JPH0135540Y2 - - Google Patents

Info

Publication number
JPH0135540Y2
JPH0135540Y2 JP1983146596U JP14659683U JPH0135540Y2 JP H0135540 Y2 JPH0135540 Y2 JP H0135540Y2 JP 1983146596 U JP1983146596 U JP 1983146596U JP 14659683 U JP14659683 U JP 14659683U JP H0135540 Y2 JPH0135540 Y2 JP H0135540Y2
Authority
JP
Japan
Prior art keywords
circuit unit
heat dissipation
water
repeater circuit
repeater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983146596U
Other languages
Japanese (ja)
Other versions
JPS6055233U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14659683U priority Critical patent/JPS6055233U/en
Publication of JPS6055233U publication Critical patent/JPS6055233U/en
Application granted granted Critical
Publication of JPH0135540Y2 publication Critical patent/JPH0135540Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、海底中継器の内部で電気回路から発
生する熱を効率良く海水に放熱するための海底中
継器の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of a submarine repeater for efficiently dissipating heat generated from an electric circuit inside the submarine repeater to seawater.

〔従来の技術〕[Conventional technology]

第1図に従来例の海底中継器の実装構造を示
す。各種の電気回路は中継器回路ユニツト1の内
部に実装され、中継器回路ユニツト1はその両端
に緩衝体2が装着されて、耐水圧気密容器3の内
側に実装され、気密封止が施される。緩衝体2は
耐水圧気密容器3に加わる機械的な衝撃を緩和す
るために設けられ、緩衝体2が半径方向あるいは
長さ方向にある程度自由に変形できるように、中
継器回路ユニツト1と耐水圧気密容器3との間に
は空間が設けられている。
Figure 1 shows the mounting structure of a conventional submarine repeater. Various electric circuits are mounted inside a repeater circuit unit 1, and the repeater circuit unit 1 is equipped with a buffer body 2 at both ends, and is mounted inside a water-resistant pressure-tight container 3, and is hermetically sealed. Ru. The shock absorber 2 is provided to alleviate mechanical shock applied to the water pressure airtight container 3, and the shock absorber 2 is designed to be able to deform to some extent in the radial or longitudinal direction. A space is provided between the airtight container 3 and the airtight container 3.

この従来例構造では、中継器回路ユニツト1の
内部で発生した熱は、中継器の径方向に伝達さ
れ、この空間4を介して耐水圧気密容器3から海
水へ放熱される。この空間4には、中継器内部に
穏やかに侵入する水蒸気を吸収するように、また
中継器回路ユニツト1の回路部品を腐食させない
ように、不活性な窒素ガスが封入されている。窒
素ガスは熱伝導性が悪い。したがつて、この従来
例構造では、中継器回路ユニツト1から耐水圧気
密容器3への熱抵抗は大きい。
In this conventional structure, heat generated inside the repeater circuit unit 1 is transmitted in the radial direction of the repeater, and is radiated from the water-resistant pressure-tight container 3 to the seawater via this space 4. This space 4 is filled with inert nitrogen gas so as to absorb water vapor that gently enters the interior of the repeater and to prevent corrosion of the circuit components of the repeater circuit unit 1. Nitrogen gas has poor thermal conductivity. Therefore, in this conventional structure, the thermal resistance from the repeater circuit unit 1 to the water-resistant pressure-tight container 3 is large.

一方、近年光フアイバによる海底中継方式が研
究されていが、光フアイバによる方式は従来のア
ナログ方式と異なりデイジタル方式であるため、
多数の電子回路素子が中継器回路ユニツト1の内
部に実装され発熱が大きい。また、電気光変換器
として半導体レーザが用いられると、半導体レー
ザはその動作温度により寿命が著しく相違する性
質があり、回路部品の動作温度をできるかぎり低
く保つことが必要である。したがつて、これまで
の放熱構造では不十分になつた。
On the other hand, submarine relay systems using optical fibers have been researched in recent years, but optical fiber systems are digital systems unlike conventional analog systems.
A large number of electronic circuit elements are mounted inside the repeater circuit unit 1, which generates a large amount of heat. Furthermore, when a semiconductor laser is used as an electro-optical converter, the life of the semiconductor laser varies significantly depending on its operating temperature, and it is necessary to keep the operating temperature of circuit components as low as possible. Therefore, the conventional heat dissipation structure has become insufficient.

このため、耐水圧気密容器と中継器回路ユニツ
トとの間の、緩衝体が存在しない空間に、耐水圧
気密容器の長手方向に拡がつて耐水圧気密容器の
内面に弾性的に接触する金属スプリングの放熱フ
インを設けて放熱する構造が提案されている(実
願昭55−122155号、実開昭57−45616号)。
For this reason, a metal spring that extends in the longitudinal direction of the water-resistant pressure-tight container and elastically contacts the inner surface of the water-resistant pressure-tight container is installed in the space between the water-resistant pressure-tight container and the repeater circuit unit, where no buffer exists. A structure for dissipating heat by providing heat dissipating fins has been proposed (Utility Application No. 55-122155, Utility Model Application No. 57-45616).

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし、この技術の放熱フインは、耐水圧気密
容器の長手方向に拡がる傘状の金属スプリングの
形状であるため、耐水圧気密容器の内面に接触す
る面積が小さく、高密度に実装できないので、放
熱効率が悪い問題があつた。また、緩衝体が存在
しない空間を有効に放熱のために利用していない
問題があつた。
However, the heat dissipation fins of this technology have the shape of an umbrella-shaped metal spring that extends in the longitudinal direction of the water-resistant pressure-tight container, so the area in contact with the inner surface of the water-resistant pressure-tight container is small, making it impossible to mount them in a high density. There was a problem with inefficiency. Additionally, there was a problem in that the space where the buffer did not exist was not effectively utilized for heat radiation.

本考案は、海底中継器の中継器回路ユニツトか
らの耐水圧気密容器への放熱効率を改良して、中
継器回路ユニツトの温度を低く保ち、中継器回路
ユニツト内部に実装された各種の部品の動作特性
を改善するとともにその寿命を長く保つことを目
的とする。
The present invention improves the efficiency of heat dissipation from the repeater circuit unit of a submarine repeater to the water-resistant airtight container, keeps the temperature of the repeater circuit unit low, and protects the various components mounted inside the repeater circuit unit. The purpose is to improve its operating characteristics and extend its lifespan.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、中継器回路ユニツトと耐水圧気密容
器との間の緩衝体の存在しない緩衝用空間に、一
端が中継器回路ユニツトを弾性的に嵌め込むぼぼ
円筒状の実装部品に取付けられ、他端が耐水圧気
密容器内周にバネ作用により接触し、耐水圧気密
容器および中継器回路ユニツトの軸方向にその長
手方向が形成され、中継器回路ユニツトおよび耐
水圧気密容器の軸方向に垂直な面の断面が円弧状
に形成された複数の金属板を備え、そのバネ定数
が緩衝体より小さく設定された放熱フインが中継
器回路ユニツトおよび耐水圧気密容器の両者に接
触するように実装された構造を特徴とする。
In the present invention, one end is attached to a roughly cylindrical mounting part into which the repeater circuit unit is elastically fitted, and the other end is attached to a buffer space without a buffer between the repeater circuit unit and the water-resistant pressure-tight container. The end contacts the inner periphery of the water-resistant pressure-tight container by a spring action, its longitudinal direction is formed in the axial direction of the water-resistant pressure-tight container and the repeater circuit unit, and the longitudinal direction is formed perpendicular to the axial direction of the water-resistant pressure-tight container and the water-resistant pressure-tight container. A heat dissipation fin comprising a plurality of metal plates each having an arcuate surface cross-section and whose spring constant is set smaller than that of the buffer body is mounted so as to contact both the repeater circuit unit and the water pressure airtight container. Characterized by structure.

〔実施例〕〔Example〕

第2図は本考案実施例構造を説明するための断
面構造図である。中継器回路ユニツト1は、内部
に中継器回路が実装され、外側は円筒形の金属容
器により構成されている。この中継器回路ユニツ
ト1は緩衝体2に支持されて耐水圧気密容器3の
内部に実装されている。耐水圧気密容器3は肉厚
の大きい頑強な円筒形の金属容器であり、その両
端面には同じく厚い金属製の端面板が取付けら
れ、その端面板のほぼ中央部にはケーブルをこの
耐水圧気密容器3の内部に導くためのフイードス
ルーが設けられているが、この図では、端面板の
構造およびフイードスルーの構造については、本
考案と直接関係がないのできわめて簡略化して示
されている。
FIG. 2 is a cross-sectional structural diagram for explaining the structure of the embodiment of the present invention. The repeater circuit unit 1 has a repeater circuit mounted therein, and has a cylindrical metal container on the outside. This repeater circuit unit 1 is supported by a buffer body 2 and mounted inside a water-resistant pressure-tight container 3. The water pressure-resistant airtight container 3 is a strong cylindrical metal container with a large wall thickness, and thick metal end plates are attached to both ends of the container, and a cable is connected to the water pressure resistant airtight container approximately in the center of the end plate. A feedthrough is provided for guiding the feedthrough into the airtight container 3, but in this figure, the structure of the end plate and the structure of the feedthrough are shown in a very simplified manner since they are not directly related to the present invention.

本考案の特徴とするところは、中継器回路ユニ
ツト1の円筒形状の外周と耐水圧気密容器3の内
周との間に円周方向に拡がる羽根型の放熱フイン
5を設けたところにある。
A feature of the present invention is that a vane-shaped heat dissipation fin 5 is provided between the cylindrical outer periphery of the repeater circuit unit 1 and the inner periphery of the water-resistant pressure-tight container 3, extending in the circumferential direction.

第3図はこの放熱フインの部分の断面構造図で
あり、第2図に−で示す部分の断面を示す。
さらに第4図は拡大断面図であり、第3図に−
で示す部分の断面を示す。
FIG. 3 is a cross-sectional structural diagram of the heat dissipating fin, and FIG. 2 shows the cross section of the portion indicated by -.
Furthermore, Fig. 4 is an enlarged sectional view, and Fig. 3 shows -
The cross section of the part indicated by is shown.

この実施例では、放熱フインは多数の金属板お
よび縦方向にスリツトがあるほぼ円筒形状の実装
部品6により構成される。金属板の1枚の構造は
第5図に示すものであつて、円筒のほぼ1/4縦割
の形状をなし、その一辺は実装部品6の表面にリ
ベツト7により取付けられる。この放熱フインを
形成する金属は弾力性があり、実装部品6はその
内径が中継器回路ユニツト1の外径よりわずかに
小さく形成され、その内側に中継器回路ユニツト
1が挿入されると、実装部品6のバネ作用により
中継器回路ユニツト1の外周に面接触する。放熱
フインを形成する金層板はそれらがすべて取付け
られると、その外周は耐水圧気密容器3の内周よ
りわずかに大きくなるように形成され、耐水圧気
密容器3の内側に挿入されると金属板の他の一辺
はバネ作用により耐水圧気密容器3の内周に接触
する。
In this embodiment, the heat dissipation fin is composed of a large number of metal plates and a substantially cylindrical mounting component 6 with longitudinal slits. The structure of one metal plate is shown in FIG. 5, and has the shape of approximately 1/4 vertically divided cylinder, and one side of the metal plate is attached to the surface of the mounted component 6 by a rivet 7. The metal forming this radiation fin is elastic, and the mounting component 6 is formed so that its inner diameter is slightly smaller than the outer diameter of the repeater circuit unit 1. When the repeater circuit unit 1 is inserted inside the mounting component 6, the mounting component 6 is mounted. Due to the spring action of the component 6, it comes into surface contact with the outer periphery of the repeater circuit unit 1. When all of the gold laminated plates forming the heat dissipation fins are attached, the outer circumference is formed to be slightly larger than the inner circumference of the water-resistant pressure-tight container 3, and when inserted inside the water-resistant pressure-tight container 3, the metal plate The other side of the plate comes into contact with the inner periphery of the water-resistant and pressure-tight container 3 due to the action of a spring.

この実施例では、放熱フイン5の金属材料はベ
リリウム銅であり、金属板の厚さは0.2mmである。
この放熱構造を施した海底中継器の放熱特性の一
例を第6図に示す。本考案の放熱構造では、耐水
圧気密容器の内面に面接触し、放熱フインを高密
度に実装できるので、接触熱抵抗を大幅に低減で
き、放熱特性が向上することがわかる。
In this embodiment, the metal material of the radiation fins 5 is beryllium copper, and the thickness of the metal plate is 0.2 mm.
An example of the heat dissipation characteristics of a submarine repeater equipped with this heat dissipation structure is shown in FIG. It can be seen that in the heat dissipation structure of the present invention, the heat dissipation fins can be mounted in high density in surface contact with the inner surface of the water-resistant pressure-tight container, thereby significantly reducing contact thermal resistance and improving heat dissipation characteristics.

中継器回路ユニツト1と耐水圧気密容器3すな
わち海水との電位が相違する場合には、中継器回
路ユニツト1の外周に放熱フイン5との間に熱抵
抗の小さい絶縁材料の層を設ける。
If the potentials of the repeater circuit unit 1 and the water-resistant pressure-tight container 3, ie, the seawater, are different, a layer of an insulating material with low thermal resistance is provided around the outer periphery of the repeater circuit unit 1 and between it and the heat dissipation fins 5.

このように構成された中継器構造の組立手順を
説明すると、中継器回路ユニツト1の片端に緩衝
体2を取付ける。つぎに放熱フイン5の実装部品
6のスリツトを押し開いてその内側に中継器回路
ユニツト1を挿入する。つぎに中継器回路ユニツ
ト1に他方の緩衝体2を取付ける。この状態で放
熱フイン5が取付けられた中継器回路ユニツト1
を緩やかに回転しながら、耐水圧気密容器1の内
面に挿入する。その後に端面板が所定の方法によ
つて取付けられて気密封止される。
The procedure for assembling the repeater structure constructed in this way will be explained. A buffer body 2 is attached to one end of the repeater circuit unit 1. Next, the slit of the mounting component 6 of the heat dissipation fin 5 is pushed open and the repeater circuit unit 1 is inserted inside the slit. Next, the other buffer body 2 is attached to the repeater circuit unit 1. In this state, the repeater circuit unit 1 with the heat dissipation fins 5 attached
Insert it into the inner surface of the water-resistant pressure-tight container 1 while rotating it gently. Thereafter, the end plates are attached and hermetically sealed by a predetermined method.

この構造では、中継器回路ユニツト1の発熱は
放熱フイン5を経由して耐水圧気密容器3に伝導
する。これにより中継器回路ユニツト1と耐水圧
気密容器3との間の熱抵抗は著しく低くすること
ができる。熱抵抗の値は、放熱フイン5を構成す
る金属板の数、厚さ、金属の種類および形状によ
り設計することができる。
In this structure, heat generated by the repeater circuit unit 1 is conducted to the water-resistant pressure-tight container 3 via the heat radiation fins 5. As a result, the thermal resistance between the repeater circuit unit 1 and the water-resistant pressure-tight container 3 can be significantly lowered. The value of the thermal resistance can be designed depending on the number, thickness, type and shape of the metal plates constituting the heat dissipation fin 5.

放熱フイン5が外側に開く力が強くなると、放
熱フイン5と耐水圧気密容器3との接触がよくな
るが、その力が強くなりすぎると緩衝体2の緩衝
作用を損なうことになるため、放熱フイン5の径
方向のバネ定数は緩衝体2の変形を拘束しないよ
うに、緩衝体2のバネ定数より十分小さくするこ
とが必要である。
When the force that causes the heat dissipation fins 5 to open outward becomes stronger, the contact between the heat dissipation fins 5 and the water pressure and airtight container 3 becomes better, but if that force becomes too strong, the buffering effect of the buffer body 2 is impaired, so the heat dissipation fins The spring constant in the radial direction of 5 needs to be sufficiently smaller than the spring constant of the shock absorber 2 so as not to restrict the deformation of the shock absorber 2.

第7図に本実施例の放熱フインを実装した海底
中継器の放熱フイン全体のバネ定数と緩衝体の緩
衝特性、変位の関係を示す。第7図から、例えば
40枚のフインを実装した場合でも、最大50G(ガ
ル)の衝撃に対る緩衝特性、変位の減少は放熱フ
インがない場合と比較し、それぞれ5%、10%以
下であり、本考案の放熱構造は緩衝体の緩衝作用
を損なうことがなく放熱効果を向上できる。
FIG. 7 shows the relationship between the spring constant of the entire heat dissipation fin of a submarine repeater in which the heat dissipation fin of this embodiment is mounted, the damping property of the buffer body, and the displacement. From Figure 7, for example
Even when 40 fins are installed, the shock absorbing properties and displacement of up to 50G (gal) are reduced by less than 5% and 10%, respectively, compared to the case without heat dissipation fins. The structure can improve the heat dissipation effect without impairing the buffering effect of the buffer body.

上記実施例の構造では、放熱フインには実装部
品を設けるように説明したが、放熱フインの金属
板を直接に中継器回路ユニツトの表面に取付ける
構造とすることができる。また、中継器回路ユニ
ツト側の接触をもバネ作用により接触させる構造
とすることができる。
In the structure of the above embodiment, it has been explained that the heat dissipation fin is provided with a mounting component, but the metal plate of the heat dissipation fin may be directly attached to the surface of the repeater circuit unit. Further, the contact on the repeater circuit unit side can also be configured to be brought into contact by a spring action.

放熱フインの材料については上記実施例のもの
のほか、燐青銅、ステンレス鋼などが利用できる
が、本考案はこの材料を限定するものではない。
In addition to the materials used in the above embodiments, phosphor bronze, stainless steel, etc. can be used as the material for the heat dissipation fins, but the present invention is not limited to these materials.

〔考案の効果〕[Effect of idea]

以上説明したように、本考案の構造によれば、
耐水圧気密容器との接触面積が大きく、実装本数
も大きいため、中継器回路ユニツトと耐水圧気密
容器との間の熱抵抗を著しく小さくして、中継器
回路ユニツトの発熱を海水に効率的に放熱するこ
とができる。したがつて、中継器回路ユニツトに
実装される各種の部品の動作温度を低く設定する
ことができ、その動作特性が向上するとともに、
寿命が長くなる効果がある。また、中継器の設計
上はさらに発熱の大きい回路部品を使用すること
が可能になり、設計の自由度が向上して高い性能
の装置を設計することができる利点がある。
As explained above, according to the structure of the present invention,
Since the contact area with the water-resistant pressure-tight container is large and the number of components mounted is large, the thermal resistance between the repeater circuit unit and the water-resistant pressure-tight container is significantly reduced, and the heat generated by the repeater circuit unit is efficiently transferred to seawater. It can dissipate heat. Therefore, the operating temperature of various components mounted in the repeater circuit unit can be set low, and its operating characteristics are improved.
It has the effect of prolonging life. Furthermore, in the design of the repeater, it becomes possible to use circuit components that generate even more heat, which has the advantage of increasing the degree of freedom in design and making it possible to design a high-performance device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例構造の中継器断面図。第2図は
本考案実施例構造の中継器断面図。第3図は放熱
フインの部分の構造を示す横断面図(第2図に
−で示す部分の断面図)。第4図は放熱フイン
の部分の構造を示す縦断面図(第2図に−で
示す部分の断面図)。第5図は放熱フインの1枚
の金属板の形状を示す図。第6図は本考案での放
熱特性を示す説明図。第7図は放熱フイン全体の
バネ定数と緩衝体の変位との関係を示す説明図。 1……中継器回路ユニツト、2……緩衝体、3
……耐水圧気密容器、4……空間、5……放熱フ
イン、6……実装部品、7……リベツト。
FIG. 1 is a sectional view of a repeater with a conventional structure. FIG. 2 is a sectional view of a repeater having an embodiment of the present invention. FIG. 3 is a cross-sectional view showing the structure of the heat dissipation fin portion (a cross-sectional view of the portion indicated by - in FIG. 2). FIG. 4 is a longitudinal cross-sectional view showing the structure of the heat dissipation fin portion (a cross-sectional view of the portion indicated by - in FIG. 2). FIG. 5 is a diagram showing the shape of one metal plate of the heat dissipation fin. FIG. 6 is an explanatory diagram showing the heat dissipation characteristics of the present invention. FIG. 7 is an explanatory diagram showing the relationship between the spring constant of the entire heat dissipation fin and the displacement of the buffer body. 1...Relay circuit unit, 2...Buffer, 3
...Waterproof pressure airtight container, 4...Space, 5...Radiation fin, 6...Mounted parts, 7...Rivets.

Claims (1)

【実用新案登録請求の範囲】 円筒形状の中継器回路ユニツトが緩衝体に支持
されて円筒形状の耐水圧気密容器の内部に実装さ
れた海底中継器において、 上記中継器回路ユニツトと上記耐水圧気密容器
との間の上記緩衝体の存在しない部分に、複数の
金属板を備えた放熱フインが設けられ、 この放熱フインの金属板は、 一端が上記中継器回路ユニツトを弾性的に嵌め
込むほぼ円筒状の実装部品に取付けられ、他端が
上記耐水圧気密容器内周にバネ作用により接触
し、 上記耐水圧気密容器および上記中継器回路ユニ
ツトの軸方向にその長手方向が形成され、上記耐
水圧気密容器および上記中継器回路ユニツトの軸
方向に垂直な面の断面が円弧状に形成された 構造であり、 上記放熱フインのバネ定数が上記緩衝体のバネ
定数より小さくなるように設定された ことを特徴とする海底中継器の放熱構造。
[Scope of Claim for Utility Model Registration] A submarine repeater in which a cylindrical repeater circuit unit is supported by a buffer body and mounted inside a cylindrical water-resistant pressure-tight container, the repeater circuit unit and the water-tight pressure-tight container. A heat dissipation fin having a plurality of metal plates is provided in the area between the container and the buffer where the buffer does not exist, and the metal plate of the heat dissipation fin has a substantially cylindrical shape with one end into which the repeater circuit unit is elastically fitted. The other end contacts the inner periphery of the water-resistant and pressure-resistant airtight container by a spring action, and its longitudinal direction is formed in the axial direction of the water-resistant and pressure-resistant airtight container and the repeater circuit unit. The airtight container and the repeater circuit unit have a structure in which the cross section of the plane perpendicular to the axial direction is formed in an arc shape, and the spring constant of the heat dissipation fin is set to be smaller than the spring constant of the buffer body. A heat dissipation structure for submarine repeaters featuring:
JP14659683U 1983-09-20 1983-09-20 Heat dissipation structure of submarine repeater Granted JPS6055233U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14659683U JPS6055233U (en) 1983-09-20 1983-09-20 Heat dissipation structure of submarine repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14659683U JPS6055233U (en) 1983-09-20 1983-09-20 Heat dissipation structure of submarine repeater

Publications (2)

Publication Number Publication Date
JPS6055233U JPS6055233U (en) 1985-04-18
JPH0135540Y2 true JPH0135540Y2 (en) 1989-10-30

Family

ID=30326261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14659683U Granted JPS6055233U (en) 1983-09-20 1983-09-20 Heat dissipation structure of submarine repeater

Country Status (1)

Country Link
JP (1) JPS6055233U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745616B2 (en) * 1977-04-19 1982-09-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128168Y2 (en) * 1980-08-28 1986-08-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745616B2 (en) * 1977-04-19 1982-09-29

Also Published As

Publication number Publication date
JPS6055233U (en) 1985-04-18

Similar Documents

Publication Publication Date Title
JPS59208899A (en) Trunk housing and circuit mounting structure
JPS62272597A (en) Electronic circuit case
US3760089A (en) Electrical bushing assembly having resilient means enclosed within sealing means
JPH0135540Y2 (en)
US2715518A (en) Heat conducting shock mount
JPS6158980B2 (en)
CN210200634U (en) Relay protection device
US3030553A (en) Ruggedized electronic packaging
JPH10246819A (en) Heat radiating and shock absorbing structure for underwater repeater
CN114384494A (en) Laser radar heat abstractor
US3188523A (en) Electrical circuit modular assembly
JPS6248406B2 (en)
CN208924090U (en) A kind of LLC resonant converter
CN218351261U (en) Shock-absorbing anti-interference inductor
JP2009032839A (en) Reactor
CN221058648U (en) Heat dissipation boss, controller shell and controller
CN109193165A (en) Flexible Miniature Aerial Structure
JPH0449799B2 (en)
JPS6011839B2 (en) submarine repeater housing
JPS6130497B2 (en)
CN220208612U (en) Clean energy storage cable
JPH0214112Y2 (en)
JPS63148814A (en) Structure for supporting internal unit in submarine repeater with heat radiation function
CN208433529U (en) Miniature Aerial Structure
CN215773687U (en) Heat radiation structure of video transmission equipment and video transmission equipment