JPS5932623A - Gas turbine - Google Patents

Gas turbine

Info

Publication number
JPS5932623A
JPS5932623A JP14272482A JP14272482A JPS5932623A JP S5932623 A JPS5932623 A JP S5932623A JP 14272482 A JP14272482 A JP 14272482A JP 14272482 A JP14272482 A JP 14272482A JP S5932623 A JPS5932623 A JP S5932623A
Authority
JP
Japan
Prior art keywords
air
combustion
gas turbine
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14272482A
Other languages
Japanese (ja)
Other versions
JPH0154523B2 (en
Inventor
Yuzuru Tawara
譲 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14272482A priority Critical patent/JPS5932623A/en
Publication of JPS5932623A publication Critical patent/JPS5932623A/en
Publication of JPH0154523B2 publication Critical patent/JPH0154523B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To facilitate increasing the capacity of a gas turbine, by a method wherein a fuel and liquid air are simultaneously injected into a combustion chamber, are mixed and brought into combustion, and the resultant high-pressure high-temperature gas is used as a driving fluid for a gas turbine. CONSTITUTION:Air taken in from the atmosphere through an air intake port 1 is liquefied by an air liquefier 8. Since liquid air is rapidly expanded through evaporation when the temperature thereof exceeds the boiling point thereof, when liquid air discharged from the liquefier 8 into the combustion chamber 4 is injected as it is in the liquid state and is brought into combustion by mixing with a fuel injected into the chamber 4 through a fuel nozzle 3, not only the expansion through evaporation due to the combustion of the fuel but also the rapid expansion due to evaporation of liquid air occur simultaneously, a gas of an extremely high pressure can be obtained, whereby the gas turbine is driven. Since liquid air deprives heat of evaporation of 50kcal/kg when being evaporated, the temperature the combustion gas becomes lower than that in a conventional case by about 1,000 deg.C. Accordingly, increasing of the capacity of the gas turbine is facilitated.

Description

【発明の詳細な説明】 本発明はガスタービンに関するものである。[Detailed description of the invention] The present invention relates to gas turbines.

ガスタービンG、41、空気を丹−縮し、これを加熱、
生じたル、)渦(”+6圧ガスでタービンなまわすもの
で、タービン出力と圧縮機駆動馬力との差かイJ効出力
であり、IIIIIl出力どして取り出して発電機や機
械の1鳥区車+)に月lu・る。
Gas turbine G, 41, condenses air and heats it;
The generated vortex (+6) is used to agitate the turbine with pressure gas, which is the difference between the turbine output and the compressor drive horsepower, or the difference between the turbine output and the compressor drive horsepower, and the output is extracted and used for generators and machinery. Monthly lu・ru on the ward car +).

ガスタービンを構成する基本的な要素は、圧縮(序、燃
焼器およびタービンである。本発明はこれらの機器の中
の圧縮機の改良に係るものである。
The basic elements constituting a gas turbine are a compressor, a combustor, and a turbine. The present invention relates to an improvement of the compressor in these devices.

高温高圧ガスの熱エネルギーを動力に変換するためにあ
るタービンは、2段ないり、 3段の段落にて構成され
る。圧縮機は、最近のように高効率を求めるガスタービ
ンにおいては、空気圧縮比を10以上に取るために、1
5段なし・1−20段もの歿列が採用されているため、
極めて複雑な構造を有12ている。高温高圧の燃焼ガス
に直接曝される]―に、回転による遠心力で強い応力を
受ける動翼で(ま、翼身部に伶却空気を通ず等の複雑な
構造を採用12ている。
Turbines that convert the thermal energy of high-temperature, high-pressure gas into power are constructed of two or three stages. In modern gas turbines that require high efficiency, the compressor is operated at a
Because it uses rows of 1-20 rows without 5 rows,
It has an extremely complex structure. The rotor blades are directly exposed to high-temperature, high-pressure combustion gas, and are subjected to strong stress due to centrifugal force due to rotation.

クービン仕事を終えたガスは、なお500°(二〜70
0℃の高温を有し、通常はそのまま大気中へ放出される
After finishing the Kubin work, the gas is still at 500° (2~70°).
It has a high temperature of 0°C and is normally released into the atmosphere as is.

第1図に従来の開放ザイクルガスタービンの構成系統を
示し、第2図は従来のガスタービンσ)構造概要の一例
を示す。
FIG. 1 shows a structural system of a conventional open cycle gas turbine, and FIG. 2 shows an example of a conventional gas turbine σ) structural outline.

第1図、第2図において、1は空気取入[」、2は多段
圧縮機、3は燃料ノズル、4は燃焼室、5はタービン、
6は排気[]、7は発電機である。構成の作用について
は後記する本発明の詳細脱明にj9・い ゛で イノ1
4己1r る。
In FIGS. 1 and 2, 1 is an air intake, 2 is a multi-stage compressor, 3 is a fuel nozzle, 4 is a combustion chamber, 5 is a turbine,
6 is an exhaust gas [], and 7 is a generator. Regarding the effect of the structure, please refer to the detailed elucidation of the present invention to be described later in Ino 1.
4 self 1r.

従来のガスタービンは仄の如き欠点金石する。Conventional gas turbines suffer from the following drawbacks.

a、  商温燃焼ガスが作動流体であり、それに充分耐
える材Hが無いので局Hg1B冷却方式を採用している
が、やはり長期安全運転においてCよ信頼性に欠ける。
a. Commercial temperature combustion gas is the working fluid, and since there is no material H that can withstand it sufficiently, the local Hg1B cooling system is adopted, but it is still less reliable than C in terms of long-term safe operation.

1)、多段の用動機金要し、01c動体の空気の特性か
ら決る兄の翁効都の断面は惨めて薄いものであり、(i
i頼性に欠ける。空気吸込側、すなわち、11−材白機
の1段また−は2段付近の翼が飛散した場合に(710
その破片かびt!1!II空気によって111次下雌段
・\込られるため、このような事故では圧縮機全般に被
で一γが及ぶという宿命を持っている。
1), multi-stage machinery is required, and the cross section of the older brother's effect determined from the characteristics of the air in the 01c moving body is pitifully thin, (i
It lacks reliability. If the air suction side, that is, the wing near the 1st or 2nd stage of the 11-material white aircraft is blown away (710
That debris mold! 1! Since the 111st lower female stage is trapped by II air, in such an accident, the entire compressor is destined to be exposed to 1γ.

C・ JIF気でなお室温のガス金捨てているので、い
わゆ7.)熱力学の第2法則でdつ低熱源の温度が尚い
沢て効+の改舊余地がある。
C. JIF gas is still at room temperature, so the so-called 7. ) According to the second law of thermodynamics, the temperature of a low heat source is still large, so there is room for improvement.

木光り」は、u二’aE’=の如き従来1幻の欠点′f
f:解消せんとして提案するもので、第3図に不発9J
を示し、第1図、第2図をfノF用して以下詳述する。
``Kilight'' is a drawback of conventional illusions such as u2'aE'='f
f: This is proposed as a solution, and unexploded 9J is shown in Figure 3.
will be described in detail below using FIGS. 1 and 2 as f-F.

本発明のカスタービンは、従来の多段圧縮機2の代りに
、第3図に示す空気液化装置8に置換したものである。
In the cast turbine of the present invention, the conventional multi-stage compressor 2 is replaced with an air liquefaction device 8 shown in FIG.

すなわち、従来は大気から空気取入れ口1を介して多段
圧縮(% 2 K吸込み、10気圧程度にゲ1圧して燃
焼室4に送り込み、燃料ノズル3から注入される重油等
の液体燃料と混合して燃焼していた。
That is, conventionally, multi-stage compression (% 2 K suction is carried out from the atmosphere through the air intake port 1, the pressure is increased to about 10 atmospheres, and then sent into the combustion chamber 4, where it is mixed with liquid fuel such as heavy oil injected from the fuel nozzle 3. It was burning.

本発明に関わるガスタービンでは、大気から空気取入れ
口1を介して吸込まれた空気は空気d文化装置8によっ
て液化される。を(気を液化することは、看い換えれば
無限匠近く圧縮され、だのに等しく、液体空気を蒸発さ
せることによって任怠の圧力の気相の空気が得られるの
が特徴である。
In the gas turbine according to the invention, air sucked in from the atmosphere via the air intake 1 is liquefied by the air culture device 8 . (In other words, liquefying air is equivalent to compressing it to an infinitesimal level, and it is characterized by the fact that by evaporating liquid air, air in the gas phase at an infinitesimal pressure can be obtained.

液体空気は温度が沸点を越えれは、蒸発して急檄眞膨張
を起すので、燃焼室4に空気液化装置7から出て来た液
体空気を欣相のまま注入して、燃料ノズル3から同じく
燃焼室4に注入される燃料と混合燃焼させれは、燃料の
燃焼による気化膨張のみならず液体空気の蒸発による急
激な膨張が同時に起るので、極めて高圧のガスが得、ら
れ、これによりタービンを、駆動することができる。
When the temperature of liquid air exceeds its boiling point, it evaporates and undergoes rapid expansion. Therefore, the liquid air coming out of the air liquefaction device 7 is injected into the combustion chamber 4 in its pure phase, and the air is also evaporated from the fuel nozzle 3. When the fuel injected into the combustion chamber 4 is mixed and combusted, not only vaporization and expansion due to the combustion of the fuel but also rapid expansion due to the evaporation of the liquid air occur at the same time, resulting in an extremely high pressure gas. , can be driven.

液体空気は、零下的190’cであり、液体空気がca
 1 蒸発を起す際に50  /に9の気化熱を奪うので、燃
焼ガスは従来のものより約1000℃低くなる。
The temperature of liquid air is below zero 190'c, and the temperature of liquid air is ca.
1. When evaporating, 50/9 of the heat of vaporization is taken away, so the combustion gas becomes about 1000 degrees Celsius lower than that of the conventional method.

このことにより次の理由でガスタービンの大谷量化が容
易となる。
This facilitates the large-scale construction of gas turbines for the following reasons.

21・ 勤欠、静翼の11−谷応力が大きくなるので、
長大入が採用できる。
21. Attendance, the 11-valley stress of the stationary blade increases, so
Long-term university students can be hired.

b、燃焼ガスの比重が大きくなるので、同一寸法の翼列
により多くの作動流体がbLせ、単位流路当りの仕事量
全増加できる。
b. Since the specific gravity of the combustion gas increases, more working fluid can be applied to a blade row of the same size, and the amount of work per unit flow path can be increased.

C1生気圧縮機のイ”h端的な制約による最大出力の制
限9素が無くなる。
The limitation on the maximum output due to the extreme constraints of the C1 raw air compressor is eliminated.

(]、従来のガスタービンの全長の約2/3を占めてい
た多段空気FLm@が無くなり、空気液化装置8は分月
白、てきイ)ので、タービン金複流または4流の翼列と
して一軸て構成するのが容易である。
(), the multi-stage air FLm @, which occupied about 2/3 of the total length of the conventional gas turbine, has been eliminated, and the air liquefaction device 8 has been replaced with a single shaft as a double-flow or four-flow blade cascade. It is easy to configure.

上記空気教化装置I−i、8は従来技術によるもので充
分であり、特に近年fd超竜尋回路用のヘリューム液化
装置等の利用がnJ能である。
The above-mentioned air indoctrination devices I-i and 8 may be based on conventional technology, and in recent years, helium liquefaction devices for the FD Choryujin circuit have been particularly useful.

燃焼室4Ki’&体燃料と液体空気を注入して混合燃焼
させる場合には、燃焼温度が低いために広い負荷範囲で
安定燃焼を保つために、パイロットトーチまたは常時放
電着火装置等が必要となる。
When injecting fuel and liquid air into the combustion chamber for mixed combustion, a pilot torch or constant discharge ignition device is required to maintain stable combustion over a wide load range due to the low combustion temperature. .

更に、この場合は液体燃料と液体空気の混合燃焼に若干
の時間が必要となり、燃焼器の長さ全件1−、jニーJ
−必要がある。を気液化装置8から燃焼室4までの間に
膨張タービン段落を設けても良く、この場合には燃焼室
4は従来のもので充分である。
Furthermore, in this case, some time is required for mixed combustion of liquid fuel and liquid air, and the total length of the combustor is 1-, j knee J
-There is a need. An expansion turbine stage may be provided between the gas-liquefaction device 8 and the combustion chamber 4, and in this case, a conventional combustion chamber 4 is sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の開放ザイクルガスタービ/の構成を示す
系統図、第2図は従来のガスタービンの構造概要図、第
3図は本発明の構成系統図である。 1・・空気取入口、2・・多段圧縮機、3・・燃料ノズ
ル、4・・燃’Elf:至、5・・タービン、6・・U
1気口、7・・発電機、8・・空気教化装置。
FIG. 1 is a system diagram showing the configuration of a conventional open cycle gas turbine, FIG. 2 is a schematic structural diagram of the conventional gas turbine, and FIG. 3 is a system diagram showing the configuration of the present invention. 1... Air intake, 2... Multi-stage compressor, 3... Fuel nozzle, 4... Fuel 'Elf: To, 5... Turbine, 6... U
1 air outlet, 7... generator, 8... air indoctrination device.

Claims (1)

【特許請求の範囲】 1、燃焼室に燃料と液体空気を同時に注入して混合燃焼
させ、生成する高圧高温ガスケ駆動流体とすることを稲
徴とするガスタービン。 2、 7(を体空気を膨張タービンに導き、気化膨張さ
せて仕事をさせ、その月1空気を燃焼室に導ぎ、燃焼室
に=1g人される燃料と混合燃焼させるようνim L
)こことを午寺徴とするガスタービン。
[Scope of Claims] 1. A gas turbine characterized by simultaneously injecting fuel and liquid air into a combustion chamber and mixing and burning them to produce a high-pressure, high-temperature gasket driving fluid. 2, 7 (Body air is led to an expansion turbine, where it is evaporated and expanded to do work.The monthly air is led to a combustion chamber, where it is mixed with 1g of fuel and burned in the combustion chamber.)
) A gas turbine with Kokoto as its main character.
JP14272482A 1982-08-19 1982-08-19 Gas turbine Granted JPS5932623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14272482A JPS5932623A (en) 1982-08-19 1982-08-19 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14272482A JPS5932623A (en) 1982-08-19 1982-08-19 Gas turbine

Publications (2)

Publication Number Publication Date
JPS5932623A true JPS5932623A (en) 1984-02-22
JPH0154523B2 JPH0154523B2 (en) 1989-11-20

Family

ID=15322103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14272482A Granted JPS5932623A (en) 1982-08-19 1982-08-19 Gas turbine

Country Status (1)

Country Link
JP (1) JPS5932623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117036A (en) * 1979-02-28 1980-09-09 Nippon Sanso Kk Method of generating electric energy by use of gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117036A (en) * 1979-02-28 1980-09-09 Nippon Sanso Kk Method of generating electric energy by use of gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913918A (en) * 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd Liquid air utilizing power generating facility

Also Published As

Publication number Publication date
JPH0154523B2 (en) 1989-11-20

Similar Documents

Publication Publication Date Title
US10364744B2 (en) Deep heat recovery gas turbine engine
JP5383708B2 (en) Low carbon emission combined cycle power plant and method
JP2002349286A (en) Pressurizing system for turbine, turbine system and method
US6079197A (en) High temperature compression and reheat gas turbine cycle and related method
EP2952726B1 (en) Gas turbine engine driven by supercritical power generation system
EP3572329A1 (en) Aircraft environmental control system
EP0718472A1 (en) Power process utilizing humidified combusted air to gas turbine
US9388737B2 (en) Aero boost—gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
US9752501B2 (en) Aero boost—gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
WO2013176727A2 (en) Structures and methods for intercooling aircraft gas turbine engines
JPH0713474B2 (en) Power generation method using combustion gas turbine and combustion method of gas for power generation
US2646663A (en) Semiopen circuit gas-turbine engine
KR101788023B1 (en) A centrifugal compressor
US20200224590A1 (en) Work recovery system for a gas turbine engine utilizing a recuperated supercritical co2 cycle driven by cooled cooling air waste heat
RU2661427C1 (en) Bypass turbojet engine
US2626502A (en) Cooling system for gas turbine blading
JPS5932623A (en) Gas turbine
US3398525A (en) Combined multistage power plant having a rotary compressor serving as the low pressure stage and a rotary pressure-wave machine serving as the high pressure stage
CN108087149B (en) Turbojet engine with high thrust-weight ratio and low oil consumption
JP2984442B2 (en) Gas turbine steam cooling method and apparatus
US2502878A (en) Combustion products operated turbine
US11428162B2 (en) Supercritical CO2 cycle for gas turbine engines using powered cooling flow
JP2021110332A (en) Systems and methods for operating turbocharged gas turbine engine
JPH03908A (en) Starting method for combined cycle plant
RU2008480C1 (en) Power unit