JPS6246623B2 - - Google Patents

Info

Publication number
JPS6246623B2
JPS6246623B2 JP10982081A JP10982081A JPS6246623B2 JP S6246623 B2 JPS6246623 B2 JP S6246623B2 JP 10982081 A JP10982081 A JP 10982081A JP 10982081 A JP10982081 A JP 10982081A JP S6246623 B2 JPS6246623 B2 JP S6246623B2
Authority
JP
Japan
Prior art keywords
weight
amount
test
added
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10982081A
Other languages
Japanese (ja)
Other versions
JPS5743968A (en
Inventor
Furunori Kuromoto
Hironori Kuroki
Kazuyoshi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP10982081A priority Critical patent/JPS5743968A/en
Publication of JPS5743968A publication Critical patent/JPS5743968A/en
Publication of JPS6246623B2 publication Critical patent/JPS6246623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高強度でしかも衝撃抵抗が大なる強
靭性を有する耐酸耐食性合金に関する。 一般に鋼の耐食性を向上させる為にCrを合金
化させ、焼入れによつてマルテンサイト組織とな
るべく組成を選んだ鋼をマルテンサイト系ステン
レス鋼と称している。この種の鋼はCrを約9〜
15重量%含有し高強度、耐熱、耐食性の鋼として
常用されているが、耐衝撃性の点において今一歩
難点があると共に耐熱、耐食性の面においても更
に優れた合金が要望されるに至つた。 この発明では従前からのマルテンサイト系ステ
ンレス鋼に更にCoを添加し、他元素の量的関係
を適宜調整することにより上記の要望を満足すべ
き合金を提供しようとするものであり、その要旨
はMo0.3〜1.5重量%、Ni1.5〜4.5重量%、Co0.5
〜2.5重量%、Cr9〜13重量%、C0.08重量%以下
で残部が実質的にFeより成る強靭性を有する耐
酸耐食性合金である。 なお本願合金は上記のFe、Cr、Mo、Ni、Co及
びCの他にSi0.1〜1.0重量%、Mn0.1〜2.0重量%
はそれぞれ脱酸剤として必要な為に含有されてお
り、P、Sも極く少量は不純物として含まれてい
るものである。 以下本願合金を開発するに至つた試験及びその
結果を示す。 (1) 試験片 溶解により得た合金をTIG溶接法により軟鋼
の母材に肉盛溶接をして得られたもの(以下X
で示す)及びその後650℃×2hr焼鈍して得られ
たもの(以下Yで示す)をそれぞれ供試材とし
た。 その化学成分を下記第1表に示す。
The present invention relates to an acid- and corrosion-resistant alloy having high strength and toughness with high impact resistance. Generally, in order to improve the corrosion resistance of steel, steel is alloyed with Cr and the composition is selected so that it becomes a martensitic structure through quenching, and is called martensitic stainless steel. This kind of steel has a Cr content of about 9~
It contains 15% by weight and is commonly used as a high-strength, heat-resistant, and corrosion-resistant steel, but it has some drawbacks in terms of impact resistance, and there is a need for an alloy with even better heat and corrosion resistance. . This invention attempts to provide an alloy that satisfies the above requirements by further adding Co to the conventional martensitic stainless steel and appropriately adjusting the quantitative relationships of other elements. Mo0.3~1.5wt%, Ni1.5~4.5wt%, Co0.5
-2.5% by weight, 9 to 13% by weight of Cr, 0.08% by weight of C or less, and the balance is essentially Fe.It is a strong acid- and corrosion-resistant alloy. In addition to the above-mentioned Fe, Cr, Mo, Ni, Co, and C, the present alloy also contains 0.1 to 1.0% by weight of Si and 0.1 to 2.0% by weight of Mn.
are contained because they are necessary as deoxidizing agents, and P and S are also contained in very small amounts as impurities. The tests that led to the development of the present alloy and their results are shown below. (1) Test piece A specimen obtained by overlay welding the alloy obtained by melting onto a mild steel base metal using the TIG welding method (hereinafter referred to as
) and those obtained by subsequent annealing at 650°C for 2 hours (hereinafter referred to as Y) were used as test materials. Its chemical composition is shown in Table 1 below.

【表】 (2) 試験条件 (a) 硬さ試験(ビツカース硬さ、荷重500g) 硬さの値は1mm間隔で測定した10点のデー
タの平均置であり、その標準偏差は硬さの均
一性をあらわす。 (b) 引張試験 引張強さ及び伸びの値はJISA2号の試験片
2個について室温にて測定した平均値であ
る。 (c) 衝撃試験 衝撃値はJIS4号(幅5mm)の試験片3個に
ついて0℃にて測定した平均値である。 (d) 耐食性試験 体積比で水1:塩酸なる液(20℃)中に20
×10×5mmの試験片を48時間浸漬した後の腐
食減量を測定した。 (e) 高温硬さ試験(ビツカース硬さ、荷重500
g) 硬さの値は5×10×5mmのYの試験片につ
いて、各温度について5点のデータの平均値
を求めた。 (3) 試験結果 上記(a)〜(d)の試験結果を下記第2表に、又(e)
の試験結果を第3表に、又試験片No.1〜No.29の
顕微鏡組織写真を第1図〜第29図にそれぞれ
示す。 なおこの顕微鏡組織写真はYについてのもの
であり、各写真は写真中の1目盛が10μであ
る。
[Table] (2) Test conditions (a) Hardness test (Bitzkers hardness, load 500g) The hardness value is the average value of data measured at 1 mm intervals, and its standard deviation is the uniformity of hardness. Representing sexuality. (b) Tensile test The tensile strength and elongation values are average values measured at room temperature on two JISA No. 2 test pieces. (c) Impact test The impact value is the average value measured at 0°C on three test pieces of JIS No. 4 (width 5 mm). (d) Corrosion resistance test 1 part water: 20 parts by volume in a solution of hydrochloric acid (20°C)
Corrosion loss was measured after a test piece of 10 x 5 mm was immersed for 48 hours. (e) High temperature hardness test (Bitzkers hardness, load 500
g) For the hardness value, the average value of data at 5 points at each temperature was determined for a Y test piece measuring 5 x 10 x 5 mm. (3) Test results The test results of (a) to (d) above are shown in Table 2 below, and (e)
The test results are shown in Table 3, and the microstructure photographs of test pieces No. 1 to No. 29 are shown in FIGS. 1 to 29, respectively. Note that this microscopic structure photograph is for Y, and in each photograph, one scale in the photograph is 10μ.

【表】【table】

【表】【table】

【表】【table】

【表】 以上述べて来た試験結果をもとにして各合金元
素の適量を考察する。 なお第2表に示す試験結果のうち、硬さ、引張
強さ、伸び、衝撃値について判り易く図示したも
のが第30図及び第31図である。即ち第30図
はXについてのもので各プロツトの下に示す数値
は上段より衝撃値、引張強さ(伸び)、硬さ(硬
さの標準偏差)であり、第31図はYについての
もので各プロツトの下に示す数値は第30図と同
様である。 又第32図はCo重量%の変化に対するYの衝
撃値の変化を第2表の結果からプロツトしたグラ
フである。 マルテンサイト系ステンレス鋼の代表的鋼種と
しての試料No.1、5、9、13、17にそれぞれCo
を1、2、3重量%ずつ添加した場合第30図及
び第31で明らかな如く2重量%添加までは、特
に衝撃値の増大が見られその他の機械的性質につ
いても向上し、2重量%を越えるとCoの効果は
頭打ちの状態でCoの最適量(1〜2重量%)の
場合よりはむしろ性質が低下するものさえ見られ
る。 又第3表に示す高温硬さの結果を見てもCoの
量が1、2、3重量%と増すにつれて大きくなつ
ている。 更に顕微鏡組織写真を見ると、第1図〜第4図
から明らかな如くCoを添加するにつれて遊離フ
エライト(δフエライト)が次第に減少しCo3重
量%ではほとんど全マルテンサイト組織になつて
いる事が判る。 以上からCoはマルテンサイト系ステンレス鋼
の機械的性質を向上させ、その添加量は高々3重
量%までが有効であるという事が判る。 次にNiを5重量%以下添加しCoの添加量を各
種変化させた場合のグラフである第32図から明
らかな如く、Ni添加量が5重量%になれば上記
したCo添加による機械的性質の向上が見られず
Co添加量を増すにつれかえつて性質の劣化が見
られる。又Niを全く添化しない試料については
Co添加量を増すにつれて衝撃値は向上するもの
の引張強さ、硬さが不十分であるし、Ni1重量%
のものについてはCo添加の影響がほとんど見ら
れない等の理由からNi添加量は1.5〜4.5重量%、
又Co添加量は0.5〜2.5重量%が好ましい添加量と
いえる。 次いでCrの量について考察するに、Crは一般
的に鋼の耐食性を向上させる元素でありその耐食
性を維持する為には少なくとも9重量%は必要で
あるが、本試験の結果から観るとNi、Mo、Coの
量が同一でCr量が異なるNo.14、No.27、No.28のデ
ータより、Cr量が9.01重量%、10.83重量%、
12.74重量%と変化しても耐食性、靭性、強度等
の諸性能にはほとんど差は観られず、いずれも良
好であるが13重量%となれば靭性が低下する傾向
があるのでCrの上限値としては13重量%とし
た。 又炭素の含有量については、多すぎると切欠靭
性及び伸びが低下すると共に溶接性が悪くなるの
で多くとも0.08重量%に留めるべきである。 次にMoの添加量について検討するに、今まで
述べて来た様に高強度を保有しながら衝撃抵抗が
大である様にNi、Co量を選んだ各種試料につい
てMo添加量を変化させ、腐食減量を調べた結果
(第2表)によると、Mo添加に従つて腐食量は少
なくなり約1重量%をピークとしそれ以上になれ
ば又腐食量は加し1.82重量%になるとほとんど
Mo耐食性寄与の効果が見られない事が判る。 又Mo添加による衝撃抵抗の影響を見ると、Mo
を0.55重量%加えた試料No.29ではMo無添加の試
料No.25のものに比べて衝撃値が大となり、同様に
約1重量%加えた各種試料についても衝撃値は大
となつているが、Moを1.83重量%加えた試No.26
では衝撃値が急激に低下している事が判る。 その他引張強さや高温かたさ等の試験結果から
も同様の事がいえ、従つてMoの添加量は大体0.3
〜1.5重量%が望ましいものと考えられる。 以上述べて来たことから明らかな如く本願の含
コバルトマルテンサイト合金は、従来のマルテン
サイト系合金に比べ下記の様な優れた性質を有し
優れた強靭性、耐食性合金である。 (i) 切欠靭性が10〜15倍良い。 (ii) 高強度で硬く耐摩耗性に優れている。 (iii) 耐食性特に塩酸に対する耐食性に優れてい
る。 (iv) 高温硬さの低下が少ない。
[Table] Based on the test results described above, the appropriate amount of each alloying element will be considered. Of the test results shown in Table 2, hardness, tensile strength, elongation, and impact value are illustrated in easy-to-understand diagrams in FIGS. 30 and 31. In other words, Figure 30 is for X, and the numbers shown below each plot are impact value, tensile strength (elongation), and hardness (standard deviation of hardness) from the top, and Figure 31 is for Y. The numerical values shown below each plot are the same as in FIG. Further, FIG. 32 is a graph plotting the change in the impact value of Y with respect to the change in Co weight % from the results in Table 2. Co
When adding 1, 2, and 3% by weight of When this amount is exceeded, the effect of Co reaches a plateau, and properties are even seen to deteriorate rather than when the optimum amount of Co (1 to 2% by weight) is used. Also, looking at the results of high-temperature hardness shown in Table 3, it increases as the amount of Co increases from 1, 2, and 3% by weight. Furthermore, looking at the microstructure photographs, it is clear from Figures 1 to 4 that as Co is added, free ferrite (δ ferrite) gradually decreases, and at Co3% by weight, it becomes almost entirely martensite. . From the above, it can be seen that Co improves the mechanical properties of martensitic stainless steel, and that an addition amount of up to 3% by weight is effective. Next, as is clear from Fig. 32, which is a graph when adding 5% by weight or less of Ni and varying the amount of Co added, when the amount of Ni added is 5% by weight, the above-mentioned mechanical properties due to the addition of Co No improvement in
As the amount of Co added increases, the properties deteriorate even more. Also, regarding samples that do not have any Ni added,
Although the impact value improves as the amount of Co added increases, the tensile strength and hardness are insufficient, and Ni1% by weight
For these reasons, the amount of Ni added was 1.5 to 4.5% by weight, as there was almost no effect of Co addition.
Moreover, it can be said that the preferable amount of Co added is 0.5 to 2.5% by weight. Next, considering the amount of Cr, Cr is an element that generally improves the corrosion resistance of steel, and at least 9% by weight is required to maintain that corrosion resistance, but from the results of this test, Ni, From the data of No. 14, No. 27, and No. 28 with the same amounts of Mo and Co but different amounts of Cr, the amount of Cr is 9.01% by weight, 10.83% by weight,
Even if it changes to 12.74% by weight, there is almost no difference in performance such as corrosion resistance, toughness, strength, etc., all of which are good, but when it increases to 13% by weight, toughness tends to decrease, so the upper limit of Cr The amount was 13% by weight. Regarding the carbon content, if it is too large, notch toughness and elongation will decrease as well as weldability, so it should be kept at 0.08% by weight at most. Next, to consider the amount of Mo added, we changed the amount of Mo added for various samples whose Ni and Co amounts were selected to have high impact resistance while maintaining high strength as described above. According to the results of investigating the corrosion loss (Table 2), as Mo is added, the amount of corrosion decreases, peaking at about 1% by weight, and when it exceeds that amount, the amount of corrosion increases again and reaches almost 1.82% by weight.
It can be seen that no effect of Mo contributing to corrosion resistance is observed. Also, looking at the effect of Mo addition on impact resistance, it is found that Mo
Sample No. 29 with Mo added at 0.55% by weight has a larger impact value than sample No. 25 without Mo added, and similarly the impact values of various samples containing about 1% by weight are also large. However, test No. 26 with 1.83% by weight of Mo added
It can be seen that the impact value drops rapidly. The same thing can be said from other test results such as tensile strength and high temperature hardness, so the amount of Mo added is approximately 0.3
~1.5% by weight is considered desirable. As is clear from the above description, the cobalt-containing martensitic alloy of the present application has the following superior properties compared to conventional martensitic alloys, and is an alloy with excellent toughness and corrosion resistance. (i) Notch toughness is 10 to 15 times better. (ii) High strength, hardness, and excellent wear resistance. (iii) Excellent corrosion resistance, especially against hydrochloric acid. (iv) There is little decrease in high temperature hardness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第29図はそれぞれ試料No.1〜No.29に
ついてのYの顕微鏡組織写真、第30図〜第32
図はそれぞれ試験結果をまとめたグラフ。
Figures 1 to 29 are microscopic photographs of Y for samples No. 1 to No. 29, respectively, and Figures 30 to 32.
The figures are graphs summarizing the test results.

Claims (1)

【特許請求の範囲】[Claims] 1 Mo0.3〜1.5重量%、Ni1.5〜4.5重量%、
Co0.5〜2.5重量%、Cr9〜13重量%、C0.08重量
%以下で残部が実質的にFeより成る強靭性を有
する耐酸耐食性合金。
1 Mo0.3-1.5% by weight, Ni1.5-4.5% by weight,
A tough acid- and corrosion-resistant alloy consisting of 0.5 to 2.5% by weight of Co, 9 to 13% by weight of Cr, and 0.08% by weight or less of C, with the balance being substantially Fe.
JP10982081A 1981-07-13 1981-07-13 Corrosion resistant alloy having high toughness Granted JPS5743968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10982081A JPS5743968A (en) 1981-07-13 1981-07-13 Corrosion resistant alloy having high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10982081A JPS5743968A (en) 1981-07-13 1981-07-13 Corrosion resistant alloy having high toughness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3246177A Division JPS53117622A (en) 1977-03-24 1977-03-24 Cobalttcontaining martensite based alloy

Publications (2)

Publication Number Publication Date
JPS5743968A JPS5743968A (en) 1982-03-12
JPS6246623B2 true JPS6246623B2 (en) 1987-10-02

Family

ID=14520029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10982081A Granted JPS5743968A (en) 1981-07-13 1981-07-13 Corrosion resistant alloy having high toughness

Country Status (1)

Country Link
JP (1) JPS5743968A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244974A (en) * 1985-08-22 1987-02-26 株式会社デンソー Ceramic heater

Also Published As

Publication number Publication date
JPS5743968A (en) 1982-03-12

Similar Documents

Publication Publication Date Title
KR900006870B1 (en) Ferrite-austenitic stainless steel
US7744813B2 (en) Oxidation resistant high creep strength austenitic stainless steel
EP2832886B1 (en) Heat-resistant austenitic stainless steel sheet
US5286310A (en) Low nickel, copper containing chromium-nickel-manganese-copper-nitrogen austenitic stainless steel
SE501321C2 (en) Ferrite-austenitic stainless steel and use of the steel
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
JP2015526593A (en) Ferritic stainless steel
JP4816642B2 (en) Low alloy steel
JP6116795B2 (en) Nickel-based alloy brazing material
CN101818298A (en) Corrosion-resistant medium-silicon-molybdenum-nickel-cobalt nodular cast iron alloy
EP0261345B1 (en) Pitting resistant duplex stainless steel alloy
US3075839A (en) Nickel-free austenitic corrosion resistant steels
US5296054A (en) Austenitic steel
JP3274142B2 (en) Aluminum-manganese-silicon-nitrogen austenitic stainless acid-resistant steel
JPS6246623B2 (en)
JPS58204145A (en) Anticorrosive nickel base alloy
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
US2223659A (en) Iron-chromium-nickel-carbon-nitrogen heat-enduring alloy steels
US3459538A (en) Corrosion resistant low-alloy steel
JP3777421B2 (en) High chromium ferritic heat resistant steel
JPH0148345B2 (en)
KR20210107657A (en) Ferritic stainless steel
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JPS6211065B2 (en)
KR850000980B1 (en) Ferrite stainless steel