JPS6246684B2 - - Google Patents

Info

Publication number
JPS6246684B2
JPS6246684B2 JP2322979A JP2322979A JPS6246684B2 JP S6246684 B2 JPS6246684 B2 JP S6246684B2 JP 2322979 A JP2322979 A JP 2322979A JP 2322979 A JP2322979 A JP 2322979A JP S6246684 B2 JPS6246684 B2 JP S6246684B2
Authority
JP
Japan
Prior art keywords
air
gas
gas turbine
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2322979A
Other languages
Japanese (ja)
Other versions
JPS55117036A (en
Inventor
Hiroshi Ishii
Hidetake Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP2322979A priority Critical patent/JPS55117036A/en
Publication of JPS55117036A publication Critical patent/JPS55117036A/en
Publication of JPS6246684B2 publication Critical patent/JPS6246684B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は液体空気を高圧空気源とするガスター
ビン発電方法に関し、詳しくは予め製造・貯蔵し
ておいた液体空気を液ポンプにより臨界圧以上に
加圧・圧送し、これを昇温した後まず膨張タービ
ンにより約5気圧〜50気圧に膨張させて動力を回
収し、次いでこの中間圧力の空気により燃料を燃
焼させその燃焼ガスでガスタービンを駆動させ、
前記膨張タービンによる動力と合せて極めて高い
効率で発電を行う方法に関する。更に本発明は液
体空気を効率良く利用して発電コストを安くする
と同時に設備費を安くした、ピークロード時に用
いるのに特に好適なガスタービン発電方法に関す
るものである。 通常のガスタービン発電は空気圧縮機によつて
大気を5気圧前後に圧縮し、この圧縮空気により
燃料を燃焼させて得られた高温燃焼ガスをタービ
ンで膨張させているが、ガスタービンの出力の約
2/3の動力が空気圧縮機の駆動用に消費されるた
めに、発電量の約3倍の出力のガスタービンが必
要であり、ガスタービンの価格が高くなる上熱効
率も30%以下と低い。この通常のガスタービン発
電方法に於いて空気圧縮機に要する動力を低減さ
せた方法として低温吸入圧縮機付ガスタービンが
ある。 即ち空気圧縮機の吸入空気を液体空気、液化天
然ガス(LNG、以下同じ)などの寒冷を利用し
て冷却することにより圧縮動力を減らす方法であ
るが、大型の空気圧縮機を必要とする点では通常
の方法と同じであり大きな改良にはなつていな
い。ところで発電時にこの空気圧縮機を用いない
ことにより効率よく発電を行う方法が提案されて
いる。即ち常時発電用燃料のLNGの寒冷を利用
して液体空気を製造するか又は電力需要のオフピ
ーク時に余剰電力を利用して製造するかにより液
体空気を貯蔵しておき、これをポンプで圧送し気
化してガスタービンの圧縮空気として用いる方法
である。従つて発電時空気圧縮機に要する動力が
必要無いため通常の場合の約3倍の効率で発電す
ることが出来、特にピークロード用発電方法とし
て好適である。この場合液体空気を100気圧以上
の圧力に加圧し、同程度の圧力下で燃料を燃焼さ
せ同時に過熱を防ぐため水を注入して作動ガスの
一部に加え得られた高温高圧のガスをタービンで
膨張させることにより更に効率良く発電を行う方
法が考えられている(特開昭52−34148号公報)
が、燃焼生成ガスは100気圧、900℃以上でしかも
水分、炭酸ガス等を伴うため、この様な苛酷な条
件に耐え得る材料の選定が困難且つ高価になり、
また多量の水を冷却に使うため、効率が落ちるこ
とが避けられない欠点がある。 本発明は以上の点に鑑みなされたもので、予め
製造・貯蔵されている液体空気を100気圧以上に
加圧し、後記するガスタービンの排出ガス等によ
り約500℃以上に昇温した後空気膨張タービンに
導入して5気圧乃至50気圧迄膨張させて動力を発
生させ、然る後その中間圧力、中間温度の排空気
により燃料を燃焼させ前記液体空気の蒸発空気と
熱交換して900℃以上に温度調整した後、その燃
焼ガスをガスタービンに導入して動力を発生させ
前記空気膨張タービンによる動力と共に発電機を
駆動させることを特徴とするガスタービン発電方
法である。即ち少ない動力で済む液加圧により液
体空気を高圧に加圧し、これを昇温後膨張させて
動力を回収し、更にこの空気を用い空気圧縮機を
用いないでガスタービン発電を行う等により高効
率発電とし、且つ、高圧高温部分は空気のみとす
ることにより設備費を安くしたものである。以下
本発明を実施例により詳細説明する。 第1図はLNG専焼火力発電所にそのLNGの寒
冷を利用した空気液化分離装置および本発明の主
要部であるガスタービン発電装置を併設した例で
ある。LNG貯槽1に貯蔵されているLNGは管2
より導出されて2分し、その一方はLNGポンプ
3により加圧されて15気圧、−155℃となつて管4
を通過し、再び2分してその一方の流れは管5を
経て空気液化装置8に導入される。管6より導入
された空気は空気圧縮機7により圧縮されて60気
圧、+40℃の状態で空気液化分離装置8に導入さ
れ、上記管5より導入されたLNGと間接熱交換
して冷却され、液化工程を経て液化し管9より液
体空気として取出され貯槽10に蓄えられる。こ
の間管5より空気液化分離装置8に導入された
LNGは熱交換により常温近く迄昇温して管11
より導出される。一方管4より2分されたLNG
の他の流れは管12を経て加温器13に入り、こ
こで海水と熱交換して常温附近まで昇温し、管1
4を経て前記管11よりの流れと合流し、約10気
圧、約10℃の天然ガスとして管15より火力発電
所16へ燃料として供給される。以上の工程は火
力発電所の燃料LNGの寒冷を利用して液体空気
を製造し、貯蔵する工程であり常時操業している
部分である。 次に述べる部分は主として電力需要のピーク時
に運転する増強用発電設備である。貯槽10に貯
蔵されている液体空気は管17より取出されて液
体空気ポンプ18により200気圧に加圧され、蒸
発器19に導入されて海水により加温され常温近
くまで昇温する。この高圧空気は更に熱交換器2
0に導入されて後記するガスタービンの排出ガス
と熱交換して約230℃に加熱され、管21を経て
更に熱交換器22に導入され後記するガスタービ
ン用燃焼室32より導出された高温ガスと熱交換
して約560℃迄加熱されて導管23に導出され
る。本実施例では液体空気は200気圧に加圧する
が、臨界圧以上であればよく200気圧以上であれ
ば一層望ましい。次いで海水とガスタービン排出
ガスの両者又はガスタービン排出ガスのみと熱交
換させることによつて加熱するが、これらの過程
により充分な温度が得られない場合、ガスタービ
ン用燃焼室を出た高温ガスと熱交換することによ
り更に昇温する。これによりその圧縮空気圧力に
おける膨張タービン等の材料の最高使用可能温度
即ち通常500〜700℃の温度まで昇温する。こうし
て得られた560℃、200気圧の高温高圧空気は管2
3より空気膨張タービン24に導入され、約20気
圧の中間圧力迄膨張しその際の仕事は軸25,2
6を介して発電機27に伝えられ電力として回収
される。膨張後の中間圧力は5気圧〜50気圧の間
の圧であれば良く20気圧には限定されない。また
この際の膨張は1段の膨張タービンによる膨張に
は限らず、2段以上の膨張タービンを用いるこ
と、更には各膨張タービンの間に再熱回路を設け
ることにより効率の向上を計ることが可能であ
る。 一方LNG貯槽1より管2を経て取り出され2
分したLNGの他の流れは管28を経てLNGポン
プ29に導入され約20気圧に加圧された後、
LNG蒸発器30に於て海水との熱交換によつて
常温附近迄昇温し、更に前記熱交換器20に導入
されてガスタービンの排出ガスと熱交換し、20気
圧、230℃となり管31を経て燃焼室32に導入
される。ここで20気圧、230℃の天然ガスは、膨
張タービン24より導出され管33を経て来た20
気圧、220℃の空気と混合燃焼し、生成した高温
燃焼ガスは管34を経て熱交換器22に導入さ
れ、向流する高圧空気と熱交換して冷却され約20
気圧、約980℃の状態で管35よりガスタービン
36に導入されて大気圧附近迄膨張し、その際の
機械的仕事は前記軸26を介して発電機27に伝
えられ、空気膨張タービン24の場合と同様電力
として回収される。燃焼室32を出た高温燃焼ガ
スを熱交換器22を経た後ガスタービン36に導
入するのは、高圧空気の予熱のためである。ガス
タービン36は1段に限らず2段以上にするこ
と、またはその中間に再熱回路を設定すること、
あるいは再度の燃料添加による二次燃焼方式を採
用することによつて効率の向上を図ることが出来
る。ガスタービン36の入口における燃焼ガス温
度は5〜50気圧の圧力下におけるガスタービンの
材料の最高使用可能温度で通常の場合900℃以上
である。 ガスタービン36に於て断熱膨張し、1.2気
圧、430℃の状態となつた燃焼ガスは管37を経
て熱交換器20に導入され前記高圧空気と熱交換
して冷却され、大気圧200℃で管38より大気中
へ廃ガスとして放出される。 次に上記空気膨張タービンを複数段としその中
間に再熱回路を設けた場合、ガスタービンを複数
段としその中間に再熱回路を設定し、また2次燃
焼室を設けた場合の実施例を第2図に示す。図に
於て管21よりの200気圧、230℃の高圧空気は熱
交換器22に導入されて200気圧、560℃となつた
後、空気膨張タービンの第1段目24′に導入さ
れて膨張、動力を発生して70気圧、380℃となつ
て導出し、再び熱交換器22に導入されて再熱さ
れ70気圧、560℃となつて空気膨張タービンの第
2段目39に導入されて膨張し動力を発生する。
発生した動力は軸41,25,26,42を介し
て発電機27を駆動する。膨張後の空気は20気
圧、380℃の状態で管40を経て燃焼室32に導
入される。管31よりの20気圧、230℃の天然ガ
スは燃焼室32で上記管40よりの空気と混合、
燃焼して高温燃焼ガスとなり、管34より熱交換
器22を経て20気圧、980℃の状態でガスタービ
ンの第1段目36′に導入され、断熱膨張して動
力を発生し、膨張したガスは5気圧、680℃で導
出し、管43より2次燃焼室44に導入される。
該2次燃焼室には管31より分岐した燃料が管4
5より導入され、まだ酸素が残つている管43よ
りの燃焼ガスと混合して再燃焼し、1250℃に昇温
され、管46を経て熱交換器22に入り、5気
圧、980℃となつて管47よりガスタービンの第
2段目48に導入される。ここで再びこの高温燃
焼ガスは断熱膨張して動力を発生し、1.2気圧、
680℃のガスとなつて導出する。ガスタービンの
第2段目48で発生した動力は先の空気膨張ター
ビン24′,39およびガスタービンの1段目3
6′で発生した動力と共に軸42を介して発電機
27を駆動する。膨張後のガスは管49を経て前
記熱交換器20で熱交換後大気中へ放出される。 本発明はこの様に(i)予め貯留した液体空気を最
大限に利用すること(ii)高圧空気用の膨張タービン
および中間圧力用のガスタービンは各々の最高可
能温度条件で作動させることの2点により極めて
高い発電効率が得られ、これによりピーク発電と
して極めて好適な発電方法を提供するものであ
る。即ち(i)については、液体空気をまずポンプで
臨界圧以上に昇圧するが、液体であるからポンプ
の所要動力は圧縮機に比して極めて僅少で済むこ
と、得られた高圧空気は燃焼ガス又はガスタービ
ンの排出ガスの熱を利用して昇温した上タービン
で膨張して動力を発生すること、臨界圧以上望ま
しくは200気圧以上の高圧から膨張するので大き
な動力が得られること等による。 (ii)については200気圧以上の高圧はタービンの
材料にとつては苛酷な条件であつて、燃焼ガスタ
ービンの場合は炭酸ガス、水分を同伴したガスを
900℃以上、200気圧以上で導入してタービンを駆
動させることになり材料の面から非常に困難であ
るのに対し、本発明の場合は高圧タービンは空気
のみの膨張であるので温度条件はガスタービンよ
りは低いが可能な範囲で上限に近い560℃で200気
圧が可能となる。そして次にこの膨張タービンの
出口空気により燃料を燃焼させガスタービンを作
動させるが、ここでは圧力が比較的低いので900
℃以上の高温度条件を選ぶことが出来る。 以上の如く本発明は高圧空気による膨張タービ
ンと高温燃焼ガスによるガスタービンを有機的に
組合せることにより高い発電効率を得ることが出
来、更に高圧空気のエネルギーを利用するため燃
料消費量が著しく低減する。前記第1図の実施例
について求めたLNG原単位および発電の熱効率
は次表の通りで、通常のガスタービン発電に比し
極めて優れており高出力のピーク発電が可能であ
ることを示している。
The present invention relates to a gas turbine power generation method using liquid air as a high-pressure air source. Specifically, the present invention relates to a gas turbine power generation method using liquid air as a high-pressure air source. The fuel is expanded to approximately 5 to 50 atmospheres using an expansion turbine to recover power, and then the intermediate pressure air is used to combust fuel and the combustion gas drives a gas turbine.
The present invention relates to a method of generating electricity with extremely high efficiency in combination with the power generated by the expansion turbine. Furthermore, the present invention relates to a gas turbine power generation method that is particularly suitable for use during peak loads, which reduces power generation costs and equipment costs by efficiently utilizing liquid air. Normal gas turbine power generation uses an air compressor to compress the atmosphere to around 5 atmospheres, and uses this compressed air to combust fuel and expand the high-temperature combustion gas obtained by a turbine. about
Since 2/3 of the power is consumed to drive the air compressor, a gas turbine with an output approximately three times the amount of electricity generated is required, which not only increases the price of the gas turbine, but also has a low thermal efficiency of less than 30%. . A gas turbine with a low-temperature suction compressor is a method for reducing the power required for an air compressor in this conventional gas turbine power generation method. In other words, it is a method to reduce the compression power by cooling the intake air of the air compressor using liquid air, liquefied natural gas (LNG, the same applies hereinafter), etc., but it requires a large air compressor. This method is the same as the usual method and has not resulted in a major improvement. By the way, a method has been proposed in which the air compressor is not used during power generation to efficiently generate power. In other words, liquid air is stored by either producing liquid air using the cold temperature of LNG, which is used as a fuel for continuous power generation, or by using surplus electricity during off-peak electricity demand, and then pumping it to produce air. This method converts the air into compressed air and uses it as compressed air for gas turbines. Therefore, since the power required for an air compressor is not required during power generation, power can be generated with an efficiency approximately three times that of a normal case, and is particularly suitable as a peak load power generation method. In this case, liquid air is pressurized to a pressure of 100 atmospheres or more, the fuel is combusted under the same pressure, and at the same time, water is injected to prevent overheating and added to part of the working gas. A method has been considered to generate electricity more efficiently by expanding
However, the combustion generated gas is at 100 atmospheres and over 900 degrees Celsius, and is accompanied by moisture, carbon dioxide, etc., making it difficult and expensive to select materials that can withstand such harsh conditions.
Another drawback is that a large amount of water is used for cooling, which inevitably reduces efficiency. The present invention has been developed in view of the above points, and involves pressurizing liquid air that has been produced and stored in advance to over 100 atmospheres, raising the temperature to over 500 degrees Celsius using exhaust gas from a gas turbine, etc., which will be described later, and then expanding the air. The fuel is introduced into a turbine and expanded to 5 to 50 atmospheres to generate power, and then the exhaust air at intermediate pressure and temperature is used to combust the fuel and exchange heat with the evaporated air of the liquid air to reach a temperature of 900°C or higher. This gas turbine power generation method is characterized in that after the combustion gas is temperature-adjusted, the combustion gas is introduced into a gas turbine to generate power, and a generator is driven together with the power from the air expansion turbine. In other words, liquid air is pressurized to a high pressure by liquid pressurization, which requires less power, and after the temperature is increased, the power is recovered by expanding it.Furthermore, this air can be used to generate gas turbine power without using an air compressor. The equipment cost is reduced by efficient power generation and by using only air in the high-pressure, high-temperature part. The present invention will be explained in detail below with reference to Examples. FIG. 1 shows an example in which an LNG-only combustion thermal power plant is equipped with an air liquefaction separation device that utilizes the cooling of the LNG and a gas turbine power generation device, which is the main part of the present invention. The LNG stored in LNG storage tank 1 is pipe 2
One part is pressurized by LNG pump 3 to 15 atm and -155°C, and then to pipe 4.
is divided into two parts again, and one of the streams is introduced into the air liquefier 8 via the pipe 5. The air introduced from the pipe 6 is compressed by the air compressor 7 and introduced into the air liquefaction separation device 8 at 60 atmospheres and +40°C, where it is cooled by indirect heat exchange with the LNG introduced from the pipe 5, The air is liquefied through a liquefaction process, and is taken out as liquid air through a pipe 9 and stored in a storage tank 10. During this time, air was introduced into the air liquefaction separation device 8 through the pipe 5.
The LNG is heated to near room temperature through heat exchange, and then the pipe 11
It is derived from On the other hand, LNG divided into two from pipe 4
The other flow passes through pipe 12 and enters warmer 13, where it exchanges heat with seawater and is heated to around room temperature.
4, it merges with the flow from the pipe 11, and is supplied as fuel to a thermal power plant 16 through a pipe 15 as natural gas at about 10 atmospheres and about 10°C. The above process is a process in which liquid air is produced and stored using the cold LNG fuel from a thermal power plant, and is a part that is constantly in operation. The next section will be described mainly as reinforcement power generation equipment that will be operated during peak power demand times. Liquid air stored in the storage tank 10 is taken out through a pipe 17, pressurized to 200 atmospheres by a liquid air pump 18, introduced into an evaporator 19, heated by seawater, and raised to near room temperature. This high pressure air is further transferred to heat exchanger 2.
The high-temperature gas is introduced into the gas turbine combustion chamber 32, which is introduced into the heat exchanger 22 via the pipe 21, and then led out from the gas turbine combustion chamber 32, which will be described later. The liquid is heated to approximately 560°C by exchanging heat with the liquid and then led out to the conduit 23. In this embodiment, the liquid air is pressurized to 200 atmospheres, but the pressure may be at least the critical pressure, and it is more preferable that it is at least 200 atmospheres. The seawater is then heated by exchanging heat with both the gas turbine exhaust gas or with only the gas turbine exhaust gas. If sufficient temperature cannot be obtained through these processes, the high-temperature gas leaving the gas turbine combustion chamber is heated. The temperature is further increased by exchanging heat with. This raises the temperature of the material of the expansion turbine or the like at the compressed air pressure to the maximum usable temperature, which is usually 500 to 700°C. The high-temperature, high-pressure air of 560℃ and 200 atmospheres thus obtained is pipe 2.
3, the air is introduced into the expansion turbine 24 and expanded to an intermediate pressure of about 20 atmospheres, and the work at that time is done by the shafts 25 and 2.
6 to the generator 27 and recovered as electric power. The intermediate pressure after expansion may be between 5 atm and 50 atm and is not limited to 20 atm. In addition, the expansion at this time is not limited to expansion by a single-stage expansion turbine, but efficiency can be improved by using two or more stages of expansion turbines or by providing a reheating circuit between each expansion turbine. It is possible. On the other hand, LNG is taken out from the storage tank 1 through pipe 2.
The other flow of separated LNG is introduced into the LNG pump 29 via the pipe 28 and pressurized to about 20 atmospheres, and then
In the LNG evaporator 30, the temperature is raised to around room temperature by heat exchange with seawater, and then introduced into the heat exchanger 20, where it exchanges heat with the exhaust gas of the gas turbine, and becomes 20 atmospheres and 230 degrees Celsius, and the pipe 31 It is introduced into the combustion chamber 32 through the. Here, the natural gas at 20 atmospheres and 230°C is led out from the expansion turbine 24 and passed through the pipe 33.
The generated high-temperature combustion gas is mixed with air at an atmospheric pressure of 220°C and combusted, and the generated high-temperature combustion gas is introduced into the heat exchanger 22 through the pipe 34, where it is cooled by exchanging heat with the countercurrent high-pressure air.
It is introduced into the gas turbine 36 through the pipe 35 at an atmospheric pressure of approximately 980°C, and is expanded to near atmospheric pressure.The mechanical work at this time is transmitted to the generator 27 via the shaft 26, and the air expansion turbine 24 It is recovered as electricity in the same way as in the case of electricity. The reason why the high-temperature combustion gas leaving the combustion chamber 32 is introduced into the gas turbine 36 after passing through the heat exchanger 22 is to preheat the high-pressure air. The gas turbine 36 is not limited to one stage, but has two or more stages, or a reheat circuit is set in the middle;
Alternatively, efficiency can be improved by adopting a secondary combustion method by adding fuel again. The temperature of the combustion gas at the inlet of the gas turbine 36 is the maximum usable temperature of the gas turbine material under a pressure of 5 to 50 atmospheres, which is typically 900 DEG C. or higher. The combustion gas expands adiabatically in the gas turbine 36 and reaches a state of 1.2 atmospheres and 430°C. The combustion gas is introduced into the heat exchanger 20 through the pipe 37, where it is cooled by exchanging heat with the high-pressure air, and is heated to an atmospheric pressure of 200°C. The waste gas is discharged from the pipe 38 into the atmosphere. Next, we will discuss an example in which the air expansion turbine has multiple stages and a reheat circuit is provided in the middle, and the gas turbine has multiple stages and a reheat circuit is provided in the middle, and a secondary combustion chamber is provided. Shown in Figure 2. In the figure, high-pressure air at 200 atm and 230°C from the pipe 21 is introduced into the heat exchanger 22, where the temperature becomes 200 atm and 560°C, and then introduced into the first stage 24' of the air expansion turbine where it is expanded. , it generates power and outputs it at 70 atmospheres and 380 degrees Celsius, and is again introduced into the heat exchanger 22 where it is reheated to 70 atmospheres and 560 degrees Celsius and is introduced into the second stage 39 of the air expansion turbine. It expands and generates power.
The generated power drives a generator 27 via shafts 41, 25, 26, and 42. The expanded air is introduced into the combustion chamber 32 through the pipe 40 at 20 atmospheres and at 380°C. The natural gas at 20 atmospheres and 230°C from the pipe 31 is mixed with the air from the pipe 40 in the combustion chamber 32.
It is combusted and becomes high-temperature combustion gas, which is introduced from the pipe 34 through the heat exchanger 22 into the first stage 36' of the gas turbine at 20 atmospheres and 980°C, where it expands adiabatically to generate power, and the expanded gas is led out at 5 atmospheres and 680°C, and introduced into the secondary combustion chamber 44 through the pipe 43.
In the secondary combustion chamber, the fuel branched from the pipe 31 flows into the pipe 4.
5, mixed with combustion gas from pipe 43 that still contains oxygen, re-combusted, heated to 1250°C, enters heat exchanger 22 through pipe 46, and becomes 5 atm and 980°C. The gas is introduced through a pipe 47 into a second stage 48 of the gas turbine. Here again, this high-temperature combustion gas expands adiabatically and generates power, producing a pressure of 1.2 atm.
It is extracted as a gas at 680℃. The power generated in the second stage 48 of the gas turbine is transferred to the air expansion turbines 24', 39 and the first stage 3 of the gas turbine.
The generator 27 is driven via the shaft 42 together with the power generated by the generator 6'. The expanded gas passes through the pipe 49, undergoes heat exchange in the heat exchanger 20, and is then released into the atmosphere. The invention thus provides two advantages: (i) to make maximum use of pre-stored liquid air; and (ii) to operate the high-pressure air expansion turbine and the intermediate-pressure gas turbine at their respective highest possible temperature conditions. As a result, extremely high power generation efficiency can be obtained, thereby providing a power generation method that is extremely suitable for peak power generation. In other words, regarding (i), liquid air is first pressurized to above the critical pressure using a pump, but since it is a liquid, the power required for the pump is extremely small compared to that of a compressor, and the resulting high-pressure air is used as a combustion gas. Alternatively, the heat of the exhaust gas from the gas turbine is used to increase the temperature and the gas is expanded in the turbine to generate power, or the expansion is performed from a high pressure of over critical pressure, preferably over 200 atmospheres, so a large amount of power can be obtained. Regarding (ii), high pressures of 200 atmospheres or more are harsh conditions for turbine materials, and in the case of combustion gas turbines, gas containing carbon dioxide and moisture is
In contrast, in the case of the present invention, the high-pressure turbine expands only air, so the temperature condition is that of gas. Although it is lower than a turbine, it is possible to achieve a temperature of 560℃ and 200 atm, which is close to the upper limit of the possible range. Next, the outlet air of this expansion turbine burns the fuel and operates the gas turbine, but since the pressure here is relatively low, 900
High temperature conditions above ℃ can be selected. As described above, the present invention can achieve high power generation efficiency by organically combining an expansion turbine using high-pressure air and a gas turbine using high-temperature combustion gas, and furthermore, since the energy of high-pressure air is utilized, fuel consumption is significantly reduced. do. The LNG consumption rate and thermal efficiency of power generation determined for the example shown in Figure 1 above are shown in the table below, and are extremely superior to normal gas turbine power generation, indicating that high-output peak power generation is possible. .

【表】 本発明は表に示す様に極めて優れた熱効率が得
られることにより安いコストの発電を可能にする
ものであるが、同時に高圧空気タービンを組合せ
たことによりガスタービンにより類似の効果を狙
つた場合に比し著しく設備費を低くおさえること
を可能にしたものである。
[Table] As shown in the table, the present invention enables low-cost power generation by achieving extremely excellent thermal efficiency, but at the same time, by combining a high-pressure air turbine, a similar effect can be achieved with a gas turbine. This makes it possible to keep equipment costs significantly lower than in the case of conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例、第2図は本発
明方法の他の実施例を示す図である。 図において、1はLNG貯槽、3はLNGポン
プ、7は空気圧縮機、8は空気液化分離装置、1
0は液体空気貯槽、16は火力発電所、18は液
体空気ポンプ、19は蒸発器、20は熱交換器、
22は熱交換器、24は空気膨張タービン、27
は発電機、29はLNGポンプ、30はLNG蒸発
器、32は燃焼室、36はガスタービン、24′
は空気膨張タービンの第1段目、39は空気膨張
タービンの第2段目、36′はガスタービンの第
1段目、48はガスタービンの第2段目、44は
2次燃焼室である。
FIG. 1 shows one embodiment of the method of the present invention, and FIG. 2 shows another embodiment of the method of the present invention. In the figure, 1 is an LNG storage tank, 3 is an LNG pump, 7 is an air compressor, 8 is an air liquefaction separation device, 1
0 is a liquid air storage tank, 16 is a thermal power plant, 18 is a liquid air pump, 19 is an evaporator, 20 is a heat exchanger,
22 is a heat exchanger, 24 is an air expansion turbine, 27
is a generator, 29 is an LNG pump, 30 is an LNG evaporator, 32 is a combustion chamber, 36 is a gas turbine, 24'
is the first stage of the air expansion turbine, 39 is the second stage of the air expansion turbine, 36' is the first stage of the gas turbine, 48 is the second stage of the gas turbine, and 44 is the secondary combustion chamber. .

Claims (1)

【特許請求の範囲】 1 予め製造・貯蔵されている液体空気を100気
圧以上に加圧し、後記するガスタービンの排出ガ
ス等により約500℃以上に昇温した後空気膨張タ
ービンに導入して5気圧乃至30気圧迄膨張させて
動力を発生させ、然る後その中間圧力、中間温度
の排空気により燃料を燃焼させ前記液体空気の蒸
発空気と熱交換して900℃以上に温度調整した
後、その燃焼ガスをガスタービンに導入して動力
を発生させ前記空気膨張タービンによる動力と共
に発電機を駆動させることを特徴とするガスター
ビン発電方法。 2 前記燃料が液化天然ガスであることを特徴と
する特許請求の範囲第1項記載のガスタービン発
電方法。 3 前記予め製造・貯蔵されている液体空気が液
化天然ガスの寒冷を利用して製造されたものであ
ることを特徴とする特許請求の範囲第1項又は第
2項記載のガスタービン発電方法。 4 液体空気製造用として寒冷を利用される液化
天然ガスが火力発電所用燃料であることを特徴と
する特許請求の範囲第3項記載のガスタービン発
電方法。
[Claims] 1. Pressurize liquid air that has been produced and stored in advance to 100 atmospheres or more, raise the temperature to about 500°C or more by exhaust gas from a gas turbine described later, etc., and then introduce it into an air expansion turbine. The fuel is expanded to between 30 and 30 atmospheres of pressure to generate power, and then the fuel is combusted with the exhaust air at intermediate pressure and temperature, and the temperature is adjusted to 900°C or higher by exchanging heat with the evaporated air of the liquid air. A gas turbine power generation method characterized by introducing the combustion gas into a gas turbine to generate power and driving a generator together with the power from the air expansion turbine. 2. The gas turbine power generation method according to claim 1, wherein the fuel is liquefied natural gas. 3. The gas turbine power generation method according to claim 1 or 2, wherein the liquid air produced and stored in advance is produced by utilizing the cold of liquefied natural gas. 4. The gas turbine power generation method according to claim 3, wherein the liquefied natural gas that is chilled and used to produce liquid air is a fuel for a thermal power plant.
JP2322979A 1979-02-28 1979-02-28 Method of generating electric energy by use of gas turbine Granted JPS55117036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322979A JPS55117036A (en) 1979-02-28 1979-02-28 Method of generating electric energy by use of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322979A JPS55117036A (en) 1979-02-28 1979-02-28 Method of generating electric energy by use of gas turbine

Publications (2)

Publication Number Publication Date
JPS55117036A JPS55117036A (en) 1980-09-09
JPS6246684B2 true JPS6246684B2 (en) 1987-10-03

Family

ID=12104786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322979A Granted JPS55117036A (en) 1979-02-28 1979-02-28 Method of generating electric energy by use of gas turbine

Country Status (1)

Country Link
JP (1) JPS55117036A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932623A (en) * 1982-08-19 1984-02-22 Mitsubishi Heavy Ind Ltd Gas turbine
JP3696931B2 (en) * 1995-07-03 2005-09-21 三菱重工業株式会社 Power generation facility using liquid air

Also Published As

Publication number Publication date
JPS55117036A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
US4829763A (en) Process for producing power
KR20180044377A (en) Systems and methods for power generation using nested carbon dioxide (CO2) cycles
WO2008024833B1 (en) A combined cycle system for gas turbines and reciprocating engines and a method for the use of air as working fluid in combined cycle power plants
KR101705657B1 (en) Electricity Generation Device and Method
JP2002201959A (en) Gas turbine and method for operating the gas turbine
US6212873B1 (en) Gas turbine combined cycle
US20150192065A1 (en) Process and apparatus for generating electric energy
JPS5810526A (en) Gas compression and device
US20120255312A1 (en) Method and System to Produce Electric Power
JP2011017341A (en) Method and system for providing power for coolant compression reduced in carbon dioxide emission amount and electrical power for light hydrocarbon gas liquefying process
US4677827A (en) Natural gas depressurization power recovery and reheat
US4227374A (en) Methods and means for storing energy
EP2397669A2 (en) Method and system for periodic cooling, storing and heating with multiple regenerators
JPH04127850A (en) Liquid air storage power generating system
US11111853B2 (en) Method for exhaust waste energy recovery at the internal combustion engine polygeneration plant
US4785634A (en) Air turbine cycle
JP4142559B2 (en) Gas liquefaction apparatus and gas liquefaction method
JPS6246684B2 (en)
JP2004150685A (en) Nitrogen producing equipment and turbine power generation equipment
JP2001090509A (en) Cryogenic power generating system using liquid air
JPH11270347A (en) Gas turbine combined generating set using lng
JP4619563B2 (en) Ultra turbine
US20160013702A1 (en) Method and device for generating electrical energy
JPS6143945Y2 (en)