JPS6248406B2 - - Google Patents

Info

Publication number
JPS6248406B2
JPS6248406B2 JP412282A JP412282A JPS6248406B2 JP S6248406 B2 JPS6248406 B2 JP S6248406B2 JP 412282 A JP412282 A JP 412282A JP 412282 A JP412282 A JP 412282A JP S6248406 B2 JPS6248406 B2 JP S6248406B2
Authority
JP
Japan
Prior art keywords
metal spring
repeater
spring
outer periphery
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP412282A
Other languages
Japanese (ja)
Other versions
JPS58121842A (en
Inventor
Yoshihiko Yamazaki
Yoshihiro Ejiri
Kahei Furusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP412282A priority Critical patent/JPS58121842A/en
Publication of JPS58121842A publication Critical patent/JPS58121842A/en
Publication of JPS6248406B2 publication Critical patent/JPS6248406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Accessories (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明は光海底中継器筐体内の中継器回路ユニ
ツトより発生する熱量を効果的に中継器筐体に放
熱し半導体レーザの長寿命化を図るとともに、中
継器回路ユニツトに伝わる振動・衝撃を和らげユ
ニツト内の電子回路およびレーザ等の光学素子を
保護する構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention effectively dissipates the amount of heat generated by the repeater circuit unit in the optical submarine repeater case to the repeater case, prolonging the life of the semiconductor laser, and This relates to a structure that protects optical elements such as electronic circuits and lasers within the unit by alleviating vibrations and shocks transmitted to the unit.

光海底中継器筐体内の回路ユニツトには、1シ
ステム(上り、下り)あたり10W程度の電力消費
があり、これにより発生する熱量のため中継器回
路ユニツト内の雰囲気温度が上昇することにな
る。中継器回路ユニツト内に実装されるレーザの
寿命はレーザ周囲の雰囲気温度が高いと劣化し、
雰囲気温度が低いほど長寿命となる。一方、光海
底中継器が水深数百メートルより深い海底に布設
されたときには、前記中継器筐体の外表面はほぼ
海底下の水温である2〜3℃になる。従つて、中
継器ユニツトの発熱を中継器筐体の外表面に効率
よく伝え中継器筐体に熱交換器の働きを持たせる
ことが望ましい。
The circuit unit inside the optical submarine repeater housing consumes about 10W of power per system (up and down), and the amount of heat generated by this causes the atmospheric temperature inside the repeater circuit unit to rise. The lifespan of the laser mounted in the repeater circuit unit will deteriorate if the ambient temperature around the laser is high.
The lower the ambient temperature, the longer the life. On the other hand, when an optical submarine repeater is installed on the seabed at a depth of several hundred meters or more, the outer surface of the repeater casing has a temperature of approximately 2 to 3° C., which is the water temperature below the seafloor. Therefore, it is desirable to efficiently transmit the heat generated by the repeater unit to the outer surface of the repeater housing so that the repeater housing functions as a heat exchanger.

従来の中継器回路ユニツトの緩衝・放熱構造を
図1に示す。1は中継器筐体円筒、2は緩衝用ゴ
ム、3は中継器回路ユニツトの絶縁体であり、4
が中継器回路、5は乾燥不活性ガスである。この
構造によると、緩衝ゴム2より振動・衝撃を和ら
げ、乾燥不活性ガス(一般にはN2ガス)による
熱伝導により放熱を行つている。緩衝ゴム2も不
活性ガス5も熱伝導率は極めて小さいため、この
構造での放熱効果は非常に低い。また、これを改
良するために緩衝ゴム2に金属粉を混ぜ、不活性
ガス5に熱伝導率の比較的大きいHeガスを使用
する案もある。この場合には、前者に比して放熱
効果はかなり大きくなる。しかし、ゴム材はそれ
自体にかなりの吸着ガスを内蔵しており、中継器
筐体内に使用した場合、筐体内の乾燥不活性雰囲
気を汚す原因となる。また、Heガスはその他の
不活性ガスに比べ絶縁耐力が低いため、この両者
が相まつて回路部の絶縁が劣化し破壊される可能
性が生じる。
Figure 1 shows the buffering and heat dissipation structure of a conventional repeater circuit unit. 1 is the cylinder of the repeater housing, 2 is the cushioning rubber, 3 is the insulator of the repeater circuit unit, and 4 is the insulator of the repeater circuit unit.
is a repeater circuit, and 5 is a dry inert gas. According to this structure, vibrations and shocks are dampened by the cushioning rubber 2, and heat is dissipated by heat conduction by dry inert gas (generally N2 gas). Since the thermal conductivity of both the buffer rubber 2 and the inert gas 5 is extremely low, the heat dissipation effect in this structure is extremely low. In order to improve this, there is also a plan to mix metal powder into the buffer rubber 2 and use He gas, which has relatively high thermal conductivity, as the inert gas 5. In this case, the heat dissipation effect is considerably greater than in the former case. However, the rubber material itself contains a considerable amount of adsorbed gas, and when used in a repeater housing, it causes contamination of the dry inert atmosphere within the housing. Furthermore, since He gas has a lower dielectric strength than other inert gases, the combination of the two may cause the insulation of the circuit to deteriorate and break down.

上記の問題点を改善するために、放熱構造とし
て金属バネを使用した構造が提案されている(特
願昭55−177141号参照)。金属バネには放熱特性
の向上の他に、中継器筐体が布設中に受ける振
動・衝撃を吸収して光回路部品の信頼性を維持す
る働きがある。金属バネにより振動・衝撃の吸収
を行う場合、振動が伝達される割合、すなわち振
動伝達率λは次式で示される。
In order to improve the above problems, a structure using metal springs as a heat dissipation structure has been proposed (see Japanese Patent Application No. 177141/1982). In addition to improving heat dissipation characteristics, metal springs also have the function of absorbing the vibrations and shocks that the repeater housing receives during installation, thereby maintaining the reliability of optical circuit components. When vibrations and shocks are absorbed by a metal spring, the rate at which vibrations are transmitted, that is, the vibration transmission rate λ, is expressed by the following equation.

ここでfは振動周波数、νはバネの固有振動
数、αは減衰指数である。
Here, f is the vibration frequency, ν is the natural frequency of the spring, and α is the damping index.

この式によりλとfの関係を図示すると、図2
のようになる。ここで、はα/νが小のとき、
はα/νが大のときである。この図から明らか
なようにf√2では振動伝達率λは1以下に
なり、振動が減衰するが、f〓νの近傍で共振す
るため振動は増幅される。従つて、金属バネで振
動・衝撃の吸収を行う場合には、中継器筐体に加
えられる振動・衝撃の周波数特性に応じてバネの
固有振動数を決定する必要がある。
Using this formula to illustrate the relationship between λ and f, Figure 2
become that way. Here, when α/ν is small,
is when α/ν is large. As is clear from this figure, at f√2, the vibration transmissibility λ is less than 1, and the vibration is attenuated, but the vibration is amplified because it resonates in the vicinity of f〓ν. Therefore, when absorbing vibrations and shocks with a metal spring, it is necessary to determine the natural frequency of the spring according to the frequency characteristics of the vibrations and shocks applied to the repeater housing.

本発明は、中継器筐体に加わる振動・衝撃の大
きさに応じて固有振動数の異るバネが働くことに
より、最適な緩衝効果が得られる光海底中継器の
放熱・緩衝構造を提供するものである。
The present invention provides a heat dissipation/buffer structure for an optical submarine repeater in which an optimal buffering effect can be obtained by using springs with different natural frequencies depending on the magnitude of vibrations and shocks applied to the repeater housing. It is something.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

中継器筐体は、図3に一例を示すように、布設
機構の各部を通過する。ここで、12はケーブル
タンク、13は中継器、14はトラフ、15はキ
ヤタピラーよりなるDO/HB(ドローオフ・ホー
ルドバツクギヤ)、16はケーブルエンジンドラ
ム、17はダイナモ、18はバウシーブである。
実際に布設時に中継器筐体が各部で受けた衝撃の
最大値の測定例を図4に示す。実線は径方向、点
線は軸方向である。このように中継器筐体は各部
で様々な衝撃を受けるが、実際に10Gを超えるよ
うな大きな衝撃は数える程度であり、ほとんどは
5G以下の小さな振動や衝撃を布設時を通じて受
け続ける。従つて、緩衝の目的としては最大衝撃
を緩和させることが第一であるが、更に小さく受
け続ける衝撃を緩和させることが最適設計の上で
欠かせない事になる。
The repeater housing passes through each part of the installation mechanism, as an example is shown in FIG. Here, 12 is a cable tank, 13 is a repeater, 14 is a trough, 15 is a DO/HB (draw-off holdback gear) consisting of a caterpillar, 16 is a cable engine drum, 17 is a dynamo, and 18 is a bow sheave.
Figure 4 shows an example of measuring the maximum value of the shock that the repeater housing received at each part during actual installation. The solid line is the radial direction, and the dotted line is the axial direction. In this way, the repeater housing is subjected to various shocks at various parts, but in reality, large shocks exceeding 10G are only a few cases, and most of them are
It continues to receive small vibrations and shocks of 5G or less throughout the installation process. Therefore, while the primary purpose of buffering is to alleviate the maximum impact, it is essential for optimal design to alleviate even smaller impacts that continue to be received.

図5に、図4に示した衝撃の周波数特性の測定
例を示す。この結果から、各場所により周波数特
性のパターンが異つていることがわかる。従つ
て、各場所での衝撃を効果的に緩衝するために
は、各衝撃の周波数特性に応じて緩衝バネの固有
振動数νを変えることが必要である。
FIG. 5 shows an example of measuring the frequency characteristics of the impact shown in FIG. 4. This result shows that the pattern of frequency characteristics differs depending on the location. Therefore, in order to effectively buffer the impact at each location, it is necessary to change the natural frequency ν of the buffer spring depending on the frequency characteristics of each impact.

図6は本発明の一実施例である。図中、4は中
継器回路ユニツト、3は絶縁体である。この絶縁
体3の囲りを放熱交果を上げるため金属円筒9で
覆い、この円筒9と中継器筐体円筒(図1−1)
との間隙に第1の金属バネ8が両者に接触するよ
うに配置されている。金属バネ8は11bで金属
円筒に固定されている。金属バネのみで放熱効果
が得られれば、金属円筒9はなくても構わない。
この金属バネ8は、銅または銅合金のような熱伝
導率のすぐれた材質により形成されており、か
つ、小さな衝撃に対して変形するようにバネ剛性
を弱く(すなわちνを小さく)なるように形成し
ておく。このバネ8が布設時に衝撃を受けると、
弱い衝撃の場合変形して衝撃を吸収する。それよ
りも強い衝撃を受けると、バネ8は大きく変形し
て第2の金属バネ10に接触する。バネ10は1
1aで金属円筒9に固定されていて、自由端はバ
ネ8とは通常は非接触である。このバネ10はバ
ネ8とともに変形して強い衝撃を吸収する。この
場合のバネ8とバネ10の合成された剛性は布設
時の最大衝撃を緩和するような強さにしておく。
また、場合によつてはバネ8とバネ10と同じ固
有振動数で、両者が一体となり変形したときに合
成の固有振動数が最大衝撃を緩和する値に設定し
てもよい。布設機構部分で衝撃の最大値を示す
DO/HBの衝撃の周波数特性を図5aで見ると、
周波数の低い部分で最初の極小値はほぼ200Hz程
度であるので、バネ10とバネ8の合成のνは
200/√2≒140Hz程度、バネ8のνは100Hz以下
にしておけばよい。このような構造であれば、布
設時の衝撃の強さに応じて異つたバネが働き、か
つ常にバネ8が中継器筐体円筒1に接触している
ため放熱特性も優れている。
FIG. 6 is an embodiment of the present invention. In the figure, 4 is a repeater circuit unit, and 3 is an insulator. The area around this insulator 3 is covered with a metal cylinder 9 in order to improve the heat radiation exchange effect, and this cylinder 9 and the repeater housing cylinder (Figure 1-1)
A first metal spring 8 is arranged in the gap between the two so as to be in contact with both. The metal spring 8 is fixed to the metal cylinder by 11b. If the heat dissipation effect can be obtained only with the metal spring, the metal cylinder 9 may be omitted.
The metal spring 8 is made of a material with excellent thermal conductivity, such as copper or copper alloy, and has a low spring stiffness (i.e., a small value ν) so that it deforms in response to small impacts. Form it. If this spring 8 receives a shock during installation,
In the case of a weak impact, it deforms and absorbs the impact. If a stronger impact is received, the spring 8 will be greatly deformed and will come into contact with the second metal spring 10. Spring 10 is 1
It is fixed to the metal cylinder 9 at 1a, and the free end is normally not in contact with the spring 8. This spring 10 deforms together with the spring 8 to absorb strong impact. In this case, the combined rigidity of the spring 8 and the spring 10 is set to a strength that can alleviate the maximum impact during installation.
Further, depending on the case, the spring 8 and the spring 10 may have the same natural frequency, and the combined natural frequency may be set to a value that alleviates the maximum impact when the springs 8 and 10 are deformed as a unit. Indicates the maximum value of impact at the cable laying mechanism.
Looking at the frequency characteristics of DO/HB shock in Figure 5a,
Since the first minimum value in the low frequency part is approximately 200Hz, the composite ν of spring 10 and spring 8 is
200/√2≒140Hz, and ν of the spring 8 should be set to 100Hz or less. With such a structure, different springs work depending on the strength of the impact during installation, and the spring 8 is always in contact with the repeater housing cylinder 1, so that heat dissipation characteristics are also excellent.

図6では円筒の長さ方向にバネは分割してある
が、長さ方向に一体のバネでも構わない。
In FIG. 6, the spring is divided in the length direction of the cylinder, but the spring may be integrated in the length direction.

他の実施例を図7、図8に示す。 Other embodiments are shown in FIGS. 7 and 8.

以上述べた例では、バネ8,10の固定は金属
円筒9の外周で行つているが、これらのバネ8,
10のバネ構造を逆にして中継器筐体1の内周で
これらのバネ8,10を固定することも可能であ
り、また図9のように、バネ8,10の固定点が
筐体1と金属円筒9に分かれることも可能であ
る。いずれの場合も、図6ないし図8に示す実施
例とほぼ同様の緩衝効果と放熱効果が得られる。
In the example described above, the springs 8 and 10 are fixed at the outer periphery of the metal cylinder 9;
It is also possible to reverse the spring structure of 10 and fix these springs 8 and 10 on the inner periphery of the repeater housing 1, and as shown in FIG. It is also possible to separate it into a metal cylinder 9. In either case, substantially the same buffering effect and heat dissipation effect as in the embodiments shown in FIGS. 6 to 8 can be obtained.

また以上述べた例では、バネは2段構造である
が。図10のように3段以上の多段構造にするこ
とももちろん可能である。多段になれば、バネの
段数だけ固有振動数を変えることができ、さらに
優れた緩衝効果が期待できる。これは実際には中
継器回路ユニツトと中継器筐体円筒との間隙の程
度により決まる。
Furthermore, in the example described above, the spring has a two-stage structure. Of course, a multi-stage structure of three or more stages as shown in FIG. 10 is also possible. If there are multiple stages, the natural frequency can be changed by the number of stages of the spring, and an even better damping effect can be expected. This is actually determined by the degree of clearance between the repeater circuit unit and the repeater housing cylinder.

以上述べたように、本発明は中継器回路ユニツ
トの緩衝体を固有振動数を変えた金属バネの多段
構造にすることにより、中継器回路から発生する
熱量を効果的に放熱するとともに布設中に受ける
大小様々な振動・衝撃を最も効率よく吸収するこ
とが可能となる。これにより、光素子および電気
回路の信頼性を低下させる恐れのない高安定なシ
ステムが実現できる効果がある。
As described above, the present invention makes the buffer of the repeater circuit unit a multi-stage structure of metal springs with different natural frequencies, thereby effectively dissipating the amount of heat generated from the repeater circuit and during installation. This makes it possible to absorb vibrations and shocks of various sizes in the most efficient manner. This has the effect of realizing a highly stable system that is free from the risk of deteriorating the reliability of optical elements and electric circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は従来の光中継器筐体内の放熱・緩衝構造
を示す中継器筐体断面図、図2は金属バネの振動
伝達率と振動周波数の関係を表わす特性図、図3
は布設船内の各布設機構を表わす系統図、図4は
布設時に中継器筐体が受ける衝撃の大きさを示す
スペクトル図、図5は各部で受けた衝撃の代表的
周波数特性例図、図6,7,8,9,10は本発
明の一実施例を示す斜視図又は断面図である。 1……中継器筐体円筒、2……緩衝ゴム、3…
…絶縁体、4……中継器回路ユニツト、5……不
活性ガス、8,10……金属バネ、9……金属円
筒、11a,11b……固定位置、12……ケー
ブルタンク、13……中継器、14……トラフ、
15……DO/HB、16……ケーブルエンジンド
ラム、17……ダイナモ、18……バウシーブ。
Figure 1 is a sectional view of a conventional optical repeater housing showing the heat dissipation/buffer structure inside the housing, Figure 2 is a characteristic diagram showing the relationship between the vibration transmissibility and vibration frequency of a metal spring, and Figure 3
is a system diagram showing each cable laying mechanism inside the cable laying ship, Figure 4 is a spectrum diagram showing the magnitude of the impact received by the repeater housing during laying, Figure 5 is a typical frequency characteristic diagram of the impact received at each part, Figure 6 , 7, 8, 9, and 10 are perspective views or sectional views showing one embodiment of the present invention. 1... Repeater housing cylinder, 2... Buffer rubber, 3...
... Insulator, 4 ... Repeater circuit unit, 5 ... Inert gas, 8, 10 ... Metal spring, 9 ... Metal cylinder, 11a, 11b ... Fixed position, 12 ... Cable tank, 13 ... Repeater, 14...trough,
15...DO/HB, 16...Cable engine drum, 17...Dynamo, 18...Bow sheave.

Claims (1)

【特許請求の範囲】 1 光海底中継器筐体内における中継器回路ユニ
ツトの外側外周に配置する放熱・緩衝構造におい
て、前記中継器回路ユニツトの外周に位置する電
気絶縁体の外周と前記中継器筐体の内周との間隙
に、一部分が前記電気絶縁体の外周と前記中継器
筐体の内周の一方に接触固定された第2の金属バ
ネと一部分が該中継器筐体の内周と前記電気絶縁
体の外周との少なくとも一方または該第2の金属
バネに接触し一方または該第2の金属バネに固定
された第1の金属バネとが両バネの自由端側間に
空隙を持つように配置され、小さい衝撃を受けた
ときには前記第1の金属バネの自由端のみが変形
し、大きい衝撃を受けたときには該第1の金属バ
ネが変形して前記第2の金属バネに接触すること
により両バネが共に変形するように構成されたこ
とを特徴とする光海底中継器の放熱・緩衝構造。 2 前記第1の金属バネと前記第2の金属バネの
少なくとも一方が多段構造であることを特徴とす
る特許請求の範囲第1項記載の光海底中継器の放
熱・緩衝構造。 3 光海底中継器筐体内における中継器回路ユニ
ツトの外側外周に配置する放熱・緩衝構造におい
て、前記中継器回路ユニツトの外周に位置する金
属円筒の外周と前記中継器筐体の内周との間隙
に、一部分が前記金属円筒の外周と前記中継器筐
体の内周の一方に接触固定された第2の金属バネ
と一部分が該中継器筐体の内周と前記金属円筒の
外周との少なくとも一方または該第2の金属バネ
に接触し一方または該第2の金属バネに固定され
た第1の金属バネとが両バネの自由端側間に空隙
を持つように配置され、小さい衝撃を受けたとき
には前記第1の金属バネの自由端のみが変形し、
大きい衝撃を受けたときには該第1の金属バネが
変形して前記第2の金属バネに接触することによ
り両バネが共に変形するように構成されたことを
特徴とする光海底中継器の放熱・緩衝構造。 4 前記第1の金属バネと前記第2の金属バネの
少なくとも一方が多段構造であることを特徴とす
る特許請求の範囲第3項記載の光海底中継器の放
熱・緩衝構造。
[Scope of Claims] 1. In a heat dissipation/buffer structure disposed on the outer periphery of a repeater circuit unit in an optical submarine repeater housing, the outer periphery of an electrical insulator located on the outer periphery of the repeater circuit unit and the repeater casing. a second metal spring having a portion contacting and fixed to one of the outer periphery of the electrical insulator and the inner periphery of the repeater casing in a gap between the inner periphery of the body and the inner periphery of the repeater casing; At least one of the outer periphery of the electric insulator or a first metal spring that contacts the second metal spring and is fixed to the second metal spring has a gap between the free end sides of both springs. When a small impact is received, only the free end of the first metal spring deforms, and when a large impact is received, the first metal spring deforms and comes into contact with the second metal spring. A heat dissipation/buffer structure for an optical submarine repeater, characterized in that both springs are configured to deform together. 2. The heat dissipation/buffer structure for an optical submarine repeater according to claim 1, wherein at least one of the first metal spring and the second metal spring has a multi-stage structure. 3. In a heat dissipation/buffer structure disposed on the outer periphery of a repeater circuit unit in an optical submarine repeater casing, a gap between the outer periphery of a metal cylinder located on the outer periphery of the repeater circuit unit and the inner periphery of the repeater casing. a second metal spring, a portion of which is fixed in contact with one of the outer periphery of the metal cylinder and the inner periphery of the repeater casing; A first metal spring that is in contact with one or the second metal spring and is fixed to the other or the second metal spring is arranged with a gap between the free end sides of both springs, and receives a small impact. when the first metal spring is deformed, only the free end of the first metal spring is deformed;
Heat dissipation for an optical submarine repeater, characterized in that when receiving a large impact, the first metal spring deforms and comes into contact with the second metal spring, causing both springs to deform together. Buffer structure. 4. The heat dissipation/buffer structure for an optical submarine repeater according to claim 3, wherein at least one of the first metal spring and the second metal spring has a multi-stage structure.
JP412282A 1982-01-14 1982-01-14 Heat dissipation and buffer construction for optical submarine repeater Granted JPS58121842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP412282A JPS58121842A (en) 1982-01-14 1982-01-14 Heat dissipation and buffer construction for optical submarine repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP412282A JPS58121842A (en) 1982-01-14 1982-01-14 Heat dissipation and buffer construction for optical submarine repeater

Publications (2)

Publication Number Publication Date
JPS58121842A JPS58121842A (en) 1983-07-20
JPS6248406B2 true JPS6248406B2 (en) 1987-10-14

Family

ID=11575977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP412282A Granted JPS58121842A (en) 1982-01-14 1982-01-14 Heat dissipation and buffer construction for optical submarine repeater

Country Status (1)

Country Link
JP (1) JPS58121842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109905A (en) * 1989-09-22 1991-05-09 Isamu Horasawa Settling basin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153151B (en) * 1984-01-19 1988-04-20 Stc Plc Optical repeaters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109905A (en) * 1989-09-22 1991-05-09 Isamu Horasawa Settling basin

Also Published As

Publication number Publication date
JPS58121842A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
JP2005537667A (en) Rugged electronics enclosure
MY120076A (en) Electronic circuit device and method of fabricating the same
JP2009193654A (en) Hard disk drive housing case
JP4828969B2 (en) Mounting structure of semiconductor device
US20220369449A1 (en) On-board telematic device with integrated cooling for a motor vehicle
JP4333665B2 (en) Support structure for electronic components
CN108990365B (en) Heat radiation structure, shell and electronic equipment
JPS6248406B2 (en)
JPS6158980B2 (en)
JPH03268483A (en) Cooling device for electronic equipment
JPH10246819A (en) Heat radiating and shock absorbing structure for underwater repeater
CN213332288U (en) Can dustproof radiating motor transmission casing
JP4473360B2 (en) Stationary induction equipment
JPH0135540Y2 (en)
JP2007216823A (en) Case storage structure of on-vehicle control device
CN109561641B (en) Shielding cover, printed circuit board and electronic equipment
JP3202386B2 (en) Integrated circuit device
JP2004334959A (en) Buffer of storage
JP2007115965A (en) Electronic apparatus
CN219623794U (en) Natural gas transportation tank with cooling function
CN113409833A (en) Shockproof-combined heat dissipation structure, storage device and heat dissipation structure installation method
CN210444702U (en) Front end water-cooling plate
CN218829633U (en) Dustproof vehicle-mounted inverter
JP2005300092A (en) Storage device for refrigerator control board
CN216357638U (en) Duplex linkage controller for special vehicle