JPS6245713B2 - - Google Patents

Info

Publication number
JPS6245713B2
JPS6245713B2 JP18232082A JP18232082A JPS6245713B2 JP S6245713 B2 JPS6245713 B2 JP S6245713B2 JP 18232082 A JP18232082 A JP 18232082A JP 18232082 A JP18232082 A JP 18232082A JP S6245713 B2 JPS6245713 B2 JP S6245713B2
Authority
JP
Japan
Prior art keywords
gate
correlation
field effect
change
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18232082A
Other languages
Japanese (ja)
Other versions
JPS5972178A (en
Inventor
Koichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18232082A priority Critical patent/JPS5972178A/en
Publication of JPS5972178A publication Critical patent/JPS5972178A/en
Publication of JPS6245713B2 publication Critical patent/JPS6245713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明はGaAs電界効果トランジスタの測定方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring GaAs field effect transistors.

従来、GaAsシヨツトキ接合形電界効果トラン
ジスタは、その基本材料であるGaAsが高いキヤ
リア移動度をもつことから極めて高い周波数での
電子装置として用いられている。また、高周波で
より優れた電気的特性を得るために、そのゲート
長が極めて微細であることが必須であり、現在で
は0.5〜1.0μmが多く採用されている。さらに、
動作時のチヤネル内でのゲートから伸びた空乏層
のチヤネル方向の長さ(実効ゲート長)はこれよ
りも長くなることから、より薄いチヤネル厚さの
構造も必要とされる。このチヤネル厚さは1000〜
3000Åという数値である。加えて、GaAsという
材料性から、その完全な表面保護膜が得られてい
ないため、表面状態が、例えばSiO2やSi3N4等の
優れた被膜を形成できるSiのデバイス類に比べ、
一般には不安定である。
Conventionally, GaAs shotgun field effect transistors have been used as electronic devices at extremely high frequencies because their basic material, GaAs, has high carrier mobility. In addition, in order to obtain better electrical characteristics at high frequencies, it is essential that the gate length be extremely fine, and currently, 0.5 to 1.0 μm is often used. moreover,
Since the length of the depletion layer extending from the gate in the channel in the channel direction (effective gate length) during operation is longer than this, a structure with a thinner channel thickness is also required. This channel thickness is 1000~
The value is 3000Å. In addition, due to the material properties of GaAs, it is not possible to obtain a complete surface protection film, so the surface condition is inferior to Si devices that can form excellent films such as SiO 2 or Si 3 N 4 .
Generally unstable.

以上に述べたチヤネル厚の薄さと表面の不安定
さが実際の使用状態で不具合を起す例としては、
過大な入力信号を受けた場合、又は過大な出力を
発生した場合に、小信号での動作特性が変化して
しまうことにある。例えば、あるGaAs電界効果
トランジスタでは、初期値として、30dBm
(1W)出力時の電力利得が、10dBあつたとき
(入力信号は20dBm)この入力信号を3dB増加さ
せ、出力電力を約33dBmとして、次に入力電圧
を20dBmに戻したとき、出力電圧は29dBm、電
力利得が1dB減少するというような状態である。
Examples of problems in actual use due to the thin channel thickness and surface instability mentioned above are:
The problem is that when an excessive input signal is received or an excessive output is generated, the operating characteristics for small signals change. For example, some GaAs field effect transistors have an initial value of 30 dBm.
(1W) When the power gain at output is 10dB (input signal is 20dBm), this input signal is increased by 3dB, the output power is approximately 33dBm, and then the input voltage is returned to 20dBm, the output voltage is 29dBm. , the power gain decreases by 1 dB.

この現象の詳細な原因は明らかでないが、最大
の2Wという電力は50Ωの負荷系では10Vの電圧
であり、ほぼこの電圧が直流バイアスのゲート・
ドレイン間電圧に加わり、ゲート・ドレイン間は
降伏状態に近づき、このとき発生する高エネルギ
ーの電荷が表面近傍にトラツプされてチヤネルの
状態、例えば、有効チヤネル厚を変えてしまうこ
とによるものと推定される。
The detailed cause of this phenomenon is not clear, but the maximum power of 2W is a voltage of 10V in a 50Ω load system, and this voltage is approximately equal to the voltage at the gate of DC bias.
This is thought to be due to the fact that the voltage between the gate and drain approaches the breakdown state due to the voltage across the drain, and the high-energy charges generated at this time are trapped near the surface and change the state of the channel, for example, the effective channel thickness. Ru.

GaAs電界効果トランジスタの不安定性の測定
については、従来は高周波における過入力時の前
後における特性変動の有無を調べる方法で行われ
ていた。しかしながら、高周波を用いる測定は多
大の労力を要するという欠点があつた。
Conventionally, the instability of GaAs field effect transistors has been measured by examining the presence or absence of characteristic fluctuations before and after an excessive input at high frequencies. However, measurements using high frequencies have the disadvantage of requiring a great deal of effort.

本発明は上記欠点を除き、高周波における過入
入力前後の特性の変動測定をゲート・ドレイン間
降伏電圧の測定に置換えることによりGaAs電界
効果トランジスタの不安定性を容易に、かつ少な
い工数で測定することのできるGaAs電界効果ト
ランジスタの測定方法を提供するものである。
The present invention eliminates the above-mentioned drawbacks and measures the instability of GaAs field effect transistors easily and with less man-hours by replacing the measurement of characteristic fluctuations before and after excessive input at high frequencies with the measurement of gate-drain breakdown voltage. The present invention provides a method for measuring GaAs field effect transistors.

本発明のGaAs電界効果トランジスタの測定方
法は、GaAs電界効果トランジスタの高周波過入
力信号印加または高周波過出力前後での低電力動
作特性の変化量と、ゲート・ドレイン間降伏電圧
との相関関係を予め求めておき、ゲート・ドレイ
ン間降伏電圧の測定値から高周波過入力信号印加
または高周波過出力前後での低電力動作特性の変
化量を前記相関関係から計算で求めることを特徴
とする。
The method for measuring GaAs field effect transistors of the present invention involves determining in advance the correlation between the amount of change in the low power operating characteristics of the GaAs field effect transistor before and after applying a high frequency overinput signal or high frequency overoutput, and the breakdown voltage between the gate and drain. The present invention is characterized in that the amount of change in the low power operating characteristic before and after the application of a high-frequency over-input signal or the high-frequency over-output is calculated from the measured value of the gate-drain breakdown voltage based on the correlation.

本発明の実施例について図面を用いて説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

第1図はGaAs電界効果トランジスタのゲー
ト・ドレイン間降伏電圧と高周波過出力前後にお
ける低電力利得の変化量との相関関係の一例を示
す分布図である。
FIG. 1 is a distribution diagram showing an example of the correlation between the gate-drain breakdown voltage of a GaAs field effect transistor and the amount of change in low power gain before and after high frequency overpower.

同じ構造のGaAs電界効果トランジスタを複数
個用意し、高周波過出力前後における低電力利得
の変化量(dB)とゲート・ドレイン間の降伏電
圧V(BR)GDO(V)との相関関係を求めたものが
第2図である。この相関関係から降込電圧V(BR)
GDOを測定すれば高周波過出力前後における低電
力利得の変化量を計算から求めることができる。
相関関係には多少のばらつきがあるので計算から
求めた変化量は厳密には正確ではないが正確な値
に近い値は得られる。実用的にはこれで充分であ
る。前述のように高周波を使用する測定は多大の
労力を要するが、ゲート・ソース間降伏電圧の測
定は直流で測定できるから、その測定労力は極め
て小さく、かつ容易である。
We prepared multiple GaAs field effect transistors with the same structure and determined the correlation between the change in low power gain (dB) before and after high-frequency overpower and the gate-drain breakdown voltage V (BR)GDO (V). The thing is shown in Figure 2. From this correlation, the drop voltage V (BR)
By measuring GDO , the amount of change in low power gain before and after high frequency overpower can be calculated.
Since there are some variations in the correlation, the amount of change determined by calculation is not strictly accurate, but a value close to the exact value can be obtained. This is sufficient for practical purposes. As mentioned above, measurement using high frequencies requires a lot of effort, but since the gate-source breakdown voltage can be measured using direct current, the measurement effort is extremely small and easy.

上記実施例は高周波過出力の場合であつたが、
高周波過入力の場合でも同様の相関関係を得るこ
とができる。
The above example was a case of high frequency overpower, but
A similar correlation can be obtained even in the case of high frequency over-input.

以上詳細に説明したように、本発明によれば、
多くの労力を要する高周波での測定を労力が少な
くてすむ直流での測定に置換えることができるの
で、その効果は大きい。
As explained in detail above, according to the present invention,
The effect is significant because high-frequency measurements, which require a lot of labor, can be replaced with direct current measurements, which require less labor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaAs電界効果トランジスタのゲー
ト・ドレイン間降伏と高周波過出力前後における
低電力利得の変化量との相関関係の一例を示す分
布図である。
FIG. 1 is a distribution diagram showing an example of the correlation between the gate-drain breakdown of a GaAs field effect transistor and the amount of change in low power gain before and after high frequency overpower.

Claims (1)

【特許請求の範囲】[Claims] 1 GaAs電界効果トランジスタの高周波過入力
信号印加または高周波過出力前後での低電力動作
特性の変化量と、ゲート・ドレイン間降伏電圧と
の相関関係を予め求めておき、ゲート・ドレイン
間降伏電圧の測定値から高周波過入力信号印加ま
たは高周波過出力前後での低電力動作特性の変化
量を前記相関関係から計算で求めることを特徴と
するGaAs電界効果トランジスタの測定方法。
1 The correlation between the amount of change in the low-power operating characteristics of a GaAs field effect transistor before and after applying a high-frequency overinput signal or high-frequency overoutput and the gate-drain breakdown voltage is determined in advance, and the correlation between the gate-drain breakdown voltage and the gate-drain breakdown voltage is calculated. A method for measuring a GaAs field effect transistor, characterized in that the amount of change in low power operating characteristics before and after application of a high frequency over-input signal or high-frequency over-output is calculated from the measured value from the correlation.
JP18232082A 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor Granted JPS5972178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18232082A JPS5972178A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18232082A JPS5972178A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Publications (2)

Publication Number Publication Date
JPS5972178A JPS5972178A (en) 1984-04-24
JPS6245713B2 true JPS6245713B2 (en) 1987-09-28

Family

ID=16116241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18232082A Granted JPS5972178A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPS5972178A (en)

Also Published As

Publication number Publication date
JPS5972178A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
Frohman-Bentchkowsky On the effect of mobility variation on MOS device characteristics
Messick A DC to 16 GHz indium phosphide MISFET
Boudry et al. Current‐noise‐power spectra of amorphous silicon thin‐film transistors
JPS6245713B2 (en)
JPS6245714B2 (en)
Boonstra et al. Progress on bucket-brigade charge-transfer devices
US3662187A (en) Fast analog multiplier
JPS59138111A (en) Device for compensating temperature drift of gain of ultrahigh frequency electric signal amplifier
US5561387A (en) Method for measuring gate insulation layer thickness
Bandali et al. On modeling of the self-aligned field implanted MOS devices with narrow widths
JPS59108968A (en) Thermal resistance measurement of semiconductor device
Gosling Voltage controlled attenuators using field effect transistors
Jerdonek et al. Velocity saturation effects in n-channel deep-depletion SOS/MOSFET's
JPS5979619A (en) Method and device for automatically controlling gain
JPH04245808A (en) Surface acoustic wave convolver and convolver bias device
JP3047052B2 (en) Apparatus using MESFET
Miller Study of the input and reverse transfer capacitance of vertical MOS transistors
SU1246333A1 (en) Amplifier with controlled gain factor
JPS60167513A (en) Equivalent resistance circuit
JPH10215123A (en) Power amplifier
Wallmark et al. MOS Transistors in Linear Circuits
Burke et al. Acoustic surface wave amplification using an accumulation layer on silicon
Cherry Small-signal high-frequency response of the insulated-gate field-effect transistor
Cobbold Theory of four-terminal double-diffused field-effect transistors
TW449960B (en) RF amplifier