増加さ
せ、吸収、脱離反応の速度を格段に上げるために用いる
。また熱回収器9は液体圧送路6側へ冷熱を回収するた
めに用い、熱回収器10はその反対側へ暖熱を回収する
だめに用いる。
The gas pump, liquid pump, and pressure release device are used to create high-pressure and low-pressure conditions for the reaction to proceed, but the reactant gases and liquids, their combination, concentration, etc. The appropriate one is selected depending on the temperature level etc. The liquid atomization device is used to increase the contact area of gas and liquid by atomizing the liquid, which is a reactant, and to significantly increase the speed of absorption and desorption reactions. Further, the heat recovery device 9 is used to recover cold heat to the liquid pumping path 6 side, and the heat recovery device 10 is used to recover warm heat to the opposite side.

(実施例1) 、炭酸ガスとジェタノールアミン3モル/リッター水溶
液から成る系において、低温低圧側:6℃、0.07a
ta、高温高圧側:60℃、4.0ata 1なる条件
において、気体および液体用圧送機の総入力に対する冷
房出力で約300%を得た。
(Example 1) In a system consisting of carbon dioxide gas and jetanolamine 3 mol/liter aqueous solution, low temperature and low pressure side: 6°C, 0.07a
Under the conditions of ta, high temperature and high pressure side: 60° C. and 4.0 ata 1, approximately 300% of the cooling output was obtained with respect to the total input of the gas and liquid pumping machine.

(実施例2) 硫化水素とモノエタノールアミン2モル/リッター水溶
液から成る系において、低温低圧側:ao℃、20To
rr、高温高圧側:120℃、1200Torr 、な
る条件において、入力に対する昇温の出力で約50(I
t得た。
(Example 2) In a system consisting of hydrogen sulfide and monoethanolamine 2 mol/liter aqueous solution, low temperature and low pressure side: ao°C, 20To
rr, high temperature, high pressure side: 120°C, 1200 Torr, the output of temperature increase relative to the input is approximately 50 (I
I got t.

発明の効果 以上のように本発明によれば次のような効果が得られる
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

■ 吸収、脱離の速度が著しく改善されたため反応器が
小型化されシステム全体もコンパクト化が可能となった
■ The speed of absorption and desorption has been significantly improved, making it possible to downsize the reactor and the entire system.

■ 作動圧力が大気圧に近いために、圧送機、配管、シ
ール等の部材を樹脂などの安価な材料、簡単な構成で済
ますことができ、全体としてコストが安くなる。
■ Because the operating pressure is close to atmospheric pressure, parts such as the pressure feeder, piping, and seals can be made from inexpensive materials such as resin and simple configurations, resulting in lower overall costs.

■ システムが非作動中においても系内外の圧力差が小
さいため、■と同様の効果がある。
■ Since the pressure difference inside and outside the system is small even when the system is not operating, it has the same effect as ■.

@ 適当な反応系を選ぶことによって様々な使用目的、
温度レベルに対応できる。
@ Various purposes of use can be achieved by selecting an appropriate reaction system.
Can handle temperature levels.

■ 全て流体から成る反応系であシ、成分の晶出もない
ため、水冷、空冷等の熱交換の形態に自由度が大きい。
■ Since the reaction system consists entirely of fluid and there is no crystallization of components, there is great flexibility in the form of heat exchange such as water cooling or air cooling.

■ フロンレスのヒートポンプシステムモ可能であり、
その場合にはオゾン層云々の心配がなくなる。
■ CFC-free heat pump system is possible.
In that case, there would be no need to worry about the ozone layer.

■ 動力源が電気だけでよいため取り扱いが簡単である
■ It is easy to handle because it requires only electricity as a power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の異なる実施例の冷暖熱発生装
置の概念図を示す。 1・・・・・・第一反応器、2・・・・・・第二反応器
、3・・・・・・気体輸送路、4・・・・・・液体輸送
路、5・・・・・・液体返送路、6・・・・・気体圧送
機、7・・・・・・液体圧送機、8・・・・・・圧力開
放器、11.12・・・・・・噴霧ノズル、20゜21
・・・・・・超音波霧化器。
FIG. 1 and FIG. 2 show conceptual diagrams of cooling/heating heat generating devices according to different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1...First reactor, 2...Second reactor, 3...Gas transport path, 4...Liquid transport path, 5... ...Liquid return path, 6...Gas pressure feeder, 7...Liquid pressure feeder, 8...Pressure release device, 11.12...Spray nozzle , 20°21
・・・・・・Ultrasonic atomizer.

Claims (4)

【特許請求の範囲】[Claims] (1)外界との熱交換機能を有する低圧の第一反応器お
よび高圧の第二反応器と、両反応器を連結する気体輸送
路、液体輸送路、液体返送路とを具備し、前記気体輸送
路には気体圧送機を、前記液体輸送路には液体圧送機を
、前記液体返送路には圧力開放器をそれぞれ設け、前記
第一反応器では液体からの気体の脱離に伴う吸熱反応を
、前記第二反応器では液体への気体の吸収に伴う発熱反
応を行なわせしめ、前記第一反応器からは冷熱を、前記
第二反応器からは暖熱を取り出せるよう構成し、かつ、
前記第一、第二反応器内あるいは反応器の内部を臨む場
所に液体微粒化装置を設けた冷暖熱発生装置。
(1) A low-pressure first reactor and a high-pressure second reactor having a heat exchange function with the outside world, and a gas transport path, a liquid transport path, and a liquid return path connecting both reactors, and the gas A gas pressure feeder is provided in the transport path, a liquid pressure feeder is provided in the liquid transport path, and a pressure release device is provided in the liquid return path, and in the first reactor, an endothermic reaction occurs due to the desorption of gas from the liquid. The second reactor is configured to perform an exothermic reaction due to the absorption of gas into the liquid, and is configured so that cold heat can be extracted from the first reactor and warm heat can be extracted from the second reactor, and
A cooling/heating heat generating device comprising a liquid atomization device provided inside the first and second reactors or at a location facing the inside of the reactors.
(2)第一、第二反応器それぞれに近い場所に於いて、
気体輸送路と前記液体輸送路の両方あるいは前記液体輸
送路と、前記液体返送路との間で熱交換させる熱回収器
を設けた特許請求の範囲第1項記載の冷暖熱発生装置。
(2) At a location close to each of the first and second reactors,
2. The cooling/heating heat generating device according to claim 1, further comprising a heat recovery device for exchanging heat between both the gas transport path and the liquid transport path, or between the liquid transport path and the liquid return path.
(3)微粒化装置は加圧式噴霧ノズルから成る特許請求
の範囲第1項または第2項記載の冷暖熱発生装置。
(3) The cooling/heating heat generating device according to claim 1 or 2, wherein the atomization device comprises a pressurized spray nozzle.
(4)微粒化装置は超音波霧化器から成る特許請求の範
囲第1項または第2項記載の冷暖熱発生装置。
(4) The cooling/heating heat generating device according to claim 1 or 2, wherein the atomization device is an ultrasonic atomizer.
JP15029486A 1986-06-26 1986-06-26 Cold and hot heat generator Pending JPS636356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15029486A JPS636356A (en) 1986-06-26 1986-06-26 Cold and hot heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15029486A JPS636356A (en) 1986-06-26 1986-06-26 Cold and hot heat generator

Publications (1)

Publication Number Publication Date
JPS636356A true JPS636356A (en) 1988-01-12

Family

ID=15493850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15029486A Pending JPS636356A (en) 1986-06-26 1986-06-26 Cold and hot heat generator

Country Status (1)

Country Link
JP (1) JPS636356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559976A (en) * 1978-10-31 1980-05-06 Canon Inc Liquid injection recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559976A (en) * 1978-10-31 1980-05-06 Canon Inc Liquid injection recorder
JPS636357B2 (en) * 1978-10-31 1988-02-09 Canon Kk

Similar Documents

Publication Publication Date Title
Zhang et al. Fixation and conversion of CO2 using ionic liquids
US4140602A (en) Method for obtaining carbon dioxide from the atmosphere and for production of fuels
Qu et al. Amino acid ionic liquids as efficient catalysts for CO 2 capture and chemical conversion with epoxides under metal/halogen/cocatalyst/solvent-free conditions
JPH0228232B2 (en)
US20130233015A1 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
TW200303287A (en) Method and apparatus for the production of nitrogen trifluoride
Luo et al. The capture and simultaneous fixation of CO2 in the simulation of fuel gas by bifunctionalized ionic liquids
CN104784948B (en) The synthetic recovery system of energy-saving atmospheric evaporation
CN102661181A (en) Novel power generating working medium
JPS636356A (en) Cold and hot heat generator
CA1194276A (en) Gas transporting system
CN104129758B (en) A kind of hydrogen isotopic exchange film reaction assembly
CN110437184A (en) A kind of method that furfural low-grade alkane alcohol transfer hydrogenation prepares furfuryl alcohol
CN110078702A (en) A kind of method of poly ion liquid frame catalyst preparation cyclic carbonate
CN113511955A (en) Device and method for synthesizing methanol by using carbon dioxide and water
JPS62266368A (en) Air-conditioning heat generator
CN110090544B (en) Method for strengthening hydration and separation of CH by using porous particles4/CO2Method (2)
JPS636357A (en) Heat pump system
JPS62266367A (en) Air-conditioning heat generator
SA99200694B1 (en) preparation of ethylen oxide by direct oxedation of ethylen with air or oxygen
CN214937123U (en) Device for synthesizing methanol by using carbon dioxide and water
JPS6246172A (en) Air-conditioning heat generator
JPS6249164A (en) Air-conditioning heat generator
CN112254372B (en) Selective absorption-compression composite heat pump circulating device and method based on chemical reaction
JP6851786B2 (en) Chemical heat storage system