JP4619563B2 - Ultra turbine - Google Patents

Ultra turbine Download PDF

Info

Publication number
JP4619563B2
JP4619563B2 JP2001091405A JP2001091405A JP4619563B2 JP 4619563 B2 JP4619563 B2 JP 4619563B2 JP 2001091405 A JP2001091405 A JP 2001091405A JP 2001091405 A JP2001091405 A JP 2001091405A JP 4619563 B2 JP4619563 B2 JP 4619563B2
Authority
JP
Japan
Prior art keywords
turbine
compressor
working gas
combustor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001091405A
Other languages
Japanese (ja)
Other versions
JP2002242700A (en
Inventor
昭一 藤井
吉春 辻川
憲一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001091405A priority Critical patent/JP4619563B2/en
Publication of JP2002242700A publication Critical patent/JP2002242700A/en
Application granted granted Critical
Publication of JP4619563B2 publication Critical patent/JP4619563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【産業上の利用分野】
産業用ガスタービンは熱効率に優れているので近年、分散型などの小型、ホテルや病院などの非常用電源としての中型、大規模発電所の複合サイクルとしての大型にますます使われ始めた。本発明はこれらガスタービンの熱効率のさらなる向上手段として利用できるが、主としてマイクロタービンといわれる出力30kw程度またはそれ以下の小型ガスタービンを対象にしている。
【0002】
【従来の技術】
図1は現用のガスタービンの作動サイクルを温度とエントロピーの関係で示した。エントロピーは流体損失を表す熱力学のパラメーターである。図中の1の状態で大気を吸い込み2まで圧縮し2から3まで加熱し3から4にかけてタービンで膨張させ4の状態で大気に放出して一つのサイクルが完了する。これらの過程はすべて大気より高圧の状態で行われている。4の状態の排出ガスは600度C程度の高温なのでボイラーに再び入れ蒸気または温水にして排熱回収するコージェネレーションの普及が進んでいる。今一つの効率向上の技術としては図1の4の状態の排熱と2の状態の圧縮空気との間で熱交換し2の空気温度を高めて投入燃料の量を少なくする試みが小型ガスタービンでなされている。
【0003】
【発明が解決しようとする課題と手段】
ガスタービンの熱効率向上には、前述したように圧縮機からの高温ガスをタービン排気ガスで予熱する方式が現在、唯一絶対的なものになっているが、圧縮機出口の作動ガスはすでに高温になっており、熱交換の効率が悪い。そのため30kwの市販されている小型ガスタービンの熱効率は25%を超える事が出来ない。小型ガスタービンでも3から5気圧程度の燃料ポンプを必要とし取り扱いが面倒で普及の妨げになっている。排熱回収にボイラー設備を必要とする。
本発明はこれらの欠点を解決するものである。まず請求項1の発明の概念図を図2に示す。熱交換のために設けた外気吸入の低温側熱交換器部4で予熱された新鮮な空気は大気圧より多少低い圧力で燃焼器1に流入するので、特別の燃料ポンプを必要とせず、家庭用のガス配管等から直接供給できる利点がある。熱力学の計算を出力30kwの小型ガスタービンを想定して行ってみた。圧力比3、タービン2と圧縮機3の断熱効率を85%、タービン入り口温度900度C、出口温度600度C、熱交換温度効率を80%とすると問題の熱効率は35%になる。このような比較的高い熱効率が得られたのは、大気温度から予熱しているためである。本発明は通常のガスタービンとは逆の順序で燃焼器1、タービンお2よび圧縮機3を配置しているから大気温度の空気を加熱出来るので、従来の方式より熱効率が優る。
請求項1は簡潔なシステムであるが、熱効率の点などまだ改良の余地が残されているので、請求項2の発明で新たな機能を付加し、その概念図を図3に示す。タービン2出口から圧縮機3出口までの作動ガスの冷却を空気と流体の2段階で行う。すなわちタービン出口直後のガスがまだ比較的高温の間は新鮮な空気で行い、この予熱空気を作動ガスとして利用する。たとえばタービン出口600度Cの作動ガスが冷却されて200度Cになるまで外部から取り入れた空気で行い、その後は流体を用いて圧縮機入り口の作動ガスの温度を20度C近くに冷却し、さらに圧縮機3を熱交換器5で中間冷却する。先に挙げた30kwの小型ガスタービンのとき、このようにすると圧縮に要する仕事が軽減され熱効率45%に出来る。流体に水を用いれば温水がえられ、ボイラーが不要になる。流体に天然ガスを用いれば気化プラントになる。
請求項3は作動ガスの冷却を流体のみで行うもので発明の概念を図4に示す。このときは作動ガスは予熱されないので効率は悪く、ただ熱交換器5で中間冷却されているので30%程度の熱効率は保つ。気化ガスまたは温水が多量に必要なときにのみつかう。
【0004】
【発明の効果】
ガスタービンはエネルギー問題や炭酸ガス排出削減問題と深く関連するエネルギー変換のための有望な熱機関である。熱効率の向上は人類にとってますます重要度を増してくる。本発明により圧縮空気を排気ガスで加熱していた従来の方式の概念を覆し、小型のガスタービンでは今まで到達できなかった高い数値の熱効率45%を達成できる。その効果は、従来の方式では圧縮機を中間冷却しても、燃焼前の空気温度が下がり効率向上につながらない。しかし本発明では、燃焼器がタービン前方にあるので、圧縮機を中間冷却すれば確実に熱効率が向上する。さらに本発明の最大の効果は、当該タービンを出た作動ガスを軸出力増加のため冷却する外気を予熱空気として燃料節約に都合2回活用できることにある。そのため小型ガスタービンでは不可能とされてきた高い熱効率45%がでる。排ガスで温水または蒸気をえるためにボイラーを必要としない。燃焼器への燃料投入に特別の装置を必要としない。燃焼が大気圧に近い状態で行え安全である。温水や天然ガスの気化が発電の副産物として得られる。
【図面の簡単な説明】
【図1】従来のガスタービンのサイクル線図
【図2】請求項1の概本発明の概念を示す断面図
【図3】請求項2の概念図
【図4】請求項3の概念図
【符号の説明】
B 燃焼器
C 圧縮機
T タービン
G 発電機
[0001]
[Industrial application fields]
Industrial gas turbines, which have excellent thermal efficiency, have begun to be increasingly used in recent years, as small as a distributed type, as a medium size as an emergency power source for hotels and hospitals, and as a large size as a combined cycle in a large-scale power plant. The present invention can be used as a means for further improving the thermal efficiency of these gas turbines, but is mainly intended for small gas turbines having an output of about 30 kW or less, which are referred to as microturbines.
[0002]
[Prior art]
FIG. 1 shows the operating cycle of a current gas turbine in relation to temperature and entropy. Entropy is a thermodynamic parameter that represents fluid loss. In the state of 1 in the figure, the atmosphere is sucked in, compressed to 2, heated from 2 to 3, expanded by a turbine from 3 to 4, and released into the atmosphere in the state of 4 to complete one cycle. All of these processes are performed at a higher pressure than the atmosphere. Since the exhaust gas in the state No. 4 has a high temperature of about 600 ° C., cogeneration that re-enters the boiler and recovers the exhaust heat by using steam or hot water is spreading. As another technology for improving efficiency, an attempt to reduce the amount of input fuel by exchanging heat between the exhaust heat in the state 4 in FIG. 1 and the compressed air in the state 2 to increase the air temperature in the state 2 is a small gas turbine. It is made in.
[0003]
[Problems and Means to be Solved by the Invention]
In order to improve the thermal efficiency of gas turbines, the method of preheating the high-temperature gas from the compressor with the turbine exhaust gas as described above is currently the only absolute method, but the working gas at the outlet of the compressor is already at a high temperature. The heat exchange efficiency is poor. Therefore, the thermal efficiency of a 30 kW commercially available small gas turbine cannot exceed 25%. Even small gas turbines require a fuel pump of about 3 to 5 atm, which is cumbersome and hinders its spread. Boiler equipment is required for exhaust heat recovery.
The present invention solves these drawbacks. First, a conceptual diagram of the invention of claim 1 is shown in FIG. The fresh air preheated in the low-temperature side heat exchanger section 4 for sucking outside air provided for heat exchange flows into the combustor 1 at a pressure slightly lower than the atmospheric pressure, so a special fuel pump is not required and There is an advantage that it can be directly supplied from a gas pipe for use. The calculation of thermodynamics was performed assuming a small gas turbine with an output of 30 kW. If the pressure ratio is 3, the heat insulation efficiency of the turbine 2 and the compressor 3 is 85%, the turbine inlet temperature is 900 ° C., the outlet temperature is 600 ° C., and the heat exchange temperature efficiency is 80%, the thermal efficiency in question becomes 35%. The reason why such a relatively high thermal efficiency is obtained is that the temperature is preheated from the atmospheric temperature. In the present invention, since the combustor 1, the turbine 2 and the compressor 3 are arranged in the reverse order to that of a normal gas turbine, air at atmospheric temperature can be heated, so that the thermal efficiency is superior to the conventional system.
Although Claim 1 is a simple system, there is still room for improvement in terms of thermal efficiency. Therefore, a new function is added in the invention of Claim 2, and its conceptual diagram is shown in FIG. Cooling of the working gas from the turbine 2 outlet to the compressor 3 outlet is performed in two stages of air and fluid. That is, fresh air is used while the gas immediately after the turbine outlet is still relatively hot, and this preheated air is used as the working gas. For example, it is performed with air taken from outside until the working gas at the turbine outlet 600 ° C. is cooled to 200 ° C. After that, the temperature of the working gas at the compressor inlet is cooled to about 20 ° C. using a fluid, Further, the compressor 3 is intercooled by the heat exchanger 5. In the case of the 30 kW small gas turbine mentioned above, the work required for compression is reduced and the thermal efficiency can be 45%. If water is used as the fluid, hot water is obtained, and a boiler is not necessary. If natural gas is used for the fluid, it becomes a vaporization plant.
Claim 3 performs cooling of the working gas only with the fluid, and the concept of the invention is shown in FIG. At this time, since the working gas is not preheated, the efficiency is low, and since it is intermediately cooled by the heat exchanger 5, the thermal efficiency of about 30% is maintained. Use only when large amounts of vaporized gas or hot water are needed.
[0004]
【The invention's effect】
Gas turbines are promising heat engines for energy conversion that are closely related to energy problems and carbon dioxide emission reduction problems. Increasing thermal efficiency is becoming increasingly important for humanity. According to the present invention, the concept of the conventional system in which compressed air is heated with exhaust gas is reversed, and a high thermal efficiency of 45%, which has not been achieved with a small gas turbine, can be achieved. The effect is that, even if the compressor is intercooled in the conventional system, the air temperature before combustion is lowered and the efficiency is not improved. However, in the present invention, since the combustor is located in front of the turbine, if the compressor is intercooled, the thermal efficiency is reliably improved. Furthermore, the greatest effect of the present invention is that the outside air that cools the working gas exiting the turbine for increasing the shaft output can be used twice as a preheated air for fuel saving. Therefore, high thermal efficiency of 45%, which has been impossible with a small gas turbine, is achieved. No boiler is required to get hot water or steam from the exhaust gas. No special equipment is required for fuel input to the combustor. It is safe to perform combustion in a state close to atmospheric pressure. Evaporation of hot water and natural gas is obtained as a by-product of power generation.
[Brief description of the drawings]
FIG. 1 is a cycle diagram of a conventional gas turbine. FIG. 2 is a cross-sectional view showing the concept of the present invention in claim 1. FIG. 3 is a conceptual diagram of claim 2. FIG. 4 is a conceptual diagram of claim 3. Explanation of symbols]
B Combustor C Compressor T Turbine G Generator

Claims (3)

タービンと圧縮機が軸で結ばれているターボ機械の当該タービン前方に燃焼器を置きその作動ガスが燃焼器、タービン、圧縮機の順序で通過し外部に排出される動力発生装置において当該タービン出口と当該圧縮器出口までの高温作動ガスの冷却を当該圧縮の吸引力を利用して取り入れた外気との熱交換で行い当該外気を予熱して当該燃焼器に作動ガスとして流入させる方式の熱機関。In a power generator where a combustor is placed in front of the turbine of a turbomachine in which the turbine and the compressor are connected by a shaft and the working gas passes through the combustor, the turbine, and the compressor in this order and is discharged to the outside, the turbine outlet method of heat cooling the hot working gas to the compressor outlet to preheat the fresh air conducted by heat exchange with the outside air introduced by utilizing the suction force of the compressor to flow as a working gas to the combustor and organ. 請求項1の高温作動ガスの冷却を外気のほかに動力発生装置の外部に設けたポンプ等で新たに導入する流体を併用して行い予熱した外気のみを動力発生装置の燃焼器にいれて作動ガスとする熱機関。  The high-temperature working gas according to claim 1 is cooled by using a fluid newly introduced by a pump or the like provided outside the power generator in addition to the outside air, and only the preheated outside air is put into the combustor of the power generator to operate. Gas heat engine. 請求項1の動力発生装置の外部に設けたポンプ等により流体を圧送し請求項1のタービン出口から圧縮機出口に至る高温作動ガスの冷却を行う熱機関。  A heat engine for cooling a high-temperature working gas from a turbine outlet to a compressor outlet by pumping fluid by a pump or the like provided outside the power generation device of claim 1.
JP2001091405A 2001-02-20 2001-02-20 Ultra turbine Expired - Fee Related JP4619563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091405A JP4619563B2 (en) 2001-02-20 2001-02-20 Ultra turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001091405A JP4619563B2 (en) 2001-02-20 2001-02-20 Ultra turbine

Publications (2)

Publication Number Publication Date
JP2002242700A JP2002242700A (en) 2002-08-28
JP4619563B2 true JP4619563B2 (en) 2011-01-26

Family

ID=18946026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091405A Expired - Fee Related JP4619563B2 (en) 2001-02-20 2001-02-20 Ultra turbine

Country Status (1)

Country Link
JP (1) JP4619563B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734759B2 (en) * 2002-03-07 2006-01-11 川崎重工業株式会社 Normal pressure gasification power generation device and exhaust circulation type normal pressure power generation device
JP4179496B2 (en) * 2002-10-08 2008-11-12 川崎重工業株式会社 Atmospheric pressure combustion turbine system
JP4002976B2 (en) * 2003-06-10 2007-11-07 独立行政法人産業技術総合研究所 Reheat gas turbine equipment expanding to negative pressure
JP4833793B2 (en) * 2006-10-23 2011-12-07 川崎重工業株式会社 Lubricating device for atmospheric turbine
JP4987427B2 (en) * 2006-11-06 2012-07-25 川崎重工業株式会社 Atmospheric pressure combustion turbine system with cooling structure for working gas inlet
CN104011347A (en) * 2011-12-22 2014-08-27 川崎重工业株式会社 Gas turbine engine provided with heat exchanger, and method for starting gas turbine engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594866A (en) * 1982-06-29 1984-01-11 株式会社島津製作所 Thermal energy utilizing system
JPS59120721A (en) * 1982-12-27 1984-07-12 Osaka Gas Co Ltd Exhaust heat collecting device
JPH01280638A (en) * 1988-03-31 1989-11-10 Aisin Seiki Co Ltd Gas turbine cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594866A (en) * 1982-06-29 1984-01-11 株式会社島津製作所 Thermal energy utilizing system
JPS59120721A (en) * 1982-12-27 1984-07-12 Osaka Gas Co Ltd Exhaust heat collecting device
JPH01280638A (en) * 1988-03-31 1989-11-10 Aisin Seiki Co Ltd Gas turbine cogeneration system

Also Published As

Publication number Publication date
JP2002242700A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
CA2564155C (en) Highly efficient heat cycle device
JP3652962B2 (en) Gas turbine combined cycle
US10584614B2 (en) Waste heat recovery simple cycle system and method
US20070256424A1 (en) Heat recovery gas turbine in combined brayton cycle power generation
WO2011005343A1 (en) Combined cycle power plant
JP4619563B2 (en) Ultra turbine
KR101812919B1 (en) Complex supercritical CO2 generation system
CN109681325A (en) Natural gas-supercritical CO of zero carbon emission2Combined cycle generating process
JP2880938B2 (en) Hydrogen combustion gas turbine plant
JPH11270347A (en) Gas turbine combined generating set using lng
JPH11117712A (en) Gas turbine combined plant
JP4002976B2 (en) Reheat gas turbine equipment expanding to negative pressure
TWI399512B (en) A low-grade heat-utilizing device and approach for producing power and refrigeration
RU2743480C1 (en) Oxygen-fuel power plant
CN114893267B (en) Liquid carbon dioxide energy storage system for high back pressure-extraction condensation cogeneration system
JPH0821207A (en) Steam producing system by waste heat of steam, gas turbine composite plant
RU2775732C1 (en) Oxygen-fuel power plant
JPH06330709A (en) Power generation plant
JP2004150356A (en) Power generation plant
RU2689508C1 (en) Method of heating fuel gas in a non-volatile gas transfer unit
WO2023040188A1 (en) Zero-carbon cold power generator and power generation method therefor
JPH0110417Y2 (en)
JPH11117714A (en) Gas turbine combined plant
Iki et al. Conceptual investigation of a small reheat gas turbine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees