JPS6245714B2 - - Google Patents

Info

Publication number
JPS6245714B2
JPS6245714B2 JP18232182A JP18232182A JPS6245714B2 JP S6245714 B2 JPS6245714 B2 JP S6245714B2 JP 18232182 A JP18232182 A JP 18232182A JP 18232182 A JP18232182 A JP 18232182A JP S6245714 B2 JPS6245714 B2 JP S6245714B2
Authority
JP
Japan
Prior art keywords
change
gate
high frequency
correlation
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18232182A
Other languages
Japanese (ja)
Other versions
JPS5972179A (en
Inventor
Koichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18232182A priority Critical patent/JPS5972179A/en
Publication of JPS5972179A publication Critical patent/JPS5972179A/en
Publication of JPS6245714B2 publication Critical patent/JPS6245714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明はGaAs電界効果トランジスタの測定方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring GaAs field effect transistors.

従来、GaAsシヨツトキ接含形電界効果トラン
ジスタは、その基本材料であるGaAsが高いキヤ
リア移動度をもつことから極めて高い周波数での
電子装置として用いられる。また、高周波でより
優れた電気的特性を得るために、そのゲート長が
極めて微細であることが必須であり、現在では
0.5〜1.0μmが多く採用されている。さらに、動
作時のチヤネル内でのゲートから伸びた空乏層の
チヤネル方向の長さ(実効ゲート長)はこれより
も長くなることから、より薄いチヤネル厚さの構
造も必要とされる。このチヤネル厚さは1000〜
3000Åという数値である。加えて、GaAsという
材料性から、その完全な表面保護膜が得られてい
ないため、表面状態が、例えばSiO2やSi3N4等の
優れた被膜を形成できるSiのデバイス類に比べ、
一般には不安定である。
Conventionally, GaAs short field effect transistors have been used as electronic devices at extremely high frequencies because GaAs, the basic material thereof, has high carrier mobility. In addition, in order to obtain better electrical characteristics at high frequencies, it is essential that the gate length be extremely small, and currently
0.5 to 1.0 μm is often used. Furthermore, since the length of the depletion layer extending from the gate in the channel in the channel direction (effective gate length) during operation is longer than this, a structure with a thinner channel thickness is also required. This channel thickness is 1000~
The value is 3000Å. In addition, due to the material properties of GaAs, it is not possible to obtain a complete surface protective film, so the surface condition is inferior to that of Si devices, which can form excellent films such as SiO 2 or Si 3 N 4 .
Generally unstable.

以上述べたチヤネル厚の薄さと表面の不安定さ
が実際の使用状態で不具合を起す例としては、過
大な入力信号を受けた場合、又は過大な出力を発
出した場合に小信号での動作特性が変化してしま
うことにある。例えば、あるGaAs電界効果トラ
ンジスタでは、初期値として、30dBm(1W)出
力時の電力利得が10dBあつたとき(入力信号は
20dBm)、この入力信号を3dB増加させ、出力電
力を約33dBmとして、次に入力電力を20dBmに
戻したとき、出力電力は29dBm、電力利得が1dB
減小するというような状態である。
An example of a malfunction caused by the thin channel thickness and surface instability mentioned above in actual use is the small signal operating characteristics when receiving an excessive input signal or emitting an excessive output. The problem lies in the fact that it changes. For example, in a certain GaAs field effect transistor, when the power gain is 10 dB at the initial value of 30 dBm (1 W) output (the input signal is
20dBm), this input signal is increased by 3dB, the output power is approximately 33dBm, and then when the input power is returned to 20dBm, the output power is 29dBm and the power gain is 1dB.
It is in a state of decreasing.

この現象の詳細な原因は明らかでないが、最大
の2Wという電力は50Ωの負荷系では10Vの電圧
であり、ほぼこの電圧が直流バイアスのゲート・
ドレイン間電圧に加わり、ゲート・ドレイン間は
降伏状態に近づき、このとき発生する高エネルギ
ーの電荷が表面近傍にトラツプされてチヤネルの
状態、例えば、有効チヤネル厚を変えてしまうこ
とによるものと推定される。
The detailed cause of this phenomenon is not clear, but the maximum power of 2W is a voltage of 10V in a 50Ω load system, and this voltage is approximately equal to the voltage at the gate of DC bias.
This is thought to be due to the fact that the voltage between the gate and drain approaches the breakdown state due to the voltage across the drain, and the high-energy charges generated at this time are trapped near the surface and change the state of the channel, for example, the effective channel thickness. Ru.

GaAs電界効果トランジスタの不安定性の測定
については、従来は高周波における過入力時の前
後における特性変動の有無を調べる方法で行われ
ていた。しかしながら、高周波を用いる測定は多
大の労力を要するという欠点があつた。
Conventionally, the instability of GaAs field effect transistors has been measured by examining the presence or absence of characteristic fluctuations before and after an excessive input at high frequencies. However, measurements using high frequencies have the disadvantage of requiring a great deal of effort.

本発明は上記欠点を除き、高周波における過入
入力前後の特性変動の測定を直流および低周波特
性の降伏電圧印加後の変化量の測定に置換えるこ
とによりGaAs電界効果トランジスタの不安定性
を容易に、かつ少ない工数で測定することのでき
るGaAs電界効果トランジスタの測定方法を提供
するものである。
The present invention eliminates the above-mentioned drawbacks and easily reduces the instability of GaAs field effect transistors by replacing the measurement of characteristic fluctuations before and after excessive input at high frequencies with the measurement of the amount of change in DC and low frequency characteristics after application of breakdown voltage. The purpose of the present invention is to provide a method for measuring GaAs field effect transistors that can be measured with a small number of man-hours.

本発明のGaAs電界効果トランジスタの測定方
法は、GaAs電界効果トランジスタの高周波過入
力信号印加または高周波過出力前後での低電力動
作特性の変化量と、ゲート・ドレイン間またはゲ
ート・ソース間の降伏電圧を印加する前後の直流
及び低周波特性の変化率との相関関係を予め求め
ておき、ゲート・ドレイン間またはゲート・ソー
ス間の降伏電圧を印加する前後の直流及び低周波
特性の測定値から高周波過入力信号印加または高
周波過出力前後での低電力動作特性の変化量を前
記相関関係から計算で求めることを特徴とする。
The method for measuring GaAs field effect transistors of the present invention is to measure the amount of change in low power operating characteristics of a GaAs field effect transistor before and after applying a high frequency overinput signal or high frequency overoutput, and the breakdown voltage between the gate and drain or between the gate and source. The correlation between the rate of change of the DC and low frequency characteristics before and after applying the breakdown voltage is determined in advance, and the high frequency The present invention is characterized in that the amount of change in the low power operating characteristics before and after application of an excessive input signal or excessive high frequency output is calculated from the correlation.

本発明は、次の事実の発見に基いている。初期
の直流および低周波でのIDSS、VGSX、VDSX
gmのどれか一つ又は全てを測定し、次にゲー
ト・ドレイン間又はゲート・ソース間に降伏状態
に致るまで逆方向バイアスを印加し、前記直流特
性を再度測定すると、これらが変化し、この変化
量を求める。この変化量の大小は高周波での過入
力時前後の直流特性の変化および高周波低電力特
性の変化とよい相関が得られる。ただし、これら
の測定に当つては、過大入力時又は降伏電圧印加
後の測定するまでの放置時間、温度によつて変わ
ることは注意を要する。また、この測定は一般に
は破壊試験ではなく、ほぼ100℃以上の高温環境
においては、数分ないし数時間で、ほぼ初期状態
に戻ることにより、デバイス毎の確認が可能であ
る。
The present invention is based on the discovery of the following fact. I DSS , V GSX , V DSX , at initial DC and low frequency
If one or all of gm is measured, then a reverse bias is applied between the gate and drain or between the gate and source until a breakdown state is reached, and the DC characteristics are measured again, these will change, Find this amount of change. The magnitude of this change has a good correlation with the change in DC characteristics before and after an over-input at high frequency and the change in high frequency low power characteristic. However, when making these measurements, it should be noted that the measurement may vary depending on the temperature and the time the product is left for measurement after excessive input or breakdown voltage is applied. Furthermore, this measurement is generally not a destructive test, but in a high-temperature environment of approximately 100°C or higher, each device can be confirmed by returning to its initial state in a few minutes to a few hours.

次に、本発明の実施例について図面を用いて説
明する。
Next, embodiments of the present invention will be described using the drawings.

第1図はGaAs電界効果トランジスタの高周波
過出力前後における低電力利得の変化量とゲー
ト・ドレイン間降伏電圧印加前後のIDSSの変化
率との相関関係の一例を示す分布図である。
FIG. 1 is a distribution diagram showing an example of the correlation between the amount of change in low power gain before and after high frequency overpower of a GaAs field effect transistor and the rate of change in I DSS before and after application of the gate-drain breakdown voltage.

図に示すように、IDSSの変化率と低電力利得
の変化量との間には良好な相関関係がある。従つ
て、ゲート・ドレイン間降状電圧印加前後のIDS
の変化率を測定すれば、低電力利得の変化量を
求めることができる。
As shown in the figure, there is a good correlation between the rate of change in I DSS and the amount of change in low power gain. Therefore, I DS before and after applying the dropping voltage between the gate and drain
By measuring the rate of change in S , the amount of change in the low power gain can be determined.

上記実施例は、ゲート・ドレイン間降伏電圧印
加前後のIDSSの変化率との相関を求めたもので
あるが、VGSX、VDSX、gmなどについても同様
の相関関係が得られる。
In the above embodiment, the correlation with the rate of change in I DSS before and after the application of the gate-drain breakdown voltage was determined, but similar correlations can be obtained with respect to V GSX , V DSX , gm, and the like.

これらの直流及び低周波での測定値から高周波
での動作特性の変化量を求めることは厳密には正
確な値を得ているものではない。しかし、正確な
値に近い値は得られ、実用的にはそれで充分であ
る。多大の労力を要する高周波での測定を労力が
少くてすむ直流及び低周波での測定で代用できる
ということは経済的には大きな効果である。
Strictly speaking, determining the amount of change in the operating characteristics at high frequencies from the measured values at direct current and low frequencies does not yield accurate values. However, a value close to the exact value can be obtained, which is sufficient for practical use. The fact that high-frequency measurements, which require a lot of labor, can be replaced with direct-current and low-frequency measurements, which require less labor, is a great economic advantage.

以上詳細に説明したように、本発明によれば、
多大の労力を要する高周波での測定を労力が少な
くてすむ直流または低周波での測定に置換えるこ
とができるので、その効果は大きい。
As explained in detail above, according to the present invention,
This is highly effective because high-frequency measurements, which require a lot of effort, can be replaced with direct current or low-frequency measurements, which require less effort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はGaAs電界効果トランジスタの高周波
過出力前後での低電力利得の変化量とゲート・ド
レイン間降伏電圧印加前後でのIDSSの変化率と
の相関関係の一例を示す分布図である。
FIG. 1 is a distribution diagram showing an example of the correlation between the amount of change in low power gain before and after high frequency overpower of a GaAs field effect transistor and the rate of change in I DSS before and after application of breakdown voltage between the gate and drain.

Claims (1)

【特許請求の範囲】[Claims] 1 GaAs電界効果トランジスタの高周波過入力
信号印加または高周波過出力前後での低電力動作
特性の変化量と、ゲート・ドレイン間またはゲー
ト・ソース間の降伏電圧を印加する前後の直流及
び低周波特性の変化率との相関関係を予め求めて
おき、ゲート・ドレイン間またはゲート・ソース
間の降伏電圧を印加する前後の直流及び低周波特
性の測定値から前記高周波過入力信号印加または
高周波過出力前後での低電力動作特性の変化量を
前記相関関係から計算で求めることを特徴とする
GaAs電界効果トランジスタの測定方法。
1 The amount of change in low power operating characteristics of a GaAs field effect transistor before and after applying a high frequency overinput signal or high frequency overoutput, and the change in DC and low frequency characteristics before and after applying a breakdown voltage between the gate and drain or between the gate and source. The correlation with the rate of change is determined in advance, and from the measured values of DC and low frequency characteristics before and after applying the breakdown voltage between the gate and drain or between the gate and source, it is possible to calculate the correlation between the high frequency overinput signal and the high frequency overoutput before and after applying the high frequency overinput signal or the high frequency overoutput. The method is characterized in that the amount of change in the low power operating characteristics of the device is calculated from the correlation.
Measurement method for GaAs field effect transistors.
JP18232182A 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor Granted JPS5972179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18232182A JPS5972179A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18232182A JPS5972179A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Publications (2)

Publication Number Publication Date
JPS5972179A JPS5972179A (en) 1984-04-24
JPS6245714B2 true JPS6245714B2 (en) 1987-09-28

Family

ID=16116258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18232182A Granted JPS5972179A (en) 1982-10-18 1982-10-18 Measuring method for gaas field effect transistor

Country Status (1)

Country Link
JP (1) JPS5972179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096071A1 (en) 2018-11-09 2020-05-14 日東電工株式会社 Coating material and film
WO2020096070A1 (en) 2018-11-09 2020-05-14 日東電工株式会社 Sheet body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096071A1 (en) 2018-11-09 2020-05-14 日東電工株式会社 Coating material and film
WO2020096070A1 (en) 2018-11-09 2020-05-14 日東電工株式会社 Sheet body

Also Published As

Publication number Publication date
JPS5972179A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
US4763028A (en) Circuit and method for semiconductor leakage current compensation
Frohman-Bentchkowsky On the effect of mobility variation on MOS device characteristics
Jolly et al. A low-noise amplifier for switched capacitor filters
US3317850A (en) Temperature-stable differential amplifier using field-effect devices
JPS6245714B2 (en)
Boudry et al. Current‐noise‐power spectra of amorphous silicon thin‐film transistors
US20070014067A1 (en) Junction temperature sensing for MOSFET
Boonstra et al. Progress on bucket-brigade charge-transfer devices
US2889416A (en) Temperature compensated transistor amplifier
US3662187A (en) Fast analog multiplier
Tedja et al. Noise spectral density measurements of a radiation hardened CMOS process in the weak and moderate inversion
JPS6245713B2 (en)
JPS59138111A (en) Device for compensating temperature drift of gain of ultrahigh frequency electric signal amplifier
Cabral et al. Trapping behavior of GaN HEMTs and its implications on class B PA bias point selection
Radeka Field effect transistors for charge amplifiers
Gosling Voltage controlled attenuators using field effect transistors
Fadlallah et al. Static and low frequency noise characterization of surface-and buried-mode 0.1 μm P and N MOSFETs
Troutman Subthreshold slope for insulated gate field-effect transistors
JP3175959B2 (en) Simulation method of semiconductor integrated circuit
JPS59108968A (en) Thermal resistance measurement of semiconductor device
EP3526897B1 (en) Power amplifier
Bandali et al. On modeling of the self-aligned field implanted MOS devices with narrow widths
US20180241387A1 (en) Drain lag compensation circuit for rf power transistors
JPH10215123A (en) Power amplifier
Jerdonek et al. Velocity saturation effects in n-channel deep-depletion SOS/MOSFET's