JP6116795B2 - Nickel-based alloy brazing material - Google Patents

Nickel-based alloy brazing material Download PDF

Info

Publication number
JP6116795B2
JP6116795B2 JP2011049733A JP2011049733A JP6116795B2 JP 6116795 B2 JP6116795 B2 JP 6116795B2 JP 2011049733 A JP2011049733 A JP 2011049733A JP 2011049733 A JP2011049733 A JP 2011049733A JP 6116795 B2 JP6116795 B2 JP 6116795B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
brazing material
level
alloy brazing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011049733A
Other languages
Japanese (ja)
Other versions
JP2012183574A (en
Inventor
晃浩 太田
晃浩 太田
裕右 小田
裕右 小田
榊原 康文
康文 榊原
Original Assignee
マルヤス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス工業株式会社 filed Critical マルヤス工業株式会社
Priority to JP2011049733A priority Critical patent/JP6116795B2/en
Publication of JP2012183574A publication Critical patent/JP2012183574A/en
Application granted granted Critical
Publication of JP6116795B2 publication Critical patent/JP6116795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Silencers (AREA)

Description

本発明は、ニッケル基合金ろう材に関する。特に、高い排気系耐食性が要求される、排気再循環装置(EGR)等における排ガス熱交換器等の耐食鋼(例えば、ステンレス鋼)からなる自動車用排気系部品をろう付けにより組み立て製造するのに好適なニッケル基合金ろう材に関する。   The present invention relates to a nickel-base alloy brazing material. Especially for automobile exhaust system parts made of corrosion resistant steel (for example, stainless steel) such as exhaust gas heat exchangers in exhaust gas recirculation (EGR) etc. that require high exhaust system corrosion resistance. The present invention relates to a suitable nickel-base alloy brazing material.

自動車用排気系部品としては、EGRクーラ・パイプ・バルブや排気管、エキゾーストマニホールド等を挙げることができる。さらに、自動車用排気系部品以外の耐食鋼製品としては、燃料配管等を挙げることができる。   Examples of automobile exhaust system parts include an EGR cooler, pipe, valve, exhaust pipe, and exhaust manifold. Furthermore, examples of the corrosion-resistant steel products other than automobile exhaust system parts include fuel pipes.

上記で例示したような自動車用排気系部品における排ガス熱交換器では、硫化物を含む高温(400℃以上)のEGRガスおよびその凝縮水に晒されるので、高い排気系耐食性が要求される。   Since the exhaust gas heat exchanger in the exhaust system parts for automobiles as exemplified above is exposed to high-temperature (400 ° C. or higher) EGR gas containing sulfide and its condensed water, high exhaust system corrosion resistance is required.

当該高い排気系耐食性に対応することのできるろう材として、例えば、特許文献1において、下記構成のNi基合金ろう材が提案されている。
「重量%で、Cr:10〜30%、P:2〜11%、Si:1〜10%でP+Si:10〜13%含み、残部はNiおよび不可避不純物よりなる、ぬれ性・耐食性に優れたNi基耐熱ろう材。」
As a brazing material that can cope with the high exhaust system corrosion resistance, for example, Patent Document 1 proposes a Ni-based alloy brazing material having the following configuration.
“In wt%, Cr: 10-30%, P: 2-11%, Si: 1-10%, P + Si: 10-13%, the balance is made of Ni and inevitable impurities, excellent wettability and corrosion resistance Ni-based heat-resistant brazing material. "

当該構成のNi基合金ロウ材は、Ni含有率が、58.5〜75.7%と、高い(特許文献1の表1;実施例10と実施例1)。   The Ni-based alloy brazing material having this configuration has a high Ni content of 58.5 to 75.7% (Table 1 of Patent Document 1; Example 10 and Example 1).

しかし、Niは生産量が少なく、需給の変化により価格が大幅に変動し易い。このため、Ni含有率の低いNi基合金ろう材の出現が希求されている(特許文献2段落0003〜0004)。   However, Ni has a small production volume, and its price is likely to fluctuate greatly due to changes in supply and demand. For this reason, the appearance of a Ni-based alloy brazing material having a low Ni content is desired (Patent Document 2, paragraphs 0003 to 0004).

したがって、例えば、特許文献2において、下記構成のFe−Cr基合金ろう材が提案されている。
「質量比で、Fe:30〜60%、Cr:20〜30%、Ni:5〜30%、Mo:0.1〜5%、Si:4〜10%、P:4〜10%、残部不可避不純物からなる化学組成を有することを特徴とするFe−Cr合金ベースのろう材。」
Therefore, for example, Patent Document 2 proposes an Fe—Cr based alloy brazing material having the following configuration.
"Fe: 30-60%, Cr: 20-30%, Ni: 5-30%, Mo: 0.1-5%, Si: 4-10%, P: 4-10%, balance by mass ratio Fe-Cr alloy-based brazing material characterized by having a chemical composition consisting of inevitable impurities. "

また、積極的にNiをFeに代替させることを目的とするNi基合金ろう材ではないが、Feを強度向上成分として20%以下含有させることが可能な、下記構成のNi基合金ろう材が特許文献3において提案されている。
「重量%で、Cr:25〜35%、P:4〜8%、Si:3〜6%、P+Si:9〜11.5%、Al、Ca、Y、ミッシュメタルの1種以上を0.01〜0.10%含み、残部はNiおよび不可避不純物よりなるNi基耐熱ろう材。」
Further, although it is not a Ni-based alloy brazing material intended to actively replace Ni with Fe, a Ni-based alloy brazing material having the following constitution capable of containing Fe as a strength improving component in an amount of 20% or less is provided. This is proposed in Patent Document 3.
“By weight%, Cr: 25 to 35%, P: 4 to 8%, Si: 3 to 6%, P + Si: 9 to 11.5%, Al, Ca, Y, one or more of the misch metal is 0.00. Ni-based heat-resistant brazing material containing 01 to 0.10%, the balance being Ni and inevitable impurities. "

特許第3168158号公報Japanese Patent No. 3168158 特許第4435826号公報Japanese Patent No. 4435826 特許第3354922号公報Japanese Patent No. 3354922

本発明は、上記にかんがみて、高度の耐食性(特に排気系凝縮水に対する)を容易に得ることができ、更には、高度の耐食性を維持しながらNiの一部をFeに置換できるNi基合金ろう材を提供することを目的とする。   In view of the above, the present invention can easily obtain a high degree of corrosion resistance (especially against exhaust system condensed water), and can further replace a part of Ni with Fe while maintaining a high degree of corrosion resistance. The purpose is to provide brazing material.

本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成のニッケル基合金ロウ材に想到した。   In order to solve the above-mentioned problems, the present inventors have made extensive efforts to develop, and as a result, have come up with a nickel-base alloy brazing material having the following configuration.

本発明1(請求項1)は、Ni:38.1〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:18.8〜31%を含有するNi基合金ろう材において、Cu:0.93〜3%(望ましくは1.78〜3%)およびFe:6〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、ことを特徴とするものである。 Invention 1 (Claim 1) is in the range of Ni: 38.1 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, In a Ni-based alloy brazing material containing Cr: 18.8 to 31% as a corrosion resistance imparting element, Cu: 0.93 to 3% (preferably 1.78 to 3%) and Fe: 6 to 23% The remainder is an inevitable impurity that does not affect the melting point drop and the corrosion resistance, and is characterized by containing Ti: 0.5% or less and Mn: 0.5% or less as inevitable impurity elements.

特許文献1において、不純物元素としてCu:1%以下およびFe:5%以下の含有を示唆している。しかし、積極的に上記Cu:0.93〜3%と、Fe:〜23%とした場合、従来例に比して格段に耐食性が向上することは、何ら開示若しくは示唆されていない。特に、Fe:6%以上と多量に配合しても23%までは確実に、排気系耐食性が従来例と同等レベルに維持され又は向上することは当業者にとって、予見可能性を有しないことである。 Patent Document 1 suggests the inclusion of Cu: 1% or less and Fe: 5% or less as impurity elements. However, there is no disclosure or suggestion that when the Cu: 0.93 to 3% and Fe: 6 to 23% are positively improved, the corrosion resistance is remarkably improved as compared with the conventional example. In particular, even if it is blended in a large amount of Fe: 6% or more, up to 23% is reliably maintained or improved at the same level as that of the conventional example, because the exhaust system corrosion resistance is not predictable. is there.

上記構成において、さらに、Mo:0.95〜3%を含有することが望ましい。Ni含有率を低下させてFeの含有率を高くしても、更に耐食性が向上して、本発明の効果が顕著となる(試料No.3)。 In the said structure, it is further desirable to contain Mo: 0.95-3 %. Even if the Ni content is decreased and the Fe content is increased, the corrosion resistance is further improved, and the effect of the present invention becomes remarkable (Sample No. 3).

本発明2(請求項5)は、Ni:52.7〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:24.2〜31%を含有するNi基合金ろう材において、Mo:0.95〜3%(望ましくは1.5〜3%)とともに、Fe:6〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、ことを特徴とするものである。 Invention 2 (Claim 5) is in the range of Ni: 52.7 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, In a Ni-base alloy brazing material containing Cr: 24.2 to 31% as an element imparting corrosion resistance, Mo: 0.95 to 3% (preferably 1.5 to 3%) and Fe: 6 to 23% The remainder is an inevitable impurity that does not affect the melting point drop and the corrosion resistance, and contains Ti: 0.5% or less and Mn: 0.5% or less as an inevitable impurity element. .

特許文献1において、Mo:5%以下およびFe:5%以下の含有を示唆しているが、両者を併用した場合に、排気系耐食性が従来例に比して格段に向上する(試料No.8,17)ことは、何ら開示若しくは示唆されていない。   Patent Document 1 suggests that Mo: 5% or less and Fe: 5% or less, but when both are used in combination, the corrosion resistance of the exhaust system is remarkably improved as compared to the conventional example (Sample No. 1). 8,17) is not disclosed or suggested.

孔食電位の測定法を示すモデル図である。It is a model figure which shows the measuring method of a pitting corrosion potential. 排気系模擬凝縮水における孔食電位の測定結果の品質工学の解析結果(SN比)を示すグラフ図である。It is a graph which shows the analysis result (S / N ratio) of quality engineering of the measurement result of the pitting corrosion potential in exhaust system simulated condensed water. 同じくPが水準1(4.3〜4.8%)である場合の測定結果と残部(Fe含有率)との関係を示すグラフ図である。It is a graph which shows the relationship between the measurement result in case P is level 1 (4.3-4.8%), and the remainder (Fe content rate) similarly. 同じくPが水準2(5.5〜6.2%)である場合の測定結果と残部(Fe含有率)との関係を示すグラフ図である。It is a graph which shows the relationship between the measurement result in case P is level 2 (5.5-6.2%), and the remainder (Fe content rate).

以下、本発明に想到し得た経緯について、試験例(実施例を含む。)を挙げながら説明する。   Hereinafter, the background that could have been conceived of the present invention will be described with reference to test examples (including examples).

本発明者らは、特許文献1の実施例において、一番Ni含有率が小さい下記組成の実施例10(以下、「従来例」と称する。)に着眼した。   The inventors focused on Example 10 (hereinafter referred to as “conventional example”) having the following composition with the smallest Ni content in the example of Patent Document 1.

Cr:30.0%、P:6.9%、Si:4.6%、Ni(残部):58.5%
それらの添加元素以外に、耐食性向上の可能性のあるMo、Cu、TiおよびMnに着目し、Ni含有率を減じてFeに代替させても、排気系耐食性が維持され又は向上する組成について、試験・検討した。
Cr: 30.0%, P: 6.9%, Si: 4.6%, Ni (remainder): 58.5%
In addition to these additive elements, focusing on Mo, Cu, Ti, and Mn, which may improve corrosion resistance, and reducing the Ni content and replacing it with Fe, the composition that maintains or improves the exhaust corrosion resistance, Tested and examined.

ここでは、耐食性は、主として排気系凝縮水における孔食電位で評価した。以下の説明で「耐食性」は特に断らない限り、「排気系凝縮水における耐食性(排気系耐食性)」を意味する。   Here, the corrosion resistance was evaluated mainly by the pitting potential in the exhaust system condensed water. In the following description, “corrosion resistance” means “corrosion resistance in exhaust system condensed water (exhaust system corrosion resistance)” unless otherwise specified.

この試験・検討に際して、いわゆる品質工学(Taguchi method)を適用し、各合金元素を制御因子とし出力値を孔食電位として、L18直交表をもとに調製した18種類の合金元素の孔食電位を測定し、その結果における静特性の望大特性を使用して、各合金元素の孔食に与える影響を求めた。   In this test and examination, so-called quality engineering (Taguchi method) was applied, and the pitting corrosion potentials of 18 types of alloy elements prepared based on the L18 orthogonal table with each alloy element as a control factor and the output value as the pitting corrosion potential. The effect of each alloy element on pitting corrosion was determined using the desired static characteristics of the static characteristics.

例えば、制御因子がPの場合、水準1・2の試料数n=9であり、他の合金元素(成分元素)が制御因子の場合、水準1・2・3の試料数はn=6である(表2)。   For example, when the control factor is P, the number of samples of level 1 · 2 is n = 9, and when the other alloy elements (component elements) are control factors, the number of samples of level 1, 2, 3 is n = 6. Yes (Table 2).

1)先ず、P、Ni、Cr、Si、Mo、Cu、Ti、Mnを合金構成元素(制御因子)とし、それらのうち、P、Ni、Cr、Pについては、従来例の含有率を基準(最大値)として、下記基準で3水準に振った(但しPは2水準)。なお、試料調製に際して、ピンポイントの組成にすることはできないため、各水準には許容幅を持たした。   1) First, P, Ni, Cr, Si, Mo, Cu, Ti, and Mn are used as alloy constituent elements (control factors). Among them, P, Ni, Cr, and P are based on the contents of the conventional examples. As the (maximum value), the following standard was applied to 3 levels (however, P was 2 levels). In addition, when preparing the sample, since it was not possible to have a pinpoint composition, each level had an allowable range.

P:従来例の含有率を最大値として、約1%刻みで減じて設定した。   P: The content rate of the conventional example was set to the maximum value and decreased by about 1%.

Ni:従来例の含有率を最大値として、約20%刻みで減じて設定した。   Ni: The content of the conventional example was set to the maximum value and decreased by about 20%.

Cr:従来例の含有率を最大値として、約5%刻みで減じて設定した。   Cr: The content rate of the conventional example was set to the maximum value and decreased by about 5%.

その他の元素は、下記基準で3水準に振った。   Other elements were swung to 3 levels according to the following criteria.

Si:従来例の含有率を最小値として、約0.5%刻みで増して設定した。   Si: The content of the conventional example was set to a minimum value and increased by about 0.5%.

Mo:高価であるとともに融点が上昇して濡れ性に悪影響を与えるおそれがあるため、望ましい範囲である2%(特許文献1の実施例13)を基準として、1%刻みで減じて設定した。水準1はMo無添加とした。   Mo: Since the melting point is increased and the wettability may be adversely affected because Mo is expensive, the amount was set to be reduced by 1% with reference to the desirable range of 2% (Example 13 of Patent Document 1). Level 1 was Mo-free.

Cu:高価であるため、不可避不純物と考える場合の1%以下(特許文献1の段落0011)の倍の約2%を最大値として、約1%刻みで減じて設定した。水準1の上限値は不可避不純物量であり実質無添加の範囲である。   Cu: Since it is expensive, about 2% of 1% or less (paragraph 0011 of Patent Document 1) when considered as an unavoidable impurity is set to a maximum value and set to be reduced by about 1%. The upper limit of level 1 is the amount of inevitable impurities and is in the range of substantially no addition.

Ti:高価であるため、約1%を最大値として、約0.5%刻みで減じて設定した。   Ti: Since it is expensive, about 1% was set as the maximum value, and it was set to be reduced by about 0.5%.

Mn:不可避不純物と考える場合0.5%(特許文献1、段落0011)の倍の約1%を最大値として、約1%刻みで減少して設定した。 Mn: When considered as an unavoidable impurity, the maximum value is set to about 1% which is twice 0.5% (Patent Document 1, paragraph 0011), and is set to decrease by about 1%.

各合金元素(制御因子)の水準含有率を表1に示す。   Table 1 shows the level content of each alloy element (control factor).

表1には、それらの水準によって、サポートされると考えられる可能な範囲を下段に一段(Mo、Cuについてはより確実な範囲の二段)で表示した。なお、冷却水系耐食性に効果があるTiについても、同様にサポートされると考えられる可能な範囲を下段に一段で表示した。   Table 1 shows the possible ranges that are considered to be supported according to these levels, one level at the bottom (two levels with more certain ranges for Mo and Cu). In addition, about Ti which has an effect in cooling water system corrosion resistance, the possible range considered to be supported similarly was displayed in the lower row in a single row.

表に示す如く、Moの水準1およびCuの水準1は、何れも、無添加乃至実質的な無添加を意味する。   As shown in the table, the level 1 of Mo and the level 1 of Cu both mean no addition or substantially no addition.

そして、品質工学に基づいて、制御因子における各水準の組み合わせを求めたところ、表2に示す18通りの組み合わせとなった。   And when the combination of each level in a control factor was calculated | required based on quality engineering, it became 18 types of combinations shown in Table 2.

表2に示す組成にしたがって、各試料のNi基合金ろう材を、慣用のアトマイズ法により調製後、電気炉内、アルゴンガス雰囲気中で溶解鋳造し、インゴット(Φ約60mm×厚さ約12mm)を調製した。
なお、表2のFe含有率は、各試料の分析結果を示す。
According to the composition shown in Table 2, after preparing the Ni-base alloy brazing material of each sample by a conventional atomizing method, it was melt cast in an argon atmosphere in an electric furnace, and an ingot (Φ about 60 mm × thickness about 12 mm) Was prepared.
In addition, the Fe content rate of Table 2 shows the analysis result of each sample.

そして、各試料のNi合金ろう材を用いて、下記項目の排気系耐食性試験を実施した。   And the exhaust system corrosion resistance test of the following item was implemented using the Ni alloy brazing material of each sample.

(1)排気系耐食性試験
排気系模擬凝縮水として、出願人が品質管理用評価に使用しているもの(営業秘密)で試験を行った。
(1) Exhaust system corrosion resistance test The exhaust system simulated condensate was tested with what the applicant used for quality control evaluation (trade secret).

前記各インゴットを試験片として、ステンレス鋼の孔食電位測定方法(JIS G 0577)に準拠して、孔食電位を測定した(図1参照)。参照電極はAg/AgCl極とした。   Using each ingot as a test piece, the pitting potential was measured in accordance with a method for measuring pitting corrosion potential of stainless steel (JIS G 0577) (see FIG. 1). The reference electrode was an Ag / AgCl electrode.

各試料(試料No.)における、孔食電位を表2に示すとともに、望大特性のSN比を求めて、その結果を図2に示す。なお、表2における排気系耐食評価の欄における評価基準は下記の通りとした。
×:従来例より低下、○:従来例より向上、◎:従来例より格段に向上
The pitting corrosion potential in each sample (sample No.) is shown in Table 2, and the SN ratio of the desired characteristics is obtained, and the result is shown in FIG. The evaluation criteria in the column of exhaust system corrosion resistance evaluation in Table 2 were as follows.
×: Lower than the conventional example, ○: Improved from the conventional example, ◎: Greatly improved from the conventional example

なお、SN比は、下記式で表され、孔食電位の高さと分散(バラツキ)の小ささを反映する。
分散σ2=1/n(1/y1 2)+1/y2 2+・・・+1/yn2
SN比η=−10 logσ2
The SN ratio is expressed by the following formula, and reflects the height of the pitting potential and the small dispersion (variation).
Variance σ 2 = 1 / n (1 / y 1 2 ) + 1 / y 2 2 +... + 1 / yn 2 )
SN ratio η = −10 logσ 2

図2において、SN比の最低値との数値差が、「4」以上を耐食性効果有りとして黒点表示とし、且つ、SN比が平均値近傍以上の場合、耐食性向上に寄与できる範囲として○で囲んだ。それ以外は、耐食性向上効果なしとして、白点表示とした。   In FIG. 2, when the numerical difference from the minimum value of the SN ratio is “4” or more, a black dot is displayed as having a corrosion resistance effect, and when the SN ratio is near the average value, the range that can contribute to the improvement of the corrosion resistance is circled. It is. Other than that, a white dot display was given as no corrosion resistance improvement effect.

その結果、
Ni・・・水準2:38.1〜39.2%、水準3:52.7〜55.6%;
Cr・・・水準2:24.2〜25.4%、水準3:27.6〜30.5、
Mo・・・水準2:0.95〜1.02、水準3:1.94〜2.14%、
Cu・・・水準2:0.93〜1.06、水準3:1.78〜2%、
の範囲で耐食性向上を示すことが伺える(表1薄墨部)。
as a result,
Ni: Level 2: 38.1 to 39.2%, Level 3: 52.7 to 55.6%;
Cr: Level 2: 24.2 to 25.4%, Level 3: 27.6 to 30.5,
Mo: Level 2: 0.95 to 1.02, Level 3: 1.94 to 2.14%,
Cu: Level 2: 0.93 to 1.06, Level 3: 1.78 to 2%,
It can be seen that the corrosion resistance is improved within the range (Table 1 thin ink section).

なお、特許文献1は、「Cr:10〜30%」とするNi基合金において、「P:2〜11%、Si:1〜10%、P+Si:10〜13%を発明特定事項としている(請求項1等参照)。発明特定事項とした理由を記載してある箇所を次に引用する。
[0007][作用]本発明において、各成分範囲を前記のごとく限定した理由を以下に述べる。以下の%表示については重量%を示すものである。Crは、Ni中に固溶してNi−Cr固溶体となり、合金の耐酸化性、耐熱性、耐食性を向上させ、特に本発明のろう材合金組成の場合、塩水に対する耐食性を向上させる元素として有効であるが10%未満ではその効果が少なく、30%を超えるとステンレス鋼とのぬれ性が劣化する。以上の理由からCrは10〜30%と限定した。
[0008]PとSiは、Ni−Cr固溶体との共晶反応により合金の融点に及ぼす影響が大きく、ひいてはろう付性に重要な影響を与えると同時に、耐食性にも影響する成分である。本発明のろう材合金組成の場合は、特にPとSi合計の添加量の限定が合金の融点決定に重要な作用をおよぼす。即ち、P+Siの合計が10%未満では亜共晶傾向が強くなり、液相線温度が上昇し、固相線との幅が拡がるため、ろう付性が劣化する。P+Siの合計が13%を超えると過共晶傾向が強くなり、液相線温度が上昇すると共に合金が脆くなる。PとSiは合金の融点及び耐食性に対し、相互に作用、反作用する傾向となる。
[0009]したがって、各々のバランスによりPとSiの個々の添加量が限定される。即ち、Pが2%未満の場合及びSiが10%を超えた場合、合金の融点が上昇し、目的の温度でろう付できなくなる。また,Siが1%未満の場合及びPが11%を超えた場合、合金の耐食性が劣化し、靱性が低下する。以上の理由からPは2〜11%、Siは1〜10%で、かつ、P+Siの合計が10〜13%と限定した。
In Patent Document 1 , “P: 2 to 11%, Si: 1 to 10%, P + Si: 10 to 13% in the Ni-based alloy with “Cr: 10 to 30%” is an invention specific matter. ( Refer to claim 1 etc.) . The part where the reason for the invention specific matter is described is cited below.
[[0007] [Function] In the present invention, the reason why the respective component ranges are limited as described above will be described below. The following% display indicates weight%. Cr is dissolved in Ni. It becomes a Ni-Cr solid solution and improves the oxidation resistance, heat resistance, and corrosion resistance of the alloy. Particularly, in the case of the brazing alloy composition of the present invention, it is effective as an element for improving the corrosion resistance against salt water. When the content exceeds 30%, the wettability with stainless steel deteriorates, and Cr is limited to 10 to 30% for the above reasons.
[0008] P and Si are components that have a large influence on the melting point of the alloy due to the eutectic reaction with the Ni-Cr solid solution, and thus have an important influence on brazing properties and at the same time, an influence on corrosion resistance. In the case of the brazing alloy composition according to the present invention, the limitation of the addition amount of P and Si in particular has an important effect on determining the melting point of the alloy. That is, if the total of P + Si is less than 10%, the hypoeutectic tendency becomes strong, the liquidus temperature rises, and the width with the solidus expands, so that the brazing property deteriorates. When the sum of P + Si exceeds 13%, the hypereutectic tendency becomes strong, the liquidus temperature rises and the alloy becomes brittle. P and Si tend to interact and react to the melting point and corrosion resistance of the alloy.
[0009] Accordingly, the individual addition amounts of P and Si are limited by each balance. That is, when P is less than 2% and Si exceeds 10%, the melting point of the alloy rises and brazing cannot be performed at the target temperature. Moreover, when Si is less than 1% and P exceeds 11%, the corrosion resistance of the alloy deteriorates and the toughness decreases. For these reasons, P is 2 to 11%, Si is 1 to 10%, and the total of P + Si is limited to 10 to 13%. "

したがって、良好な「ろう付け性」及び「耐食性」乃至「靱性」を確実に得るために、本発明では、「P:4〜7%」とPの含有率を狭めるとともに、「P+Si:8.5〜13%(望ましくは、9.5〜12%)」と、P+Siの下限値を若干下げて設定した。 Therefore, in order to surely obtain good “brazing property” and “corrosion resistance” to “toughness”, in the present invention, the P content is reduced to “P: 4 to 7%” and “P + Si: 8. 5-13% (preferably 9.5-12%) "and the lower limit value of P + Si was set slightly lower.

そして、本発明者らは、各試料No.における孔食電位の測定結果から、従来の排気系耐食性向上成分(Ni、Cr)に加えてCuを微量のFe(0.5%)とともに添加した場合(試料No.9,18)、従来例より格段に高い耐食性が得られることを知見した(表2および図3・4参照)。   And the present inventors have set each sample No. From the measurement results of pitting corrosion potential in the case of adding Cu together with a small amount of Fe (0.5%) in addition to the conventional exhaust system corrosion resistance improving components (Ni, Cr) (Sample Nos. 9 and 18), the conventional example It was found that much higher corrosion resistance was obtained (see Table 2 and FIGS. 3 and 4).

また、図3・4に示す如く、Feの含有率を増大させていくと、耐食性は低下する傾向にある(但し、組み合わせる耐食性向上成分により異なる)。そして、Fe含有率が37%以下の範囲なら、従来例と同等以上の耐食性が得られることが分かった(試料No.3〜5、7,9および14〜18)。その際、Moを添加すると効果的であり(試料No.3,9,15,16等)、Moのみでも、Niが耐食性向上範囲(水準3)およびCrが耐食性向上範囲(水準2)であれば、効果を有することが分かった(試料No.8,17)。   Moreover, as shown in FIGS. 3 and 4, as the Fe content increases, the corrosion resistance tends to decrease (however, it depends on the corrosion resistance improving component to be combined). And if Fe content rate was the range of 37% or less, it turned out that the corrosion resistance equivalent to or more than a prior art example is obtained (sample No. 3-5, 7, 9, and 14-18). At that time, it is effective to add Mo (sample Nos. 3, 9, 15, 16 and the like). Even with Mo alone, Ni should be in the corrosion resistance improvement range (level 3) and Cr should be in the corrosion resistance improvement range (level 2). It was found to have an effect (Sample Nos. 8 and 17).

なお、試料No.6は、Mo、Cuとも無添加であり、当然、Feの添加により、耐食性は従来例より低下している。   Sample No. No. 6 has no addition of Mo and Cu, and of course, the corrosion resistance is lower than the conventional example due to the addition of Fe.

また、試料No.13では、Moが添加されているが、Cuが無添加であり、Cuを併用すれば、Feを25%以上添加しても(例えば、28%)、耐食性は向上すると推定される(試料No.4,5参照)。なお、下記におけるFeの範囲は、表2のFe含有率から帰納したものである(以下同じ。)。   Sample No. In No. 13, Mo is added, but Cu is not added. If Cu is used together, it is estimated that the corrosion resistance is improved even if Fe is added in an amount of 25% or more (for example, 28%) (Sample No.). 4 and 5). In addition, the range of Fe in the following is derived from the Fe content in Table 2 (the same applies hereinafter).

以上の考察から、下記発明1(請求項1)(1)、発明2(請求項5)(2)が帰納される。 From the above consideration, the following Invention 1 (Claim 1) (1) and Invention 2 (Claim 5) (2) are derived.

(1)「Ni:38.1〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:18.8〜31%を含有するNi基合金ロウ材において、Cu:0.93〜3%(望ましくは1.78〜3%)とともに、Fe:〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、ことを特徴とするNi基合金ろう材。」(表1−1参照)。 (1) “Ni: In the range of 38.1 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, Cr as corrosion resistance imparting element: In the Ni-base alloy brazing material containing 18.8 to 31%, Cu: 0.93 to 3% (preferably 1.78 to 3%) and Fe: 6 to 23% are contained, and the remainder is a melting point drop. Ni-based alloy brazing material characterized by containing inevitable impurities that do not affect the provision of corrosion resistance, and containing Ti: 0.5% or less and Mn: 0.5% or less as inevitable impurity elements . " 1-1).

上記発明において、更に、Mo:0.95〜3(望ましくは1.94〜3%)含有するものとすることにより、耐食性がさらに向上する。 In the above invention, the corrosion resistance is further improved by further containing Mo: 0.95 to 3 % (preferably 1.94 to 3%).

(2)「Ni:52.7〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:24.2〜31%を含有するNi基合金ロウ材において、Mo:0.95〜3%(望ましくは1.94〜3%)とともに、Fe:〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、ことを特徴とする。」(表1−2参照)。 (2) “Ni: 52.7 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, Cr as corrosion resistance imparting element: In Ni-base alloy brazing material containing 24.2 to 31%, it contains Mo: 0.95 to 3% (preferably 1.94 to 3%), Fe: 6 to 23%, and the remainder is melting point drop In addition, it is an inevitable impurity that does not affect the provision of corrosion resistance, and contains Ti: 0.5% or less and Mn: 0.5% or less as an inevitable impurity element ”(see Table 1-2). .

なお、表2を、別の観点(Pの含有率を水準1・2に分けて)から考察すると次の如く、各発明が帰納される。   In addition, when Table 2 is considered from another point of view (dividing P content into levels 1 and 2), each invention is derived as follows.

(A)Pが水準1(4.3〜4.8%)の場合:
Crの水準2(24.2〜25.4%)・水準3(27.6〜30.5)、Moの水準3(1.94〜2.14)とCuの水準3(1.78〜2)を組み合わせたとき、又は、Niの水準3(52.7〜55.6%)のとき、孔食電位が高く、Feの0.3〜1%の少量含有の場合(試料No.9)は勿論、Feが1%超〜23%の範囲(試料No.5,7,8)、さらには、23%を越えても耐食性が得られる可能性を有する(試料No.3,4)
(A) When P is level 1 (4.3 to 4.8%):
Cr level 2 (24.2-25.4%), level 3 (27.6-30.5), Mo level 3 (1.94-2.14) and Cu level 3 (1.78- 2), or when the level of Ni is 3 (52.7 to 55.6%), the pitting corrosion potential is high, and Fe is contained in a small amount of 0.3 to 1% (Sample No. 9). ) Of course, Fe is in the range of more than 1% to 23% (Sample Nos. 5 , 7, 8) , and even if it exceeds 23%, corrosion resistance may be obtained (Sample Nos. 3, 4). .

即ち、Cr、Mo、Cuの全てを耐食性寄与範囲(水準3)に限定することにより、Ni含有率を耐食性寄与不明範囲(水準1)であっても耐食性が格段に向上する(試料No.3)。したがって、Feを37%まで含有させることが可能となり、Niの大幅な減量が可能となる。なお、Feが37%超となると、Cu、Crを耐食性寄与範囲(ともに水準2)としても、耐食性向上結果を得られない(試料No.2)。   That is, by limiting all of Cr, Mo, and Cu to the corrosion resistance contribution range (level 3), the corrosion resistance is remarkably improved even if the Ni content is in the corrosion resistance contribution unknown range (level 1) (Sample No. 3). ). Accordingly, Fe can be contained up to 37%, and Ni can be significantly reduced. When Fe exceeds 37%, even if Cu and Cr are within the corrosion resistance contribution range (both levels 2), the corrosion resistance improvement result cannot be obtained (sample No. 2).

また、Ni含有率を耐食性寄与範囲(水準2)とした場合、Cuを耐食性寄与範囲(水準2・3)に限定するとともに、Moを耐食性寄与範囲(水準2・3)で添加することにより格段に耐食性が向上する(試料No.4,5)。この場合も、Feを20%以上とすることができ、Niの減量が可能となる。 In addition, when the Ni content is defined as the corrosion resistance contribution range (level 2), Cu is limited to the corrosion resistance contribution range (level 2 and 3), and Mo is added in the corrosion resistance contribution range (level 2 and 3). Corrosion resistance is improved (Sample Nos. 4 and 5). Also in this case, Fe can be made 20% or more, and Ni can be reduced.

さらに、Ni含有率を耐食性寄与範囲(水準3)とした場合において、Crを耐食性寄与範囲(水準2)で添加するか又はCuを耐食性寄与範囲(水準2・3)で添加した場合は、耐食性が格段に向上し(試料No.7,8)、さらに、Moを耐食性寄与範囲で添加した場合は、耐食性がより向上する(試料No.9)。 Furthermore, when the Ni content is set to the corrosion resistance contribution range (level 3), when Cr is added in the corrosion resistance contribution range (level 2) or Cu is added in the corrosion resistance contribution range (level 2.3), the corrosion resistance Is significantly improved (Sample Nos. 7 and 8), and further, when Mo is added in the corrosion resistance contribution range, the corrosion resistance is further improved (Sample No. 9).

(B)Pが水準2(5.5〜6.2%)の場合:
Niの水準2(38.1〜39.2%)、水準3(52.7〜55.6%)、Crの水準2(24.2〜25.4%)・水準3(27.6〜30.5)において、Cuの水準2(0.93〜1.06)、水準3(1.78〜2)を組み合わせ(試験No.14,15,16,18)、又は、当該組み合わせにおいてCuに代替してMoの水準3(1.94〜2.146%)の場合(試験No.17)、孔食電位が高く、Feが0.3〜1%と少量の範囲の場合(試料No.18)は勿論、Feが3〜23%の範囲(試験No.14〜17)で耐食性に優れていることが分かる。
(B) When P is level 2 (5.5-6.2%):
Ni level 2 (38.1-39.2%), level 3 (52.7-55.6%), Cr level 2 (24.2-25.4%), level 3 (27.6- 30.5), a combination of Cu level 2 (0.93 to 1.06) and level 3 (1.78 to 2) (test No. 14, 15, 16, 18), or Cu in that combination In the case of Mo level 3 (1.94 to 2.146%) (Test No. 17), pitting corrosion potential is high and Fe is in the range of 0.3 to 1% and small amount (Sample No.) Of course, it can be seen that the Fe content is excellent in the corrosion resistance in the range of 3 to 23% (test Nos. 14 to 17).

即ち、Ni含有率を耐食性寄与範囲(水準2・3)とした場合において、Crを耐食性寄与範囲(水準2・3)で添加するとともに、Cuを耐食性寄与範囲(水準2・3)で添加するか、又はCuに代替してMoを耐食性寄与範囲(水準3)で添加した場合、孔食電位が高い。即ち、Feの0.3〜1%の少量含有の場合は勿論(試料No.18)、Feが3〜23%の範囲で耐食性に優れていることが分かる(試料No.14〜17)。なお、試料No.13は、耐食性が従来例より低下しているが、Crが耐食性寄与不明範囲(水準1)の含有率でも、試験No.16では、耐食性が格段に向上していることを考慮すると、Feの含有率が過剰(23%超)であることが原因と考えられる。   That is, when the Ni content is set to the corrosion resistance contribution range (levels 2 and 3), Cr is added in the corrosion resistance contribution range (levels 2 and 3), and Cu is added in the corrosion resistance contribution range (levels 2 and 3). Alternatively, when Mo is added in the corrosion resistance contribution range (level 3) instead of Cu, the pitting potential is high. That is, it can be seen that when Fe is contained in a small amount of 0.3 to 1% (Sample No. 18), the corrosion resistance is excellent when Fe is in the range of 3 to 23% (Sample Nos. 14 to 17). Sample No. No. 13, although the corrosion resistance is lower than the conventional example, even if the Cr content is in the range of unknown corrosion resistance contribution (level 1), the test No. In No. 16, considering that the corrosion resistance is remarkably improved, it is considered that the Fe content is excessive (over 23%).

さらに、Feの含有率が過剰の場合、耐食性に影響を与えることは、Pの各水準1・2におけるFeの含有率と耐食性の関係を示す図3・4からも伺える。   Further, when the Fe content is excessive, it can be seen from FIGS. 3 and 4 that show the relationship between the Fe content and the corrosion resistance at each level 1 and 2 of P.

また、本発明者らは、各試料について本願出願人が使用している冷却水系模擬試験水(営業秘密)を用いて冷却水系耐食性の試験を行った。それらの結果を表3に示す。表3において、評価基準は下記のとおりとした。
×:従来例より低下、△:従来例と同等、○:従来例より向上、◎:従来例より格段に向上
In addition, the present inventors performed a cooling water system corrosion resistance test for each sample using the cooling water system simulation test water (trade secret) used by the applicant of the present application. The results are shown in Table 3. In Table 3, the evaluation criteria were as follows.
×: Lower than conventional example, △: Equivalent to conventional example, ○: Improved from conventional example, ◎: Greatly improved from conventional example

表3に示す結果から、Mo及び/又はCuを添加した系において、Niが水準2(38.1〜39.2)以上であれば、Tiの少量の水準1(0.16〜0.26)又は水準2(0.38〜0.77)であっても、冷却水系耐食性が向上することが分かった(試料No.4〜9、14〜18)。Moの水準3(1.94〜2.14)とTiの水準3(0.88〜1.44)を組み合わせると冷却水系耐食性は殆ど向上しない(試料No.13)。   From the results shown in Table 3, in the system to which Mo and / or Cu is added, if Ni is level 2 (38.1 to 39.2) or more, a small amount of Ti 1 (0.16 to 0.26) ) Or level 2 (0.38 to 0.77), it was found that the cooling water system corrosion resistance was improved (Sample Nos. 4 to 9, 14 to 18). When the Mo level 3 (1.94 to 2.14) and the Ti level 3 (0.88 to 1.44) are combined, the corrosion resistance of the cooling water system is hardly improved (Sample No. 13).

そして、Mo及びCuを添加しない系においても、Niが水準2(38.1〜39.2)でCrが水準3(27.6〜30.5)で、Ti(0.38〜0.77)を水準2(0.38〜0.77)とすれば、冷却水系耐食性が向上する(試料No.6)。   Even in a system in which Mo and Cu are not added, Ni is level 2 (38.1 to 39.2), Cr is level 3 (27.6 to 30.5), and Ti (0.38 to 0.77). ) Is level 2 (0.38 to 0.77), the cooling water system corrosion resistance is improved (sample No. 6).

上記結果から下記構成のNi基合金ろう材が帰納できる。
「Ni:30〜56%の範囲にあり、融点降下元素としてPとSiを、P:4〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:18〜31%を含有するNi基合金ロウ材において、Mo:0.5〜3.0%及び/又はCu:0.5〜3%とともにTi:0.01〜2%(但し:Mo:1.5〜3%且つTi:0.8〜2%の組み合わせを除く。)を含有し、さらに、Fe:0.5〜23%を含有することを特徴とするNi基合金ろう材。」
From the above results, a Ni- based alloy brazing material having the following configuration can be derived.
“Ni is in the range of 30 to 56%, P and Si as melting point depressing elements, P: 4 to 7%, P + Si: 8.5 to 13%, and Cr: 18 to 31% as corrosion resistance imparting elements In the Ni-base alloy brazing material, Mo: 0.5 to 3.0% and / or Cu: 0.5 to 3% and Ti: 0.01 to 2% (however, Mo: 1.5 to 3% and Ti : Excluding the combination of 0.8 to 2%), and further containing Fe: 0.5 to 23%.

上記構成において、Ti:0.01〜0.9%、さらには0.01〜0.5%を含有することが好ましい。高価なTiの節減につながるためである。 In the said structure, it is preferable to contain Ti: 0.01-0.9%, Furthermore, 0.01-0.5% . This is because it leads to saving of expensive Ti.

Claims (7)

Ni:38.1〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:18.8〜31%を含有するNi基合金ろう材において、
Cu:0.93〜3%およびFe:6〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、
ことを特徴とするNi基合金ろう材。
Ni: It is in the range of 38.1 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, Cr as a corrosion resistance imparting element: 18.8 to In a Ni-base alloy brazing material containing 31%,
Cu: 0.93 to 3% and Fe: 6 to 23%, the balance being inevitable impurities that do not affect melting point drop and corrosion resistance imparting, Ti: 0.5% or less and Mn: 0.5% Containing the following as inevitable impurity elements,
A Ni-based alloy brazing material characterized by the above.
さらに、Mo:0.95〜3%を含有することを特徴とする請求項1記載のNi基合金ろう材。 The Ni-base alloy brazing material according to claim 1, further comprising Mo: 0.95 to 3%. 前記Mo:1.94〜3%であることを特徴とする請求項2記載のNi基合金ろう材。 The Ni-based alloy brazing material according to claim 2, wherein the Mo content is 1.94 to 3%. 前記Cu:1.78〜3%であることを特徴とする請求項1、2又は3記載のNi基合金ろう材。 4. The Ni-based alloy brazing material according to claim 1, wherein the Cu content is 1.78 to 3%. Ni:52.7〜56%の範囲にあり、融点降下元素としてPとSiを、P:4.3〜7%、P+Si:8.5〜13%、耐食性付与元素としてCr:24.2〜31%を含有するNi基合金ろう材において、
Mo:0.95〜3%とともに、Fe:6〜23%を含有し、残部は融点降下及び耐食性付与に影響を与えない不可避不純物とされ、Ti:0.5%以下およびMn:0.5%以下を不可避不純物元素として含有する、
ことを特徴とするNi基合金ろう材。
Ni: It is in the range of 52.7 to 56%, P and Si as melting point depressing elements, P: 4.3 to 7%, P + Si: 8.5 to 13%, and Cr: 24.2 as elements imparting corrosion resistance In a Ni-base alloy brazing material containing 31%,
Mo: 0.95 to 3% and Fe: 6 to 23% are contained, and the balance is inevitable impurities that do not affect melting point drop and corrosion resistance imparting, and Ti: 0.5% or less and Mn: 0.5 % Or less as an inevitable impurity element,
A Ni-based alloy brazing material characterized by the above.
前記Mo:1.94〜3%であることを特徴とする請求項5記載のNi基合金ろう材。 The Ni-based alloy brazing material according to claim 5, wherein the Mo content is 1.94 to 3%. 前記P+Si:9.5〜13%であることを特徴とする請求項1〜6いずれか一記載のNi基合金ろう材。   The Ni-base alloy brazing material according to claim 1, wherein the P + Si is 9.5 to 13%.
JP2011049733A 2011-03-08 2011-03-08 Nickel-based alloy brazing material Active JP6116795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049733A JP6116795B2 (en) 2011-03-08 2011-03-08 Nickel-based alloy brazing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049733A JP6116795B2 (en) 2011-03-08 2011-03-08 Nickel-based alloy brazing material

Publications (2)

Publication Number Publication Date
JP2012183574A JP2012183574A (en) 2012-09-27
JP6116795B2 true JP6116795B2 (en) 2017-04-19

Family

ID=47014142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049733A Active JP6116795B2 (en) 2011-03-08 2011-03-08 Nickel-based alloy brazing material

Country Status (1)

Country Link
JP (1) JP6116795B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346799B2 (en) * 2013-08-06 2018-06-20 山陽特殊製鋼株式会社 Ni-Cr-Fe base alloy brazing material added with Cu
US10046420B2 (en) * 2014-03-18 2018-08-14 Metglas, Inc Nickel-iron-phosphorus brazing alloys
WO2015156066A1 (en) 2014-04-11 2015-10-15 福田金属箔粉工業株式会社 Nickel brazing filler metal having exceptional corrosion resistance
CN107138873A (en) * 2017-04-14 2017-09-08 江苏羽立新材料科技有限公司 A kind of low-phosphorous sulphur high-strength high temperature-resistant Cr35Ni45Nichrome welding wire and its preparation technology
JP6860410B2 (en) 2017-04-25 2021-04-14 山陽特殊製鋼株式会社 Ni—Cr based alloy brazing material containing a small amount of V

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833863B1 (en) * 1969-09-19 1973-10-17
EP0051461A1 (en) * 1980-10-30 1982-05-12 Allied Corporation Homogeneous ductile brazing foils
JP3168158B2 (en) * 1996-02-20 2001-05-21 福田金属箔粉工業株式会社 Ni-based heat-resistant brazing material with excellent wettability and corrosion resistance
JP3915726B2 (en) * 2003-03-28 2007-05-16 日立電線株式会社 Brazing composite material and brazing product using the same
JP2006334602A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Composite material for brazing, and brazed product using the same

Also Published As

Publication number Publication date
JP2012183574A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US20070284018A1 (en) Low thermal expansion Ni-base superalloy
JP5269888B2 (en) Iron-based heat-resistant and corrosion-resistant brazing material
RU2507290C2 (en) Heat-resistant alloy suitable for welding and resistant to oxidation
CN103189531B (en) The Ni-Mo-Cr alloy of high temperature low-thermal-expansion
JP4390089B2 (en) Ni-based alloy
JP6116795B2 (en) Nickel-based alloy brazing material
JP3168158B2 (en) Ni-based heat-resistant brazing material with excellent wettability and corrosion resistance
KR20130137154A (en) Nickel-based hydrochloric acid corrosion resistant alloy for soldering
CN109070280A (en) Welded structural element
CN102690997A (en) Ferritic stainless steel and method of manufacturing the same
JP2000512345A (en) Nickel-chromium-molybdenum-alloy
JP4312408B2 (en) Corrosion resistant austenitic alloy
CN100357466C (en) Nickel base alloy
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP2014111265A (en) Cladding powder alloy
JP2002249838A (en) CORROSION-RESISTANT AND HEAT-RESISTANT Ni ALLOY FOR FOSSIL FUEL COMBUSTION EQUIPMENT
CN102676882A (en) Alloy material with wear-resistance, heat-resistance, corrosion-resistance, high hardness
JP5283139B2 (en) Low thermal expansion Ni-base superalloy
JPH059503B2 (en)
JP5521490B2 (en) Spark plug electrode material
JP4256614B2 (en) High chromium-high nickel heat resistant alloy
RU2801581C1 (en) Titanium based alloy
JP4325141B2 (en) Stainless steel for use in environments containing organic acids and salt
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150831

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250