JPH04309763A - Waste heat recovery apparatus for nuclear power plant - Google Patents

Waste heat recovery apparatus for nuclear power plant

Info

Publication number
JPH04309763A
JPH04309763A JP3073055A JP7305591A JPH04309763A JP H04309763 A JPH04309763 A JP H04309763A JP 3073055 A JP3073055 A JP 3073055A JP 7305591 A JP7305591 A JP 7305591A JP H04309763 A JPH04309763 A JP H04309763A
Authority
JP
Japan
Prior art keywords
water
condenser
steam
heated
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3073055A
Other languages
Japanese (ja)
Other versions
JP2766741B2 (en
Inventor
Akihiro Kawada
章広 川田
Kohei Kawanishi
川西 康平
Ayao Tsuge
柘植 綾夫
Tamotsu Sano
保 佐野
Nobuo Nakamori
中森 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3073055A priority Critical patent/JP2766741B2/en
Publication of JPH04309763A publication Critical patent/JPH04309763A/en
Application granted granted Critical
Publication of JP2766741B2 publication Critical patent/JP2766741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To enable the recovering of heat of a blow water of a steam evaporator discharged without being utilized sufficiently and heat of a thermal effluent of a condenser effectively at a nuclear power plant. CONSTITUTION:Blow water 11 from a steam generator 3 is flashed with a flash tank 14 to make a saturated steam 15, which is introduced into a reproducer 17 of a suction type heat pump and a thermal effluent 13 produced by cooling the steam with a condenser 8 is introduced into an absorption type heat pump evaporator 19. Both devices are used as drive heat source for an absorption type heat pump. Water 24 to be heated is introduced into an absorber 20 and then, into a condenser 18 of the absorption type heat pump to obtain a higher temperature hot water 24'.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、原子力発電所の排熱を
回収する排熱回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery device for recovering exhaust heat from a nuclear power plant.

【0002】0002

【従来の技術】図4は従来の加圧水型原子力発電所の概
略系統図である。原子炉1で加熱された1次冷却水2に
より、蒸気発生器3内で2次冷却水4が加熱されて水蒸
気5となり、この水蒸気5は蒸気タービン6に供給され
て同蒸気タービン6を駆動する。蒸気タービン6に直結
した発電機7により発電が行なわれる。蒸気タービン6
で仕事をし、低圧化した水蒸気5は、復水器8内で冷却
水9により冷却され凝縮液化した後、給水ヒータ10等
を介し、再び蒸気発生器3に戻る。蒸気発生器3では、
通常2次冷却水の1部を水質浄化の目的で外部へ排出し
ている。これは、蒸気発生器のブロー水(SGブロー水
)と呼ばれている。また、前記給水ヒータ10では、蒸
気タービン6からの抽気12により2次冷却水4を予熱
している。更に、復水器8の冷却水9には通常海水が使
われるが、水蒸気5の凝縮熱で5〜10℃だけ昇温され
た後温排水13として海へ放流される。
2. Description of the Related Art FIG. 4 is a schematic diagram of a conventional pressurized water nuclear power plant. The primary cooling water 2 heated in the reactor 1 heats the secondary cooling water 4 in the steam generator 3 to become steam 5, and this steam 5 is supplied to the steam turbine 6 to drive the same steam turbine 6. do. Electric power is generated by a generator 7 directly connected to a steam turbine 6. steam turbine 6
The steam 5, which has been reduced in pressure by working in the condenser 8, is cooled by the cooling water 9 in the condenser 8 and is condensed and liquefied, and then returns to the steam generator 3 via the feed water heater 10 and the like. In steam generator 3,
Normally, a portion of the secondary cooling water is discharged outside for the purpose of water purification. This is called steam generator blow water (SG blow water). Further, in the feed water heater 10, the secondary cooling water 4 is preheated by the extracted air 12 from the steam turbine 6. Furthermore, although seawater is normally used as the cooling water 9 of the condenser 8, the temperature is raised by 5 to 10°C due to the heat of condensation of the water vapor 5, and then it is discharged into the sea as heated waste water 13.

【0003】0003

【発明が解決しようとする課題】復水器で冷却水に放熱
される熱量は、蒸気発生器熱出力の約60%という膨大
な量であるが、温排水の温度が10〜35℃と低温であ
るために、有効に利用できず全熱量が海に放出されてお
り、エネルギー効率上問題がある。
[Problems to be Solved by the Invention] The amount of heat radiated to the cooling water in the condenser is a huge amount, approximately 60% of the heat output of the steam generator, but the temperature of heated waste water is as low as 10 to 35 degrees Celsius. Because of this, the total amount of heat cannot be used effectively and is released into the ocean, which poses a problem in terms of energy efficiency.

【0004】一方、蒸気発生器のブロー水は、最高温度
が200℃レベルに達しているが、従来はそのまま放出
されるか、給水加熱に利用する程度で、環境温度近傍ま
での徹底的な熱利用は計られておらず、やはりエネルギ
ー効率上の問題がある。
On the other hand, the maximum temperature of blow water from steam generators has reached the level of 200°C, but conventionally it has been discharged as is or used to heat feed water, and has been thoroughly heated to near the ambient temperature. Utilization has not been measured, and there are still energy efficiency issues.

【0005】本発明は、従来の原子力発電所における以
上の問題点を解決しようとするものである。
The present invention is an attempt to solve the above-mentioned problems in conventional nuclear power plants.

【0006】[0006]

【課題を解決するための手段】本発明の原子力発電所の
排熱回収装置は、蒸気発生器から排出されるブロー水を
フラッシュして水蒸気を発生するフラッシュタンク、蒸
発器、吸収器、凝縮器及び再生器からなる吸収式ヒート
ポンプ、及び冷却水によって蒸気タービンからの低圧水
蒸気を凝縮させる復水器を備え、前記フラッシュタンク
で発生した水蒸気が熱源として前記再生器へ導入され、
復水器出口の温排水が熱源として前記蒸発器導入される
と共に、加熱される水が吸収器、次いで凝縮器へ導入さ
れるように構成されている。
[Means for Solving the Problems] The exhaust heat recovery device for a nuclear power plant of the present invention includes a flash tank, an evaporator, an absorber, and a condenser that flash blow water discharged from a steam generator to generate steam. and an absorption heat pump consisting of a regenerator, and a condenser that condenses low-pressure steam from a steam turbine using cooling water, and the steam generated in the flash tank is introduced to the regenerator as a heat source,
The heated waste water at the outlet of the condenser is introduced into the evaporator as a heat source, and the water to be heated is introduced into the absorber and then into the condenser.

【0007】[0007]

【作用】本発明では、蒸気発生器から排出された高温の
ブロー水をフラッシュタンクでフラッシュして温度の高
い水蒸気が得られ、これが熱源として吸収式ヒートポン
プの再生器へ導入されて、後記する再生器から供給され
る吸収式ヒートポンプの希溶液を加熱して熱媒蒸気を発
生してこれを吸収式ヒートポンプの凝縮器へ送ると共に
、同希溶液を濃縮する。
[Operation] In the present invention, high-temperature water vapor is obtained by flashing the high-temperature blow water discharged from the steam generator in a flash tank, and this is introduced into the regenerator of the absorption heat pump as a heat source for regeneration as described below. The dilute solution supplied from the absorption heat pump is heated to generate heat medium vapor, which is sent to the condenser of the absorption heat pump, and the dilute solution is concentrated.

【0008】一方、復水器で蒸気タービンからの水蒸気
と熱交換して昇温された温排水は、熱源として吸収式ヒ
ートポンプの蒸発器へ導入されて、蒸発器内の熱媒液を
蒸発させ、これが吸収式ヒートポンプの吸収器へ送られ
、同吸収器に前記再生器から送られた濃溶液に吸収され
てこれを希溶液とすると共に、吸収熱が放熱される。
On the other hand, the heated wastewater heated by exchanging heat with steam from the steam turbine in the condenser is introduced into the evaporator of the absorption heat pump as a heat source, and evaporates the heat medium liquid in the evaporator. This is sent to the absorber of the absorption heat pump, where it is absorbed by the concentrated solution sent from the regenerator to form a dilute solution, and the absorbed heat is radiated.

【0009】前記の再生器と凝縮器へは、加熱される水
が導入され、再生器における前記吸収熱と凝縮器に再生
器から送られた熱媒蒸気によって加熱され、前記温排水
よりも高い温度の水が得られる。なお、凝縮器において
水と熱交換して凝縮した熱媒液は、前記の蒸発器へ供給
される。
[0009] Water to be heated is introduced into the regenerator and condenser, and is heated by the absorbed heat in the regenerator and the heat medium vapor sent from the regenerator to the condenser, and is heated to a temperature higher than that of the heated waste water. Temperature water is obtained. Note that the heat transfer liquid condensed through heat exchange with water in the condenser is supplied to the evaporator.

【0010】このようにして、本発明では、復水器から
の温排水と蒸気発生器からのブロー水のもつエネルギー
を吸収式ヒートポンプで吸収して水を加熱することによ
って、復水器からの温排水より温度の高い温水を得るこ
とができる。
[0010] In this way, in the present invention, the absorption type heat pump absorbs the energy of the heated waste water from the condenser and the blow water from the steam generator and heats the water. It is possible to obtain hot water with a higher temperature than heated wastewater.

【0011】[0011]

【実施例】本発明の一実施例を、図1ないし図3によっ
て説明する。本実施例は、図4に示す原子力発電所の排
熱の回収装置に係るものであって、同一の部分について
は図1において図4におけると同一の符号が付せられて
おり、その説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained with reference to FIGS. 1 to 3. This embodiment relates to the exhaust heat recovery device of a nuclear power plant shown in FIG. 4, and the same parts are given the same reference numerals in FIG. Omitted.

【0012】本実施例では、蒸気発生器3のブロー水1
1をフラッシュさせて飽和水蒸気15とする共にその1
部をドレン16として排出するフラッシュタンク14が
設けられている。17,18,19,20は、それぞれ
吸収式ヒートポンプを形成する再生器,凝縮器,蒸発器
及び吸収器である。この吸収式ヒートポンプには、熱媒
としての水と吸収剤としての臭化リチウム(LiBr)
の水溶液を媒体としている。前記再生器17には、フラ
ッシュタンク14からの飽和水蒸気15が導入されて同
再生器17内の臭化リチウム分の少ない希溶液を蒸発す
るようになっている。また、復水器8を出る温排水13
の1部又は全部は蒸発器19へ導入されて同蒸発器19
内の水が蒸発され、これが吸収器20へ供給されるよう
になっている。更に、加熱される水24が前記吸収器2
0内へ導入され、同吸収器20を経た上凝縮器18を通
って取出されるようになっている。
In this embodiment, the blow water 1 of the steam generator 3
1 is flashed to become saturated steam 15, and part 1
A flash tank 14 is provided for discharging the water as a drain 16. 17, 18, 19, and 20 are a regenerator, a condenser, an evaporator, and an absorber, respectively forming an absorption heat pump. This absorption heat pump uses water as a heat medium and lithium bromide (LiBr) as an absorbent.
The medium is an aqueous solution of Saturated steam 15 from the flash tank 14 is introduced into the regenerator 17 to evaporate the dilute solution containing less lithium bromide in the regenerator 17. In addition, heated waste water 13 exiting the condenser 8
A part or all of it is introduced into the evaporator 19 and
The water inside is evaporated and supplied to the absorber 20. Furthermore, the water 24 to be heated is supplied to the absorber 2.
0, passes through the absorber 20, and is taken out through the upper condenser 18.

【0013】以上のように構成された本実施例において
は、再生器17内の臭化リチウム濃度の低い希溶液は、
蒸気発生器3のブロー水11をフラッシュタンク14で
フラッシュして分離した0〜10kg/cm2Gの飽和
水蒸気15によって加熱されて水蒸気23が蒸発し、こ
れが凝縮器18へ供給されると共に、希溶液は濃縮され
て臭化リチウム濃度の高い濃溶液となり、この濃溶液は
吸収器20へ供給される。一方、蒸発器19においては
、水が温排水13によって加熱されて低圧蒸気26を発
生し、これが吸収器20へ供給され、またこの熱交換に
よって蒸発器19を出る温排水13の温度が降下する。
In this embodiment configured as described above, the dilute solution with a low concentration of lithium bromide in the regenerator 17 is
The blown water 11 of the steam generator 3 is flashed in the flash tank 14 and separated and heated by the saturated steam 15 of 0 to 10 kg/cm2G to evaporate the steam 23, which is supplied to the condenser 18, and the dilute solution is It is concentrated into a concentrated solution with a high concentration of lithium bromide, and this concentrated solution is supplied to the absorber 20. On the other hand, in the evaporator 19, water is heated by the heated waste water 13 to generate low-pressure steam 26, which is supplied to the absorber 20, and through this heat exchange, the temperature of the heated waste water 13 leaving the evaporator 19 is lowered. .

【0014】吸収器20には、前記蒸発器19で発生し
た低圧の水蒸気26と再生器17からの濃溶液が供給さ
れ、ここで濃溶液は低圧の水蒸気26を吸収して希溶液
となると共に、吸収熱が放出される。
The absorber 20 is supplied with the low pressure steam 26 generated in the evaporator 19 and the concentrated solution from the regenerator 17, where the concentrated solution absorbs the low pressure steam 26 and becomes a dilute solution. , absorbed heat is released.

【0015】加熱される水25は、吸収器20へ導入さ
れて前記吸収熱によって加熱された上、凝縮器18へ導
入され、ここで前記水蒸気23によって加熱され、凝縮
器18から温度の高い温水24′として排出される。
Water 25 to be heated is introduced into the absorber 20 and heated by the heat of absorption, and then introduced into the condenser 18, where it is heated by the water vapor 23, and from the condenser 18, high temperature hot water is extracted. 24'.

【0016】凝縮器18で水25を加熱した水蒸気23
は凝縮して水25となり蒸発器19へ供給され、また、
吸収器20で低圧の水蒸気26を吸収した希溶液は、再
生器17へ供給される。
Steam 23 heated by water 25 in condenser 18
is condensed and becomes water 25 and is supplied to the evaporator 19, and
The dilute solution that has absorbed low-pressure water vapor 26 in the absorber 20 is supplied to the regenerator 17 .

【0017】以上説明した本実施例における吸収式ヒー
トポンプは臭化リチウム水溶液と水を媒体としており、
その操作線図を図2に示す。a,b,c,dはそれぞれ
蒸発器19,吸収器20,凝縮器18,再生器17の状
態を示しており、e,f,gはそれぞれ臭化リチウム分
の少ない希溶液,臭化リチウム分の多い濃溶液及び水の
移動を示し、またhは吸収器と凝縮器を通る水24の状
態を示す。臭化リチウム水溶液は冷却してやることによ
り、その平衡圧が低下し、それより若干高い圧力にある
水蒸気を吸収する性質があるが、吸収するときの液温度
は、沸点上昇のため吸収される水蒸気の飽和温度より高
い。この温度差は、水溶液の臭化リチウム濃度により異
なるが、一般には30〜50℃である。
The absorption heat pump in this embodiment described above uses a lithium bromide aqueous solution and water as media,
The operation diagram is shown in FIG. 2. a, b, c, and d indicate the states of the evaporator 19, absorber 20, condenser 18, and regenerator 17, respectively, and e, f, and g indicate the states of a dilute solution with a low lithium bromide content and a lithium bromide content, respectively. h indicates the movement of the concentrated solution and water, and h indicates the state of the water 24 through the absorber and condenser. When a lithium bromide aqueous solution is cooled, its equilibrium pressure decreases, and it has the property of absorbing water vapor at a slightly higher pressure. Higher than saturation temperature. This temperature difference varies depending on the lithium bromide concentration of the aqueous solution, but is generally 30 to 50°C.

【0018】この性質によって、前記したように、温排
水(温度TC1)で、蒸発器19(温度TE ,圧力P
E )の水を蒸発させると、これが吸収器20で濃溶液
に吸収され、吸収熱を放熱し、水24(温度TH1)を
加熱昇温する。一方、吸収器20で水蒸気を吸収した希
溶液は、再生器17へ供給されて、ここでブロー水11
をフラッシュタンク14でフラッシュさせて得られた飽
和水蒸気15(温度TS )で希溶液が加熱されて水分
が蒸発して濃溶液となり、これが吸収器20へ戻る。再
生器17で発生した水蒸気23は、凝縮器18へ供給さ
れ、凝縮器18(温度TC )において水24を加熱昇
温させて凝縮する。前記凝縮器18の温度TC を水2
4の前記温度TH1の関係をTC >TH1としておく
ことにより、水24は、吸収器20における昇温に加え
て、凝縮器18においても飽和蒸気15の凝縮熱によっ
て温度TH2(TH2<TC )まで昇温される。即ち
、吸収式ヒートポンプによって、温度TC1の温排水1
3より高い温度TH2の温水24′を得ることができる
Due to this property, as mentioned above, when heated waste water (temperature TC1) is used, evaporator 19 (temperature TE, pressure P
When the water in E) is evaporated, it is absorbed into a concentrated solution in the absorber 20, and the absorbed heat is radiated to heat and raise the temperature of the water 24 (temperature TH1). On the other hand, the dilute solution that has absorbed water vapor in the absorber 20 is supplied to the regenerator 17, where the blown water 11
The dilute solution is heated by the saturated steam 15 (temperature TS) obtained by flashing it in the flash tank 14, and the water evaporates to become a concentrated solution, which is returned to the absorber 20. The water vapor 23 generated in the regenerator 17 is supplied to the condenser 18, where water 24 is heated to be condensed. The temperature TC of the condenser 18 is changed to water 2
By setting the relationship between the temperatures TH1 and 4 as TC > TH1, the water 24 is heated not only in the absorber 20 but also in the condenser 18 by the heat of condensation of the saturated steam 15 to the temperature TH2 (TH2 < TC ). The temperature is raised. That is, by using an absorption heat pump, heated waste water 1 at a temperature TC1 is
It is possible to obtain hot water 24' with a temperature TH2 higher than 3.

【0019】本実施例において、吸収式ヒートポンプに
供給する水24の温度に対し、所定の温水24′の出口
温度を得るための再生器に供給する必要のある供給蒸気
圧力の関係を図3に示す。蒸気発生器のブロー水の圧力
は通常50〜60kg/cm2Gであるので、20〜3
0℃の水を70〜80℃レベルの温度の温水にするため
の所要蒸気圧力1〜6kg/cm2Gの飽和蒸気は充分
供給し得ることがわかる。
In this embodiment, the relationship between the temperature of the water 24 supplied to the absorption heat pump and the supply steam pressure required to be supplied to the regenerator in order to obtain a predetermined outlet temperature of the hot water 24' is shown in FIG. show. The pressure of the blow water of the steam generator is usually 50 to 60 kg/cm2G, so 20 to 3
It can be seen that saturated steam with a required steam pressure of 1 to 6 kg/cm2G to convert water at 0°C to hot water at a temperature of 70 to 80°C can be sufficiently supplied.

【0020】以上説明したように、本実施例では、通常
10〜35℃の温度をもつ低温の復水器からの温排水1
3と、従来十分熱利用が計られていなかった高温の蒸気
発生器のブロー水11のもつ熱を吸収式ヒートポンプに
よって回収して水を加熱することによって、前記温排水
13より著しく温度の高い温水24′を得ることができ
、エネルギー効率を向上させることができる。また、温
排水13は温度が低下して排出されることとなり、環境
上も好ましい状態となる。
As explained above, in this embodiment, heated waste water 1 from a low-temperature condenser having a temperature of usually 10 to 35°C is used.
3, by recovering the heat of the blow water 11 of the high-temperature steam generator, which has not been sufficiently utilized in the past, using an absorption heat pump and heating the water, hot water with a temperature significantly higher than that of the warm waste water 13 is generated. 24' can be obtained, and energy efficiency can be improved. In addition, the temperature of the heated waste water 13 is lowered before it is discharged, resulting in an environmentally favorable state.

【0021】ちなみに、本実施例で得られる50〜70
℃の温度レベルの温水は、暖房,プロセス加熱,給湯な
どに利用することができ、また70〜80℃の温度レベ
ルの温水は吸収冷凍機の駆動熱源として使用することに
よって冷房やプロセス冷却などに利用することができる
Incidentally, 50 to 70 obtained in this example
Hot water at a temperature level of 70°C can be used for space heating, process heating, hot water supply, etc. Hot water at a temperature level of 70 to 80°C can be used as a driving heat source for an absorption chiller for cooling, process cooling, etc. can be used.

【0022】[0022]

【発明の効果】本発明は、次の効果を奏することができ
る。
[Effects of the Invention] The present invention can achieve the following effects.

【0023】(1) 蒸気発生器のブロー水と復水器出
口の温排水を駆動熱源とする吸収式ヒートポンプにより
、前記ブロー水と温排水の熱回収を行ない、前記温排水
より高温の利用価値の高い温水を得ることができ、従来
海等に放出していた温排水の熱の1部及び蒸気発生器の
ブロー水の熱が有効に利用できるようになり、エネルギ
ー効率上有益である。
(1) An absorption heat pump that uses the blow water of the steam generator and the heated waste water from the condenser outlet as driving heat sources recovers heat from the blow water and heated waste water, and generates utility value at a higher temperature than the heated waste water. It is possible to obtain hot water with a high temperature, and a part of the heat of the heated waste water that was conventionally discharged into the sea etc. and the heat of the blow water of the steam generator can be effectively used, which is beneficial in terms of energy efficiency.

【0024】(2) 復水器出口の温排水は、吸収式ヒ
ートポンプの蒸発器で熱源として働き、それ自身冷却さ
れるので、海等に放出する温度レベルが下がり環境イン
パクトを少なくすることができる。
(2) The heated waste water at the condenser outlet acts as a heat source in the evaporator of the absorption heat pump and is itself cooled, so the temperature level discharged into the sea etc. is lowered and the environmental impact can be reduced. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】同実施例における吸収式ヒートポンプの操作線
図である。
FIG. 2 is an operation diagram of the absorption heat pump in the same embodiment.

【図3】同実施例における温水温度と供給蒸気圧力の関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between hot water temperature and supplied steam pressure in the same example.

【図4】従来の原子力発電所の系統図である。FIG. 4 is a system diagram of a conventional nuclear power plant.

【符号の説明】[Explanation of symbols]

1    原子炉 2    1次冷却水 3    蒸気発生器 4    2次冷却水 5    水蒸気 6    蒸気タービン 7    発電機 8    復水器 9    冷却水 10  給水ヒータ 11  蒸気発生器のブロー水 12  抽気 13  温排水 14  フラッシュタンク 15  飽和蒸気 16  ドレン 17  吸収式ヒートポンプの再生器 18  吸収式ヒートポンプの凝縮器 19  吸収式ヒートポンプの蒸発器 20  吸収式ヒートポンプの吸収器 23  水蒸気 24  加熱される水 24′温水 26  低圧の水蒸気 1 Nuclear reactor 2 Primary cooling water 3 Steam generator 4 Secondary cooling water 5 Water vapor 6 Steam turbine 7 Generator 8 Condenser 9 Cooling water 10 Water supply heater 11 Steam generator blow water 12 Bleed air 13 Heated wastewater 14 Flash tank 15 Saturated steam 16 Drain 17 Absorption heat pump regenerator 18 Absorption heat pump condenser 19 Absorption heat pump evaporator 20 Absorption heat pump absorber 23 Water vapor 24 Water to be heated 24′ hot water 26 Low pressure water vapor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  蒸気発生器から排出されるブロー水を
フラッシュして水蒸気を発生するフラッシュタンク、蒸
発器、吸収器、凝縮器及び再生器からなる吸収式ヒート
ポンプ、及び冷却水によって蒸気タービンからの低圧水
蒸気を凝縮させる復水器を備え、前記フラッシュタンク
で発生した水蒸気が熱源として、前記再生器へ導入され
、復水器出口の温排水が熱源として前記蒸発器導入され
ると共に、加熱される水が吸収器、次いで凝縮器へ導入
されるように構成されたことを特徴とする原子力発電所
の排熱回収装置。
Claim 1: An absorption heat pump consisting of a flash tank, an evaporator, an absorber, a condenser, and a regenerator that generate steam by flashing blow water discharged from a steam generator, and an absorption heat pump that generates steam by flushing blow water discharged from a steam generator. It is equipped with a condenser that condenses low-pressure steam, the steam generated in the flash tank is introduced into the regenerator as a heat source, and the heated waste water at the outlet of the condenser is introduced into the evaporator as a heat source and is heated. An exhaust heat recovery device for a nuclear power plant, characterized in that water is introduced into an absorber and then into a condenser.
JP3073055A 1991-04-05 1991-04-05 Exhaust heat recovery equipment for nuclear power plants Expired - Fee Related JP2766741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073055A JP2766741B2 (en) 1991-04-05 1991-04-05 Exhaust heat recovery equipment for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073055A JP2766741B2 (en) 1991-04-05 1991-04-05 Exhaust heat recovery equipment for nuclear power plants

Publications (2)

Publication Number Publication Date
JPH04309763A true JPH04309763A (en) 1992-11-02
JP2766741B2 JP2766741B2 (en) 1998-06-18

Family

ID=13507294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073055A Expired - Fee Related JP2766741B2 (en) 1991-04-05 1991-04-05 Exhaust heat recovery equipment for nuclear power plants

Country Status (1)

Country Link
JP (1) JP2766741B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775143A (en) * 2013-04-11 2014-05-07 苟仲武 Improved vacuum exhaust heat pump steam turbine generation system and generating method thereof
CN107178928A (en) * 2017-06-23 2017-09-19 松下制冷(大连)有限公司 A kind of exhaust heat of slag flushing water extraction type cold/hot water machine of lithium bromide group
CN107940807A (en) * 2017-12-15 2018-04-20 荏原冷热系统(中国)有限公司 A kind of afterheat utilizing system
CN109405032A (en) * 2017-08-18 2019-03-01 国家电投集团科学技术研究院有限公司 Nuclear power station waste heat for supplying system
CN114754350A (en) * 2022-03-08 2022-07-15 华北电力科学研究院有限责任公司 Heat recovery system, method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775143A (en) * 2013-04-11 2014-05-07 苟仲武 Improved vacuum exhaust heat pump steam turbine generation system and generating method thereof
CN107178928A (en) * 2017-06-23 2017-09-19 松下制冷(大连)有限公司 A kind of exhaust heat of slag flushing water extraction type cold/hot water machine of lithium bromide group
CN109405032A (en) * 2017-08-18 2019-03-01 国家电投集团科学技术研究院有限公司 Nuclear power station waste heat for supplying system
CN109405032B (en) * 2017-08-18 2024-03-19 国家电投集团科学技术研究院有限公司 Nuclear power station waste heat supply system
CN107940807A (en) * 2017-12-15 2018-04-20 荏原冷热系统(中国)有限公司 A kind of afterheat utilizing system
CN114754350A (en) * 2022-03-08 2022-07-15 华北电力科学研究院有限责任公司 Heat recovery system, method and device

Also Published As

Publication number Publication date
JP2766741B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US4009575A (en) Multi-use absorption/regeneration power cycle
JP2003225537A (en) Method for utilizing waste heat for carbon dioxide recovery process
JPH11207102A (en) Wastewater evaporation/concentration equipment
CN105783023A (en) Device and method for driving air heater through absorption type heat pump
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
CN105649901A (en) Solar light-condensation and heat-collection power generation device based on absorption heat pump
CN109163477A (en) A kind of absorption type heat pump system of gas fired-boiler fume afterheat and condensate-water polishing
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
JP2010106764A (en) Power generation method of electric power using exhaust heat
CN203771678U (en) Residual heat recovery system for air heating by discontinuous hot waste water source
KR20110035104A (en) High efficient gas compression system using absorption refrigeration
CN104807237B (en) Energy-saving device applying lithium bromide
JP4155916B2 (en) Waste heat recovery system
JP2007322028A (en) Absorption type refrigerating system
CN112284145A (en) Waste heat utilization device and method for metallurgical cooling tower
JP2703147B2 (en) Power generation equipment
JPH0237262A (en) Device for utilizing waste heat of fuel battery
JP2750783B2 (en) Exhaust heat recovery method in cogeneration system
CN219914015U (en) Intermittent waste gas waste heat recycling system
US11802058B2 (en) Distributed energy source system utilizing waste heat deeply
CN219120807U (en) Double-stage absorption flue gas waste heat recovery heat pump system for clean energy heat supply
CN211977307U (en) Industrial waste heat recovery heat pump system
JPS62255760A (en) Heat recovery method for hot water
JPH0359350B2 (en)
SU857658A1 (en) Combined solar unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980310

LAPS Cancellation because of no payment of annual fees