JPS62255760A - Heat recovery method for hot water - Google Patents

Heat recovery method for hot water

Info

Publication number
JPS62255760A
JPS62255760A JP61096087A JP9608786A JPS62255760A JP S62255760 A JPS62255760 A JP S62255760A JP 61096087 A JP61096087 A JP 61096087A JP 9608786 A JP9608786 A JP 9608786A JP S62255760 A JPS62255760 A JP S62255760A
Authority
JP
Japan
Prior art keywords
water
hot water
evaporator
salt compound
inorganic salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61096087A
Other languages
Japanese (ja)
Other versions
JPH0621739B2 (en
Inventor
Hidemi Ikuta
生田 英巳
Isamu Tomimori
富森 勇
Tadao Sato
佐藤 忠郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP61096087A priority Critical patent/JPH0621739B2/en
Publication of JPS62255760A publication Critical patent/JPS62255760A/en
Publication of JPH0621739B2 publication Critical patent/JPH0621739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve an efficiency of thermal recovery by a method wherein a part of hot water is cooled by a pressure reduction evaporator to make a cold heat source and at the same time evaporated water from the pressure reduction evaporator is guided to a humidifier filled with suction type non- organic chloride and sucked in it, heat exchanged with non-organic chloride of suction type of which temperature is increased to make a hot heating source. CONSTITUTION:An evaporator 14 is reduced in its pressure by a pressure reducing pump 22. A part of hot water 10 is fed to the evaporator 14 through a valve 12, evaporated under a reduced pressure and the hot water is cooled and taken out at 46 as a cold heat source. The evaporated water 44 is alternatively supplied to the two heaters 30 through changing-over of valves 28 and 42. In turn, remaining hot water 10 is supplied to one of the humidifiers 30 through a valve 28. The water suction type non-organic chloride in the heater 30 supplied with evaporated water 44 sucks water to increase its temperature, so that hot water 26 to be supplied is heated to make a hot heating source. In turn, the non-organic chloride saturated with sucked water in the humidifier 30 to which no evaporated water is supplied is regenerated during this process. With this arrangement, it is possible to improve an efficiency of recovery.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は温水の熱回収方法に関し、より具体的には常温
付近の温水の熱回収及び再利用法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for recovering heat from hot water, and more specifically to a method for recovering and reusing heat from hot water at around room temperature.

[従来の技術] 従来、温水廃熱の熱回収や熱利用は盛んに行わ温度差が
小さいために熱交換器などを用いた熱移動による回収利
用は難しい状況にある0通常、冷熱源(例えば自然界温
度)との温度差が10〜20℃以下といった工場排水な
どは利用面が著しく限定されており、電力などの他のエ
ネルギーに変換する熱回収も試みられているが、エネル
ギー変換効率の優れた方法が見い出されていない。
[Conventional technology] Conventionally, heat recovery and utilization of hot water waste heat have been actively carried out, but due to the small temperature difference, it is difficult to recover and utilize heat transfer using heat exchangers etc.Usually, cold heat sources (e.g. The use of industrial wastewater, which has a temperature difference of 10 to 20 degrees Celsius or less from the natural temperature (temperature in the natural world), is extremely limited, and attempts have been made to recover heat to convert it into other forms of energy such as electricity, but it has excellent energy conversion efficiency. No method has been found.

温度差が小さい場合の熱回収方法として、沸点の低い熱
媒体を利用する方法が知られているが。
As a heat recovery method when the temperature difference is small, a method using a heat medium with a low boiling point is known.

この方法にしても回収エネルギーよりも回収のために消
費するエネルギー量が上まわることが多く且つ温水系統
とは分離した熱媒体の蒸発・凝縮クローズドサイクル系
統を基本的に必要とするので、装置の構成及びその運用
が過度に複雑化するという欠点がある。
Even with this method, the amount of energy consumed for recovery is often greater than the energy recovered, and it basically requires a closed cycle system for evaporation and condensation of the heat medium, which is separate from the hot water system. The disadvantage is that the configuration and its operation become excessively complex.

[発明が解決しようとする問題点] 上記の如く、常温付近の温水は用途が限定されており、
また熱回収が困難であるために、現状で偉膨大な熱量が
廃棄されているが、本発明はかかる温水からの熱回収を
効率的且つ容易に行うことができる温水の熱回収方法を
提供することを目的とする。
[Problems to be solved by the invention] As mentioned above, hot water around room temperature has limited uses.
Furthermore, because heat recovery is difficult, currently a huge amount of heat is wasted, but the present invention provides a method for recovering heat from hot water that can efficiently and easily recover heat from hot water. The purpose is to

[問題点を解決するための手段] 上記目的を達成するため本発明は、熱回収すべき温水を
分岐して一方を蒸発器に導き、該蒸発器において減圧薄
発により冷却化してこれを冷熱源として利用するように
した。また、分岐した他方の温水は吸水性無機塩化合物
を充填した加温器に導き、該加温器において前記蒸発器
からの蒸発水を吸収させて昇温させた吸水性無機塩化合
物と熱交換することにより加温して高熱源として利用す
るようにした。温水を加温した後の吸水無機塩化合物は
放熱または冷却して固体化させ、遊離水を除去して吸水
性無機塩化合物として再生する。
[Means for Solving the Problems] In order to achieve the above object, the present invention branches hot water for heat recovery, leads one to an evaporator, cools it by thin air under reduced pressure in the evaporator, and converts it into cold heat. I started using it as a source. In addition, the other branched hot water is led to a heater filled with a water-absorbing inorganic salt compound, and in the heater, the water-absorbing inorganic salt compound absorbs the evaporated water from the evaporator and heats up. This allows it to be heated and used as a high heat source. After heating the hot water, the water-absorbing inorganic salt compound is solidified by heat radiation or cooling, free water is removed, and the water-absorbing inorganic salt compound is regenerated.

[作用] 本発明にかかる温水の熱回収方法にあっては、蒸発器に
導かれた温水は減圧化することにより蒸において、その
融点以下の温度まで冷却すると吸収水を液状のままで遊
離して固体化する性質を宥している。従って、加温器に
導かれた上記蒸発水分は吸水性無機塩化合物に吸収され
、凝縮熱により該吸水性無機塩化合物が昇温される0分
岐した他方の温水は、水を吸収して昇温されたこの吸水
無機塩化合物と熱交換して昇温される。温水と熱交換後
の吸水無機塩化合物は、冷却されて融点以下の温度にな
ると上記の如く吸収水を遊離するので、これを除去して
融点以上の温度に加温すれば吸水性無機塩化合物として
再利用することができる。
[Function] In the hot water heat recovery method according to the present invention, the hot water led to the evaporator is evaporated by reducing the pressure, and when cooled to a temperature below its melting point, absorbed water is liberated in a liquid state. It has the property of solidifying. Therefore, the evaporated moisture introduced into the heater is absorbed by the water-absorbing inorganic salt compound, and the temperature of the water-absorbing inorganic salt compound is raised by the heat of condensation.The other branched hot water absorbs water and rises in temperature. The temperature is increased by exchanging heat with the heated water-absorbing inorganic salt compound. When the water-absorbing inorganic salt compound after heat exchange with hot water is cooled to a temperature below the melting point, absorbed water is liberated as described above, so if this is removed and heated to a temperature above the melting point, the water-absorbing inorganic salt compound is It can be reused as

[実施例コ 添付図面は本発明にかかる温水の熱回収方法を実施する
ための装置系統図の一例である。
[Embodiment] The attached drawing is an example of a system diagram of an apparatus for carrying out the hot water heat recovery method according to the present invention.

常温付近の温水は管10から供給され、その一部が管1
2によって分岐して蒸発器14に導入さにより減圧され
るようになっている。管10から供給された温水の他の
部分は管24から管26に分岐し2弁28の切換操作に
よって選択的に2つの加温器30に導入される。加温器
30内には吸水性無機塩化合物32が充填されており、
管26からの温水は、吸水性無機塩化合物32内に埋没
した循環コイル34を通って管36に戻り、管38を通
って高熱源として利用される。蒸発器14の気相部16
と、加温器30の気相部40とは弁42の切換操作を介
して管44により選択的に連通される。
Hot water around room temperature is supplied from pipe 10, and a part of it is supplied to pipe 1.
2 and introduced into the evaporator 14, where the pressure is reduced. The other portion of the hot water supplied from the pipe 10 is branched from the pipe 24 to the pipe 26, and selectively introduced into the two warmers 30 by switching the two valves 28. The inside of the warmer 30 is filled with a water-absorbing inorganic salt compound 32,
Hot water from tube 26 returns to tube 36 through circulation coil 34 embedded within water-absorbing inorganic salt compound 32 and through tube 38 where it is utilized as a high heat source. Gas phase section 16 of evaporator 14
and the gas phase section 40 of the warmer 30 are selectively communicated through a pipe 44 through a switching operation of a valve 42 .

次に上記実施例装置における作用を説明する。Next, the operation of the apparatus of the above embodiment will be explained.

蒸発器14においては、減圧ポンプ22の駆動により気
相部16が減圧化され、温水中に溶存するガス成分が気
化されると共に水分の蒸発が活発に行われる。減圧ポン
プ22は、蒸発した水分が管44を介して加温器30に
至って吸水性無機塩化合物に吸収されるのに適した減圧
度に保つようれて冷熱源として利用される。
In the evaporator 14, the pressure of the gas phase portion 16 is reduced by driving the pressure reduction pump 22, and gas components dissolved in the hot water are vaporized, and moisture is actively evaporated. The vacuum pump 22 is used as a cold heat source to maintain a degree of vacuum suitable for the evaporated water to reach the warmer 30 via the pipe 44 and be absorbed by the water-absorbing inorganic salt compound.

2つの加温器30は、弁28及び弁42の切換え操作に
よって加温運転と再生とをサイクリックに縁返すように
なっている。蒸発器14で蒸発された水分は管44を介
して開放された側の弁42を通って加温器30に至り、
充填された吸水性無機塩化合物32に吸収されて凝縮熱
或いは吸収熱によってこれが昇温される。この間1分岐
した他方の温水は管24.26を介して開放された側の
弁28を通って加温器30に至り、循環コイル34で上
記昇温された吸水性無機m16合物32と熱交換して加
温され、管36.38を通って排出され、高熱源として
利用される。
The two warmers 30 are configured to cyclically switch between heating operation and regeneration by switching the valves 28 and 42. The moisture evaporated in the evaporator 14 passes through the valve 42 on the open side via the pipe 44 and reaches the warmer 30.
It is absorbed by the filled water-absorbing inorganic salt compound 32 and its temperature is raised by the heat of condensation or absorption. During this time, the other hot water that has been branched into one branch passes through the valve 28 on the open side via the pipes 24 and 26, reaches the warmer 30, and is heated in the circulation coil 34 with the water-absorbing inorganic m16 compound 32 and heated. It is exchange heated and discharged through tubes 36, 38 and used as a high heat source.

吸水性無機塩化合物32の吸水率が飽和してきて、昇温
かされなくなってきたら、弁28 、42を切換えて他
方の加温器30に温水及び蒸発器14からの蒸発水分を
導入するようにする。そして使用後の加温器30は自然
放熱させるか或いは循゛′遊離させてこれを除去するこ
とにより再生する。
When the water absorption rate of the water-absorbing inorganic salt compound 32 becomes saturated and the temperature is no longer raised, the valves 28 and 42 are switched to introduce hot water and evaporated water from the evaporator 14 into the other heater 30. . After use, the warmer 30 is regenerated by allowing heat to radiate naturally or by circulating it and removing it.

なお、本発明によって熱回収される流体は常温付近の温
水に限定されるものではなく、また水分が含まれた流体
であれば各種汚泥、固形物を含むスラリー等にも適用で
きる。
Note that the fluid from which heat is recovered by the present invention is not limited to hot water at around room temperature, and can also be applied to various types of sludge, slurry containing solids, etc. as long as it contains water.

[発明の効果] 以上説明した通り本発明にかかる温水の熱回収方法は、
気相中の水分吸収部を有し且つ所定の吸水率範囲におい
て、その融点以下の温度まで冷却すると吸収水を液状の
ままでMaして固体化する性質を有する吸水性態a塩化
合物の特性を利用したものであるので、温水からの熱回
収を少ないエネルギーで容易に行うことが可能になり、
またこれにより、常温付近の温水を高熱源化及び冷熱源
化できるので、従来、用途がなくそのまま廃棄していた
温水の利用を図ることが可能となる。
[Effects of the Invention] As explained above, the hot water heat recovery method according to the present invention has the following effects:
Characteristics of a water-absorbing salt compound that has a water-absorbing part in the gas phase and has the property of turning the absorbed water into a liquid state and solidifying it when cooled to a temperature below its melting point within a predetermined water absorption range. This makes it possible to easily recover heat from hot water with less energy.
Moreover, this makes it possible to turn hot water around room temperature into a high-heat source and a cold source, making it possible to utilize hot water that has conventionally been discarded without any use.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明にかかる温水の熱回収方法を実施する
ための装置系統図の一例である。 14争会・蒸発器 22−争拳減圧ポンプ 30−今・加温器 32・・・吸水性無機塩化合物。
The accompanying drawing is an example of a system diagram of an apparatus for carrying out the hot water heat recovery method according to the present invention. 14 - evaporator 22 - fight vacuum pump 30 - warmer 32... water-absorbing inorganic salt compound.

Claims (2)

【特許請求の範囲】[Claims] (1)熱回収すべき温水を分岐して一方を蒸発器に導き
、該蒸発器において減圧蒸発により冷却化してこれを冷
熱源として利用するようにしたことと、分岐した他方の
温水は吸水性無機塩化合物を充填した加温器に導き、該
加温器において前記蒸発器からの蒸発水を吸収させて昇
温させた吸水性無機塩化合物と熱交換することにより加
温して高熱源として利用するようにしたことと、温水を
加温した後の吸水無機塩化合物は放熱または冷却して固
体化させ、遊離水を除去して吸水性無機塩化合物として
再生することを特徴とする温水の熱回収方法。
(1) The hot water for heat recovery is branched and one is led to an evaporator, where it is cooled by evaporation under reduced pressure and used as a cold heat source, and the other branched hot water is water absorbent. The water is introduced into a heater filled with an inorganic salt compound, and heated by absorbing the evaporated water from the evaporator and exchanging heat with the water-absorbing inorganic salt compound, which raises the temperature, and serves as a high heat source. The hot water is characterized in that the water-absorbing inorganic salt compound after heating the hot water is solidified by heat radiation or cooling, and free water is removed to regenerate the water-absorbing inorganic salt compound. Heat recovery method.
(2)前記吸水性無機塩化合物が、気相中の水分吸収能
を有し且つ所定の吸水率範囲において、その融点以下の
温度まで冷却すると吸収水を液状のままで遊離して固体
化する性質を有するものである特許請求の範囲第(1)
項に記載の温水の熱回収方法。
(2) The water-absorbing inorganic salt compound has the ability to absorb water in the gas phase, and within a predetermined water absorption rate range, when cooled to a temperature below its melting point, the absorbed water is liberated in a liquid state and solidified. Claim No. (1) which has the character
Hot water heat recovery method described in section.
JP61096087A 1986-04-26 1986-04-26 Heat recovery method for hot water Expired - Lifetime JPH0621739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096087A JPH0621739B2 (en) 1986-04-26 1986-04-26 Heat recovery method for hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096087A JPH0621739B2 (en) 1986-04-26 1986-04-26 Heat recovery method for hot water

Publications (2)

Publication Number Publication Date
JPS62255760A true JPS62255760A (en) 1987-11-07
JPH0621739B2 JPH0621739B2 (en) 1994-03-23

Family

ID=14155616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096087A Expired - Lifetime JPH0621739B2 (en) 1986-04-26 1986-04-26 Heat recovery method for hot water

Country Status (1)

Country Link
JP (1) JPH0621739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3690353A1 (en) * 2019-01-30 2020-08-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for operating a thermoregulating device, thermoregulating assembly and vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3690353A1 (en) * 2019-01-30 2020-08-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for operating a thermoregulating device, thermoregulating assembly and vehicle

Also Published As

Publication number Publication date
JPH0621739B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3448201B2 (en) Wastewater evaporative concentrator
JP2004257705A (en) Concentration device using absorption heat pump
US5934101A (en) Compression absorption heat pump
US4553409A (en) Multiple regeneration multiple absorption type heat pump
JPS62255760A (en) Heat recovery method for hot water
CN109626473A (en) Closed-loop refrigeration formula humidifies dehumidification seawater desalination system and its working method
JP3870249B2 (en) Hot / cold heat generation chemical heat pump
KR101258433B1 (en) An Evaporator Unit for Multifunctional Modular Adsorption Desalination System
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
US4872315A (en) Heat exchanger and systems and methods for using the same
JPH04309763A (en) Waste heat recovery apparatus for nuclear power plant
SE8505531D0 (en) ABSORPTION TYPE COOLING SYSTEM
JPS58219371A (en) Double effect absorption type heat pump
JP4014520B2 (en) Absorption heat pump device and device using the same
JP2568828Y2 (en) Heat storage device
CN211635235U (en) Concentrated regeneration system of high-efficient heat source tower antifreeze of improved generation
JPH058353U (en) Absorption heat pump device
SU1361443A2 (en) Helioabsorption thermotransformer
JP2004257704A (en) Absorption heat pump device
RU2265170C1 (en) Mode of regeneration of a drying agent of convective dryers
JPS59221561A (en) Solar heat collector with exhaust heat recovering function
JP2543258B2 (en) Absorption heat source device
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JPH0355741B2 (en)
JPS61268961A (en) Self-exhaust heat recovery device