WO2020096071A1 - Coating material and film - Google Patents

Coating material and film Download PDF

Info

Publication number
WO2020096071A1
WO2020096071A1 PCT/JP2019/044131 JP2019044131W WO2020096071A1 WO 2020096071 A1 WO2020096071 A1 WO 2020096071A1 JP 2019044131 W JP2019044131 W JP 2019044131W WO 2020096071 A1 WO2020096071 A1 WO 2020096071A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
resin layer
component
containing resin
value
Prior art date
Application number
PCT/JP2019/044131
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 小竹
大輔 松隈
憲一 江口
愛佳 高坂
藤田 浩之
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980073654.8A priority Critical patent/CN112969765B/en
Priority to EP19882471.6A priority patent/EP3878916A4/en
Priority to US17/292,229 priority patent/US20210403754A1/en
Priority to RU2021116476A priority patent/RU2770085C1/en
Priority to JP2020555679A priority patent/JPWO2020096071A1/en
Priority to CA3118554A priority patent/CA3118554A1/en
Publication of WO2020096071A1 publication Critical patent/WO2020096071A1/en
Priority to JP2024005062A priority patent/JP2024050632A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a paint, particularly a paint and a film capable of preventing icing and / or snow accretion.
  • Patent Document 1 discloses an ice-and-snow adhesion preventing sheet that can prevent ice-and-snow adhesion to various structures in cold regions.
  • This sheet comprises a heat-insulating layer made of a sponge material and a surface layer laminated on the heat-insulating layer, the surface layer being made of rubber or resin dispersed so that an oil agent can bleed on the surface.
  • the oil agent is held in the surface layer and constantly bleeds onto the surface of the surface layer.
  • the viscosity of the oil agent is set to a value equal to or higher than a predetermined value here to maintain the effect of preventing snow from adhering to the snow for as long as possible.
  • Patent Document 2 discloses a rubber mat that can prevent ice and snow from sticking.
  • This rubber mat is made of a synthetic rubber having a predetermined hardness, and is configured such that a liquid additive having an effect of preventing snow from adhering to the surface bleeds under the condition that the temperature is 5 ° C. or less.
  • the amount of the liquid additive with respect to the rubber of the rubber mat is adjusted within a predetermined range here.
  • Patent Document 3 discloses a wet gel which has poor adhesion to ice and is capable of spontaneous syneresis by temperature or chemical reaction.
  • This wet gel can be mixed with the crosslinked silicone resin in which the silicone resin composition is cured, the first liquid capable of dissolving the silicone resin composition, and the first liquid ( That is, when the second liquid and the first liquid are mixed, a transparent mixed solution is formed without phase separation)
  • the second liquid is included.
  • the first liquid may also serve as the second liquid.
  • Patent Document 3 is a wet gel, and is not intended for outdoor use where strength is required, and there is a problem that the strength is insufficient. Further, since the first liquid and the second liquid are miscible, and the first liquid may also serve as the second liquid, the first liquid and the second liquid are the same. At times, there is a risk of excessive syneresis.
  • the present invention has been made to solve these problems in the prior art, and an object of the present invention is to provide a product having an improved function of preventing ice formation and / or snow accumulation, particularly a paint and a film. ..
  • a paint according to an aspect of the present invention includes a first oil component, a second oil component, and a first resin precursor that is a precursor of a resin component, And a coating composition for forming an oil-containing resin layer containing the first and second oil components and the resin component by curing the first resin precursor containing the second and oil components.
  • the second oil component is characterized in that it constitutes a low temperature phase-separable oil component that can be phase-separated from the first oil component and exude from the oil-containing resin layer when the temperature drops below a predetermined value. ..
  • the predetermined value may be a freezing point.
  • the oil component exuding from the oil-containing resin layer is a low-temperature exuding oil component that can exude when the temperature falls below a predetermined value, so that it does not bleed wastefully and bleeds when necessary.
  • this oil component is a part of the oil component contained in the oil-containing resin layer, the oil component will not be excessively bleed.
  • the first and second oil components are a solubility parameter value (SP value) of a resin component of the oil-containing resin layer formed by curing the first resin precursor.
  • SP value solubility parameter value
  • the difference from the value of the solubility parameter of the first oil component is smaller than the difference between the value of the solubility parameter (SP value) of the resin component of the oil-containing resin layer and the value of the solubility parameter of the second oil component. Is preferred.
  • the first resin precursor may be a moisture-curable type that is cured by moisture, or an ultraviolet-curable type that is cured by ultraviolet irradiation, or by heating. It may be a thermosetting type that hardens, or may be a type that hardens by adding a curing agent that causes a crosslinking reaction with the first resin precursor, or the first resin precursor of the coating composition. It may be a combination with a liquid curing agent that cures the first resin precursor by a crosslinking reaction with.
  • the resin component of the oil-containing resin layer is contained in an amount of 25 wt% or more based on the total weight of the oil-containing resin layer.
  • the second oil component is contained in a proportion of 3 wt% or more based on the weight of the entire oil-containing resin layer.
  • a second resin precursor that forms a surface resin layer by being cured on the oil-containing resin layer formed by curing the first resin precursor.
  • the surface resin layer can further allow the low temperature phase-separable oil component exuded from the oil-containing resin layer to penetrate to the surface of the surface resin layer on the side opposite to the oil-containing resin layer. It may have oil permeability.
  • the surface resin layer has higher abrasion resistance than the oil-containing resin layer.
  • the amount of surface oil at ⁇ 20 ° C. is preferably 40 ⁇ g / cm 2 or more.
  • the difference in the solubility parameter between the first oil component and the resin component of the oil-containing resin layer is within 0.6 (J / cm 3 ) 1/2 .
  • the solubility parameter value (SP value) of the oil-containing resin layer formed by curing the first resin precursor and the solubility parameter value (SP of the second oil component (SP value) is 1.5 (J / cm 3 ) 1/2 or less. Further, in the paint according to the above aspect, it is preferable that the oil-containing resin layer formed by curing the first resin precursor have a solubility parameter contribution value of 0.1 or more.
  • a film according to one aspect of the present invention is a film including an oil-containing resin layer containing first and second oil components, and the second oil component has a temperature of a predetermined value. It is characterized in that it comprises a low temperature phase-separable oil component that can be phase-separated from the first oil component and exude from the oil-containing resin layer when the temperature decreases below.
  • a product capable of preventing icing and / or snow accretion in particular, can be used in a flexible manner as compared with a sheet or the like having a physically defined shape from the beginning of use. Paints and films are provided.
  • the first paint contains a first resin precursor which is a precursor of a resin component and two kinds of oil components, that is, a first oil component and a second oil component. ..
  • the oil-containing resin layer 11 is formed by curing the first resin precursor containing the first oil component and the second oil component.
  • the oil-containing resin layer 11 contains a first oil component, a second oil component, and a resin component, and a part of the contained oil, particularly the second oil component, can be exuded (bleed) from the resin component.
  • the solid resin layer prevents the icing and / or snowing by the exuded second oil component.
  • FIG. 1 shows an oil-containing resin layer 11 formed by applying and curing the first paint together with the structure 10.
  • the layer thickness of the oil-containing resin layer 11 is substantially determined by the thickness of the applied first coating material. Although not particularly limited, it is preferably 10,000 ⁇ m or less in order to properly exude oil, and from the viewpoint of strength, it is preferably 10 ⁇ m or more.
  • the first resin precursor is a precursor that constitutes the resin component of the oil-containing resin layer 11, and is a moisture-curable type that cures with moisture, an ultraviolet-curable type that cures with ultraviolet irradiation, and a thermoset that cures with heating. It may be of any type. Further, it may be cured by adding a curing agent that causes a crosslinking reaction with the first resin precursor. Furthermore, a coating material that is cured by adding a curing agent that causes a crosslinking reaction with the first resin precursor, and a curing reaction of the first resin precursor by performing a crosslinking reaction with the first resin precursor of the coating material, It may be a combination with a liquid curing agent.
  • the first resin precursor is not particularly limited, but for example, silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluorine resin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.) , Acrylic resins, and the like.
  • silicone resins are preferable from the viewpoints of excellent bleeding effect of oil components and excellent outdoor exposure durability.
  • any appropriate silicone resin can be adopted as long as the effect of the present invention is not impaired. Only one type of silicone resin may be used, or two or more types may be used. Such silicone resin may be a condensation type silicone resin or an addition type silicone resin.
  • the silicone resin may be a one-component type silicone resin (for example, a one-component type room temperature curable (RTV) resin) that is dried alone, or a two-component type silicone resin (eg, a one-component type). Two-part type room temperature curable (RTV) resin).
  • silicone resin examples include 1-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-498, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE- 1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-3498, KE-3493, KE-3466, KE-3467, KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE- 418, KE-3427, KE-3428, KE-41,
  • RTV rubber eg KE-1800T-A / B, KE-66, KE-1031-A / B, KE-200, KE-118, KE-103, KE-108, KE-119, KE-109E-A / B, KE-1051J-A / B, KE-1012-A / B, KE-106, KE-1282-A / B, KE-1283-A / B, KE-1800-A / B / C, KE -1801-A / B / C, KE-1802-A / B / C, KE-1281-A / B, KE-1204-A / B, KE-1204-AL / BL, KE-1280-A / B , KE-513-A / B, KE- 21-A / B, KE-1285-A / B, KE-1861-A / B, KE-12, KE-14, KE-17, KE-113,
  • silicone sealant eg, KE-42AS, KE-420, KE-450, etc.
  • Shin-Etsu Chemical Co., Ltd. rubber compound eg, KE- 655-U, KE-675-U, KE-931-U, KE-941-U, KE-951-U, KE-961-U, KE-971-U, KE-981- U, KE-961T-U, KE-971T-U, KE-871C-U, KE-9410-U, KE-9510-U, KE-9610-U, KE-9710-U, KE-742-U, KE-752-U, KE-762-U, KE-772-U, KE-782-U, KE-850-U, KE-870-U, KE-880-U, KE-890-U, KE- 9590-U, KE-5590-U, KE-552-U, KE-582-U, KE-552B-
  • KEG-2000-40A / B KEG-2000-50A / B, KEG-2000- 60A / B, KEG-2000-70A / B, KEG-2001-40A / B, KEG-2001-50A / B, KE-1950-10A / B, KE 1950-20A / B, KE-1950-30A / B, KE-1950-35A / B, KE-1950-40A / B, KE-1950-50A / B, KE-1950-60A / B, KE-1950- 70A / B, KE-1935A / B, KE-1987A / B, KE-1988A / B, KE-2019-40A / B, KE-2019-50A / B, KE-2019-60A / B, KE-2017- 30A / B, KE-2017-40A / B, KE-2017-50A / B, KE-2090-40A / B, KE-2090-50A / B,
  • silicone oil for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil oil or the like can be used.
  • silicone oil include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF). -6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Co., Ltd.
  • silicone oil manufactured by Toray Dow Corning Co., Ltd. for example, BY16-846 series, SF8416 series, SH200 series, SH203 series, SH230 series, SF8419 series, FS1265 series, SH510 series, SH550 series, SH710 series, FZ-2110 series, FZ-2203 series, etc.
  • silicone oil for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil oil or the like
  • silicone oil examples include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF).
  • Silicone oil manufactured by Asahi Kasei Wacker Silicone Co., Ltd. (WACKER (registered trademark) SILICONE FLUID AK series, WACKER (registered trademark) SILICONE FLUID AP series, WACKER (registered trademark) SILICONE FLUID AR series, WACKER (registered trademark) SILICONE FLUID AS) Series, WACKER (registered trademark) TN Series, WACKER (Registered trademark) L series, WACKER (registered trademark) AF series, etc.) and the like.
  • the resin component (first resin precursor) of the oil-containing resin layer 11 for example, a combination satisfying the following properties 1) and 2) is selected.
  • the first oil component and the second oil component have a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11, for example, 20 ° C to 80 ° C which is significantly higher than a predetermined value such as a freezing point. At room temperature, they are compatible with each other without phase separation, but under the temperature environment where it is necessary to exude the second oil component into the oil-containing resin layer 11, for example, a temperature environment below a predetermined value such as a freezing point. To separate. 2) The first oil component has a temperature at which it is not necessary to exude the second oil component to the oil-containing resin layer 11 and a temperature at which it is necessary to exude the second oil component to the oil-containing resin layer 11.
  • Both have an affinity for the resin component of the oil-containing resin layer 11, while the second oil component, in the presence of the first oil component, causes the oil-containing resin layer 11 to contain the second oil component.
  • the behavior is changed depending on whether it is a temperature at which exudation is not required or a temperature at which it is necessary to exude the second oil component into the oil-containing resin layer 11. More specifically, the second oil component has a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11 when the first oil component is not present, and The second oil component does not have an affinity for the resin component of the oil-containing resin layer 11 at both temperatures that require exudation, in other words, it exudes from the resin component of the oil-containing resin layer 11.
  • the second oil component in the presence of the first oil component, is compatible with the first oil component at a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11, so that the oil component It has an affinity for the resin component of the containing resin layer 11, in other words, does not exude from it, but at the temperature at which it is necessary to exude the second oil component to the oil containing resin layer 11, It is phase-separated from the first oil component and has no affinity for the resin component of the oil-containing resin layer 11, in other words, it functions as a low temperature phase-separable oil component that is phase-separated from the first oil component.
  • the value of the dissolution parameter serves as a criterion for judging the easiness of mixing the solvent and the solute.
  • the relationship between the first oil component, the second oil component, and the resin component of the oil-containing resin layer 11 (first resin precursor) described above is also related to the values (SP value) of their solubility parameters. Can be explained based on relationships.
  • the Hansen solubility parameter is used herein as the solubility parameter. This value is the kind of molecular unit that constitutes the molecular structure of each component by performing Fourier transform nuclear magnetic resonance spectroscopy analysis on the first oil component, the second oil component, and the resin component of the oil-containing resin layer 11.
  • the Hansen solubility parameter of each molecular unit type can be obtained by calculating a weighted average by the molar ratio.
  • the Hansen solubility parameter of each molecular unit type can be obtained from the molecular group contribution method using the software "HSPiP, Hansen Solubility Parameters in Practice ver4" available from the link (https://hansen-solubility.com/). .. Specifically, each constituent unit of the target substance can be input by the SMILES notation, and the HSP value ( ⁇ d, ⁇ p , ⁇ h ) of each unit can be calculated.
  • the difference between the solubility parameter value of the resin component of the oil-containing resin layer 11 and the solubility parameter value of the first oil component is the resin component of the oil-containing resin layer 11. It is preferable to set it so as to be smaller than the difference between the value of the dissolution parameter of and the value of the solubility parameter of the second oil component.
  • the blending ratio is based on the total weight of the oil-containing resin layer that is finally formed, for example, the resin component is at least 25 wt% or more, and the first oil component is It contains at least 5 wt% or more and the second oil component in a ratio of at least 3 wt% or more.
  • the difference in the dissolution parameter between the first oil component and the resin component of the oil-containing resin layer 11 is preferably set within 0.6 (J / cm 3 ) 1/2 .
  • the resin component of the oil-containing resin layer 11 is preferably 30 wt% or more, more preferably 35 wt% or more, still more preferably 40 wt% based on the weight of the entire finally formed oil-containing resin layer. % Or more.
  • the upper limit is not particularly limited and is appropriately set depending on the relationship with the oil component, but may be 70 wt% or less, for example.
  • the first oil component can be set to, for example, 10 wt% or more, 15 wt% or more, 20 wt% or more, based on the total weight of the finally formed oil-containing resin layer.
  • the upper limit is not particularly limited, but can be preferably set to 65 wt% or less, for example, 50 wt% or less, 40 wt% or less, 30 wt% or less, 20 wt% or less.
  • the second oil component is preferably 5 wt% or more, more preferably 10 wt% or more, still more preferably 15 wt% or more, based on the total weight of the finally formed oil-containing resin layer.
  • the upper limit is not particularly limited, but it can be preferably set to 62 wt% or less, for example, 60 wt% or less, 50 wt% or less, 40 wt% or less, 30 wt% or less.
  • the second oil component is compatible with the first oil component at a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11. Therefore, it does not exude from the surface of the oil-containing resin layer 11, and on the other hand, when the temperature changes to require exuding the second oil component into the oil-containing resin layer 11, phase separation from the first oil component occurs. Then, it can function as a low-temperature exudation oil component that can exude (bleed) from the surface of the oil-containing resin layer 11.
  • the wetting parameter “Z”, which is obtained by the absolute value of the difference from the value (SP value) SP 2 , is preferably 1.5 (J / cm 3 ) 1/2 or less.
  • the wetting parameter “Z” is more preferably 0.8 (J / cm 3 ) 1/2 or less, further preferably 0.5 (J / cm 3 ) 1/2 or less, and particularly preferably 0. It is 3 (J / cm 3 ) 1/2 or less.
  • the lower limit of Z is not particularly limited as long as it is a value higher than 0 (J / cm 3 ) 1/2 , for example, 0.001 (J / cm 3 ) 1/2 or more, and more preferably 0.01 (J / cm 3 ) 1/2 or more. / Cm 3 ) 1/2 or more can be set.
  • Z is in the above range, the wettability of the second oil component bleeding to the oil-containing resin layer to be formed becomes high, and even if the bleeding oil is small, it spreads efficiently on the surface of the oil-containing resin layer. Thereby, the effect of preventing icing can be expressed with a smaller amount of oil.
  • the value of the solubility parameter of the oil-containing resin layer and the value of the solubility parameter of the second oil component can be calculated by the method described above.
  • the oil-containing resin layer formed by curing the first resin precursor has a solubility parameter contribution value “F” described later of 0.1 or more. It is more preferably 0.2 or more, still more preferably 0.3 or more, and particularly preferably 0.4 or more.
  • the upper limit can be, for example, 3.0 or less, preferably 2.5 or less, more preferably 2.0 or less, and further preferably 1.5 or less.
  • the solubility parameter contribution value “F” can be calculated by the method described later. F represents the degree of compatibility of the oil-containing resin layer, the larger the value, the more likely it becomes incompatibility, and if it is in the above range, the contained oil component is likely to bleed, and thus a high anti-icing effect is obtained. Can be expressed.
  • the difference between the value of the solubility parameter of the resin component of the oil-containing resin layer 11 and the value of the solubility parameter of the first oil component and the second oil component is set to a predetermined relationship, whereby the oil-containing resin layer 11 is formed.
  • the part of the contained oil, in particular, the second oil component is exuded (bleed) to prevent icing and / or snow accretion, but the scope of the present invention is not limited to these embodiments.
  • the compatibility can be similarly controlled by utilizing the difference in the molecular weight and the difference in the molecular structure between the first oil component and the second oil component, and the temperature of the second oil component can be lowered to a predetermined value or lower. At this time, it can be phase-separated from the first oil component and exude from the oil-containing resin layer.
  • the first oil component and the second oil component do not have to be physically distinguished, and it is sufficient if they are distinguished from each other in terms of the function and action described above. Therefore, both the first oil component and the second oil component do not have to be composed of one oil component, and if the above conditions are satisfied, a plurality of oil components may be provided for each of the first oil component and the second oil component.
  • the oil component may be included.
  • the second paint contains at least a second resin precursor which is a precursor of the resin component. Further, like the first paint, it may contain two kinds of oil components, that is, a third oil component and a fourth oil component. After forming the oil-containing resin layer using the first paint, applying the second paint on the oil-containing resin layer and curing the second resin precursor, or the third oil. By curing the second resin precursor containing the component and the fourth oil component, the surface resin layer 12 containing at least the resin component and further containing the third oil component and the fourth oil component is formed. can do.
  • the third oil component and the fourth oil component do not necessarily have to be included in the second paint, and may be included in the first paint. Therefore, the use of the third oil component and the fourth oil component in the second paint is optional.
  • the surface resin layer 12 that can be formed using the second paint can be provided in a state of being laminated on one surface of the oil-containing resin layer 11 for the purpose of protecting the surface of the oil-containing resin layer 11. It is a solid resin layer.
  • the surface resin layer 12 is optionally provided to protect the surface of the oil-containing resin layer 11, and thus the use of the second coating material is optional. Since the surface resin layer 12 is disposed on the surface of the oil-containing resin layer 11, the second oil component accumulated in the oil-containing resin layer 11 does not hinder the function of preventing ice formation and / or snow formation.
  • the surface resin layer 12 allows the second oil component exuded from the oil-containing resin layer 11 to penetrate to the surface of the surface resin layer 12 on the opposite side of the oil-containing resin layer 11 even when the oil-containing resin layer 11 is covered. It has oil permeability.
  • FIG. 2 shows, together with the structure 10, a layer structure including a surface resin layer 12 formed by applying a second coating material on the oil-containing resin layer 11 and curing the second coating material.
  • the structure 10 is arranged on the other surface of the oil-containing resin layer 11 opposite to the one surface on which the surface resin layer 12 is laminated.
  • the same material as the first resin precursor of the first paint can be used as the second resin precursor, and the first oil of the first paint can be used as the third oil component.
  • the same material as the oil component can be used, while the same material as the second oil component of the first paint can be used as the fourth oil component.
  • the third oil component, the fourth oil component, and the resin component (second resin precursor) of the surface resin layer 12 are the first oil component, the second oil component, and the oil-containing resin layer 11 of the first coating material.
  • the resin component (first resin precursor) it has the properties of 1) and 2) above. Therefore, like the first paint, the blending ratio is based on the weight of the entire surface resin layer to be finally formed, at least 25 wt% or more of the resin component and at least 5 wt% or more of the third oil component,
  • the fourth oil component is contained in a proportion of at least 3 wt% or more, and other preferable values and the like are the same as those of the first oil component and the like of the first paint.
  • the surface resin layer 12 is provided for the purpose of protecting the surface of the oil-containing resin layer 11, it preferably has higher abrasion resistance than the oil-containing resin layer 11.
  • the proportion of the second resin precursor in the second coating is smaller than that of the first resin precursor in the first coating. Is also set to a significantly large value.
  • the resin component is 30 wt% or more, while the third oil component is 20 wt% and the fourth oil component is 10 wt% based on the total weight of the finally formed surface resin layer. ..
  • the film may be formed by pre-curing the first coating material or the first coating material and the second coating material in a state of forming a thin film of 10 to 1000 ⁇ m.
  • a film can be attached to various structures or the like instead of applying the paint.
  • the film has an oil-containing resin layer containing first and second oil components, and the second oil component is phase-separated from the first oil component when the temperature drops below a predetermined value. Function as a low temperature phase-separable oil component that can be exuded from the oil-containing resin layer.
  • the resin component forming the oil-containing resin layer for example, a resin obtained by crosslinking reaction of the first resin precursor described in “ ⁇ First Resin Precursor>” can be suitably used, Preferred is a crosslinked silicone resin.
  • the first and second oil components the above-mentioned “ ⁇ oil component>” can be used. Further, the blending ratio of each component is designed in the same manner as described above. Thus, the first paint and the second paint can also be used to provide a film.
  • the first paint was prepared by the following method. 1) First Resin Precursor As the first resin precursor, dimethylpolysiloxane rubber (Sylgard 184 manufactured by Dow Corning Toray Co., Ltd.) was used. This rubber is cured by heating (see also Table 3 below).
  • dimethylpolysiloxane rubber Sylgard 184 manufactured by Dow Corning Toray Co., Ltd.
  • Oil component Dimethylsiloxane oil (product number KF-96-100CS manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the first oil component, and methylphenylsiloxane oil (TSF437 manufactured by Momentive Co.) was used as the second oil component. (See also Table 3 below).
  • the first resin precursor of 1) and the first oil component and the second oil component of 2) are mixed under the condition of 25 ° C. and 101 kPa, and the mixed liquid is spun at a speed of about 120 rpm. Then, the mixture was stirred for 60 seconds, and then the mixture was further stirred for 60 seconds and defoamed for 60 seconds with a rotation / revolution mixer (CONDITIONING MIXER AR-250 manufactured by Shinky Co., Ltd.) to obtain a first paint.
  • the blending ratio was 60 wt% for the resin component, 23 wt% for the first oil component, and 17 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer.
  • the first coating material obtained by the above method was applied onto a PET film (Lumirror S10 # 125 manufactured by Toray Industries, Inc.) and heat-cured at 100 ° C. for 3 hours to contain an oil having a thickness of about 140 ⁇ m.
  • a resin layer was formed, and the oil-containing resin layer was evaluated as follows.
  • the value of the solubility parameter of the first oil component dimethylsiloxane oil is 11.7 (J / cm 3 ) 1/2
  • the value of the solubility parameter of the second oil component methylphenylsiloxane oil is 13.9 ( J / cm 3 ) 1/2
  • the dimethylpolysiloxane rubber as a resin component formed by curing the first resin precursor has a solubility parameter value of 11.9 (J / cm 3 ) 1 / Is 2 .
  • the layer thickness of the surface resin layer is set so that the oil can easily permeate to the surface of the surface resin layer, in other words, the oil permeability to the surface resin layer is ensured. Therefore, it is preferably 75% or less of the oil-containing resin layer, more preferably 50% or less, and further preferably 35% or less. Further, depending on the resin component of the surface resin layer, from the viewpoint of strength, it is preferably 5% or more of the oil-containing resin layer, more preferably 20% or more, and further preferably 30% or more. preferable.
  • Phase separation and compatibility a) Phase separation and compatibility depending on temperature changes between the "first oil component” and the “second oil component", b) "first oil component” and “resin component of oil-containing resin layer” Affinity according to temperature change between the two, and c) Affinity according to temperature change between the "second oil component” and the “resin component of the oil-containing resin layer” were evaluated.
  • direct analysis targets are a mixture of the “first oil component” and the “second oil component” extracted from the oil-containing resin layer, and the oil component bleeding from the surface of the oil-containing resin layer.
  • the oil-containing resin layer was immersed in toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) at 20 ° C. for 24 hours to extract the first oil component and the second oil component as a mixture. ..
  • the first oil component and the second oil component in the mixture were separated using liquid layer chromatography.
  • "transmittance at 20 ° C and 500 nm” and “transmittance at 3 ° C and 500 nm” were measured, and the difference between them was measured at "20 ° C and 500 nm.
  • phase separated (not compatible) or “compatible (not phase separated)”. More specifically, when the difference is 10% or more, it is evaluated as “phase separated according to temperature change (not compatible)", and when the difference is less than 10%, “temperature change” According to the above, they are compatible (no phase separation).
  • An ultraviolet-visible spectrophotometer manufactured by JASCO Corporation, V-750 was used to measure the transmittance, the measurement wavelength was 500 nm, the scan speed was 1000 nm / min, the stirring speed was 400 rpm, and the temperature was 20 ° C or 3 ° C. The measurement was performed after the temperature was set at 0 ° C. and the sample was left standing for 10 minutes.
  • the evaluation criteria are as follows. ⁇ : 10% or more ⁇ : Less than 10%
  • 10% or more
  • Less than 10%
  • the oil-containing resin layer containing only each oil component was added to the oil-containing resin layer from which the oil component was extracted. It was evaluated by whether or not the first oil component and the second oil component bleed from the surface of the oil-containing resin layer under the environment of 0 ° C. and under the environment of 3 ° C., respectively.
  • the evaluation criteria are as follows. ⁇ : Bleed at both 20 ° C and 3 ° C ⁇ : Neither bleed at 20 ° C nor 3 ° C
  • the measurement target is the amount of oil bleeding on the surface of the oil-containing resin layer at 20 ° C., the freezing point of 0 ° C., and ⁇ 20 ° C., respectively. During the measurement, it was confirmed that the bleeding oil was mainly the second oil component.
  • FIG. 3 shows an example of an optical microscope image of a state of oil bleeding on the surface of the oil-containing resin layer. The amount of surface oil is measured by the following method. When the oil-containing resin layer cut into a size of 10 cm ⁇ 2 cm near the center was left at 20 ° C., 0 ° C., and ⁇ 20 ° C. for 16 hours, the oil bleeding on the surface of the oil-containing resin layer was removed.
  • the surface oil amount is 40 ⁇ g / cm at 20 ° C. It is preferably less than 2, more preferably 40 ⁇ g / cm 2 or more, and more preferably 300 ⁇ g / cm 2 or more at 0 ° C. and ⁇ 20 ° C., in order to prevent snow accretion.
  • 40 ⁇ g / cm at 20 ° C. It is preferably less than 2, more preferably 40 ⁇ g / cm 2 or more, and more preferably 300 ⁇ g / cm 2 or more at 0 ° C. and ⁇ 20 ° C., in order to prevent snow accretion.
  • 40 [mu] g / cm 2 or less at 0 °C and -20 ° C. is sometimes available.
  • the abrasion resistance of the oil-containing resin layer was evaluated.
  • a Gakushin abrasion tester (model number: RT-300S, Daiei Kagaku Seiki Seisakusho) was used as a measuring device.
  • a schematic diagram of the tester is shown in Fig. 4.
  • the tester 2 includes a test stand 21 and screws.
  • a support plate 22 fixed to the test table 21 by 22a and the like, and friction disposed above the support body 22 and below the cantilever-shaped load arm 24 loaded by the weight 23.
  • the child 25 (size: 2 cm ⁇ 2 cm) is provided with the test piece 32 of the test piece 2 attached on the support plate 22 via the adhesive material 31 (Nitto Denko No. 5000NS).
  • a water resistant abrasive 34 having a # 120 roughness was attached to the lower side of the friction element 25 via the pressure-sensitive adhesive 31 as a weight 23. 125g / cm 2 adjusted by load arm 24
  • the reduction rate of the oil-containing resin layer was calculated when the blade was reciprocated 30 times at a pressing force of 100 mm / s per second, and the room temperature was set to 20 ° C.
  • the evaluation criteria are as follows.
  • the wear resistance is preferably less than 80%, more preferably less than 50%, and further preferably less than 35%. However, it may be usable even at 80% or more.
  • the object to be measured is the force required to move the ice blocks iced on the oil-containing resin layer in the environment of ⁇ 20 ° C.
  • the icing force is measured by the following method. 1. First, a column-shaped ice mass is prepared. For the ice block, place a stainless steel ring (inner diameter 25 mm) on the bottom of a styrene square case 16 type (made by AS ONE), pour 6 g of pure water into it and freeze at -20 ° C for 16 hours or more, and remove the stainless steel ring after freezing. It is made by doing. 2.
  • the film left standing in an environment of ⁇ 20 ° C. for 16 hours was attached to a stainless plate placed parallel to the floor so that the oil-containing resin layer was on the surface, and the adhesion area was 4.9 cm 2 .
  • the above-mentioned columnar ice blocks were put on ice. 3.
  • the environment temperature was set to -20 ° C, and three hours after the column-shaped ice blocks were iced, the ice blocks were loaded from the direction parallel to the floor surface in a load cell (DPU-made by Imada Co., Ltd.) in an environment of -20 ° C.
  • Example 1 is the same as Example 1 except that the mixing ratio of the resin component, the first oil component, and the second oil component was changed when the first paint was produced.
  • Example 7 Example 1 is the same as Example 1 except that the first paint was produced by the following method. 1) First Resin Precursor The same first resin precursor as in Example 1 was used.
  • Oil component As the first oil component, dimethylsiloxane oil (product number KF-96-50CS manufactured by Shin-Etsu Silicone Co., Ltd.), and as the second oil component, carbinol silicone oil (product number KF- manufactured by Shin-Etsu Silicone Co., Ltd.). 6001) was used.
  • the first resin precursor of 1) and the first oil component and the second oil component of 2) were mixed to obtain a first paint.
  • the blending ratio was 60 wt% for the resin component, 28 wt% for the first oil component, and 12 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer.
  • the value of the solubility parameter of the first oil component, dimethylsiloxane oil is 11.7
  • the value of the solubility parameter of the second oil component, carbinol-modified silicone oil is 12.2.
  • the dimethylpolysiloxane rubber as a resin component formed by curing the resin precursor has a solubility parameter value of 11.9 (J / cm 3 ) 1/2 .
  • Example 1 is the same as Example 1 except that the first coating material contains only the first resin precursor and does not contain the oil component.
  • Example 1 is the same as Example 1 except that the first paint was produced by the following method. 1) First Resin Precursor The same first resin precursor as in Example 1 was used.
  • Methylphenylsiloxane oil (Product No. AR-20 manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) is used as the first oil component, and the SP value is different from the first oil component as the second oil component.
  • Methylphenylsiloxane oil (TSF437 manufactured by Momentive) was used.
  • the first resin precursor of 1) and the first oil component and the second oil component of 2) were mixed in the same manner as in Example 1 to obtain a first coating material.
  • the blending ratio was 25 wt% for the resin component, 56 wt% for the first oil component, and 19 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer.
  • the first coating material obtained by the above method was cured in the same manner as in Example 1 to form an oil-containing resin layer having a thickness of about 140 ⁇ m, and the oil-containing resin layer was evaluated as follows.
  • the value of the solubility parameter of methylphenylsiloxane oil, which is the first oil component, is 12.7 (J / cm 3 ) 1/2
  • the value of the solubility parameter of methylphenylsiloxane oil, which is the second oil component is 13. 9 (J / cm 3 ) 1/2
  • the dimethylpolysiloxane rubber as a resin component formed by curing the above-mentioned first resin precursor has a solubility parameter value of 11.9 (J / cm 3). 3 ) 1/2 .
  • the value of the solubility parameter of the resin component of the oil-containing resin layer and the first oil component Of the solubility parameter of the oil component that is,
  • 0.2 (J / cm 3 ) 1/2 , is the difference between the solubility parameter of the resin component of the oil-containing resin layer and the second oil.
  • the difference between the solubility parameter value of the resin component of the oil-containing resin layer and the solubility parameter value of the first oil component is the difference between the value of the solubility parameter of the resin component of the oil-containing resin layer and the value of the solubility parameter of the second oil component, that is,
  • 0.3 ( J / cm 3 ) 1/2 and a difference in solubility parameter between the first oil component and the resin component of the oil-containing resin layer 11, that is,
  • 0.2.
  • (J / cm 3 ) 1/2 is set within 0.6 (J / cm 3 ) 1/2 .
  • the transmittance of the mixture of the first oil component and the second oil component changed significantly when the temperature changed from 20 ° C to 3 ° C. It is clear that the second oil component has phase separated. Since the first oil component does not substantially bleed on the surface of the oil-containing resin layer at both temperatures of 20 ° C. and 3 ° C., it has an affinity for the resin component of the oil-containing resin layer. Can be said. On the other hand, the second oil component does not bleed from the surface of the oil-containing resin layer when the oil-containing resin layer is placed in an environment of 20 ° C, and does not substantially bleed when placed in an environment of 3 ° C.
  • the second oil component changes its behavior in the presence of the first oil component in response to temperature changes.
  • the second oil component has an affinity for the resin component of the surface resin layer under the environment of 20 ° C., but has an affinity for the resin component of the surface resin layer under the environment of 3 ° C. Does not have. This behavior is also clear from the result of the amount of surface oil.
  • the surface oil amount and the icing force do not become significant at room temperature, for example, 20 ° C., and the surface oil amount at ⁇ 20 ° C. is 40 ⁇ g only when the temperature becomes a predetermined value or less. / Cm 2 or more, and as a result, the icing power was less than 1.0.
  • the oil component bleeding from the oil-containing resin layer 11 is mainly the second oil component of the oil components contained in the oil-containing resin layer, according to this configuration, the oil component is excessive as in the conventional case.
  • the second oil component can be used, for example, to prevent the adhesion of icing snow while preventing unnecessary bleeding.
  • the second oil component functions as a low-temperature exudation oil component capable of bleeding (exuding) from the surface of the oil-containing resin layer on the surface resin layer side under the temperature environment where the value is equal to or lower than the predetermined value.
  • the first oil component and the second oil component do not phase-separate even at a low temperature, and in a temperature environment of a predetermined value or less, the oil component is removed from the surface of the oil-containing resin layer on the surface resin layer side.
  • the first oil component and the second oil component do not phase separate even at low temperatures, it is necessary to contain a large amount of oil component for bleeding. As a result, the abrasion resistance is 100%, and the strength of the oil-containing resin layer cannot be increased.
  • the first oil component and the second oil component are phase-separated at low temperature, so that even a relatively small amount of oil component bleeds from the surface of the oil-containing resin layer. Therefore, the content of the resin component can be increased, and an oil-containing resin layer having high strength can be realized.
  • Example 7 especially when the carbinol-modified silicone oil was used as the second oil component, the icing power was significantly reduced. It is presumed that this is because the wettability to the oil-containing resin layer was improved as compared with the case where phenyl-modified silicone oil was used as the second oil component.
  • the temperature at which the second oil component is phase-separated from the first oil component in other words, the temperature at which the surface resin layer bleeds can be adjusted by appropriately selecting the first oil component and the second oil component.
  • the second oil component may function as a cold exudate oil component at various temperatures, for example, at or below freezing and above freezing.
  • Examples 8 to 20, Comparative Example 3 The first paint was prepared in the same manner as in Example 1 except that the types and mixing ratios of the resin component, the first oil component, and the second oil component were changed as shown in Table 2. Specifically, in all of Examples 8 to 20 and Comparative Example 3, "dimethylpolysiloxane rubber KE-1935"; trade name “KE-1935” (manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the resin component, and As the first oil component, “dimethylsiloxane KF-96 50CS”; trade name “KF-96 50CS” (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
  • Examples 8 to 11 "long-chain alkyl-modified siloxane oil KF-4917”; trade name “KF-4917” (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
  • Examples 12, 13, and 17 “epoxy-modified siloxane oil X-22-163”; trade name “X-22-163” (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
  • the solubility parameter contribution value "F” was calculated by the following formula.
  • F f ⁇ ⁇ ⁇ 100
  • f is the “contribution value of the solubility parameter” (f d1 , f p1 , f h1 ) of the “molecular unit (compatible molecular unit) that constitutes the monomer structure that is most abundant in the oil-containing resin layer”, "Molecular unit constituting the monomer structure in the second oil component (incompatible molecular unit) having a difference of 0.01 (J / cm 3 ) 1/2 or more from the solubility parameter of the compatible molecular unit”
  • the “contribution value of the dissolution parameter” (f d2 , f p2 , f h2 ).
  • the contribution values are averaged to obtain the above f. Further, the contribution values f d , f p , and f h of the dissolution parameter can be calculated by the following formulas, respectively.
  • means the weight fraction of the incompatible component, and can be calculated by the following formula.
  • (1-gel fraction) ⁇ weight ratio of incompatible molecular unit contained in oil component The gel fraction can be determined by the following procedure. 1. The oil-containing resin layer is cut into 2.0 cm ⁇ 4.5 cm, and the weight is measured. 2.
  • the oil-containing resin layer is placed in a vial filled with 20 g of toluene and immersed in toluene at room temperature for 24 hours. 3.
  • the oil-containing resin layer is taken out and heated and dried at 150 ° C. for 2 hours with a blow dryer to measure the weight of the residue.
  • the gel fraction is calculated from the following formula.
  • Gel fraction residue weight after heat drying (g) / weight of oil-containing resin layer before heat drying (g)
  • the “weight ratio of incompatible molecular units contained in the oil component” can be calculated by NMR measurement of all oil components including both the first oil component and the second oil component contained in the oil-containing resin layer. it can. All oil components including both the first oil component and the second oil component can be obtained by the following procedure. 1.
  • the oil-containing resin layer is cut into 2.0 ⁇ 4.5 cm, placed in a vial filled with 20 g of toluene, and immersed in toluene at room temperature for 24 hours. 2.
  • the oil-containing resin layer is taken out of the vial and dried at 150 ° C. for 12 hours with a blow dryer to obtain a residue. This residue is all the oil components including both the first oil component and the second oil component.
  • the wetting parameter “Z” is determined by the absolute value of the difference between the value of the solubility parameter of the oil-containing resin layer formed by curing the first resin precursor and the value of the solubility parameter of the second oil component. You can ask.
  • the solubility parameter of the oil-containing resin layer is calculated from the weighted average of the solubility parameters of the resin component, the first oil component, and the second oil component by weight fraction.
  • the UV resistance of the oil-containing resin layer was evaluated as follows.
  • a super xenon weather meter (model number: SX75, Suga Test Instruments Co., Ltd.) was used as a test device.
  • a test piece film (size: 55 mm ⁇ 130 mm) cut to the size of the sample holder was put into a tester and irradiated with ultraviolet rays (wavelength: 300 nm to 400 nm).
  • the annual average radiant exposure amount of ultraviolet rays (wavelength: 300 nm to 400 nm) was set to 306 kW / m 2, and this radiant exposure amount was irradiated to the test piece film.
  • the test environment temperature As for the test environment temperature, assuming the summer, the test machine environment temperature was 30 ° C., the test piece back surface temperature was 55 ° C., the humidity was 55% RH, and the rotation speed was 1 rotation / min.
  • the first oil component and the second oil component remaining in the test piece film after ultraviolet irradiation are extracted, and the reduction rate of the second oil component before and after UV irradiation is calculated from the change in the ratio of the first oil component and the second oil component. did. It has been confirmed that the first component oil does not decrease with UV irradiation.
  • the method for extracting the first oil and the second oil in the film and the method for calculating the reduction rate of the second oil are as follows. 1.
  • the film is cut into 20 mm ⁇ 40 mm and placed in a screw tube bottle.
  • 2. Add about 30 g of chloroform to a screw bottle and cap. 3. Using a shaker (Double Action Lab Shaker SRR-2, As One Co., Ltd.), vibrate at 100 rpm for 15 hours to extract the residual oil in the film. 4. Remove any solids left in the screw vial. 5. Chloroform containing the extracted oil is dried in a dryer at 100 ° C. for 2 hours to obtain a mixture of the first oil and the second oil. 6. About 3 mg of the obtained mixture of the first oil and the second oil and about 700 mg of deuterated chloroform are collected in a vial to prepare a mixed solution. 7. Transfer the mixture to an NMR sample tube. 8.
  • 1H NMR is measured by NMR (model number: ULTRASHIELD 300, manufactured by BRUKER), and attribution is based on the molecular structures of various second component oils. 9.
  • the decrease rate of the second component oil due to UV irradiation is calculated from the change in the H number of Si—CH 3 before and after UV irradiation.
  • the evaluation criteria are as follows. 1 ... 2nd component oil reduction rate less than 10% 2 ... 2nd component oil reduction rate 10 to less than 30% 3 ... 2nd component oil reduction rate 30 to less than 50%
  • the water resistance of the oil-containing resin layer was evaluated as follows.
  • a rain tester manufactured by Nishiyama Seisakusho
  • a test piece film size: 150 mm ⁇ 150 mm
  • the annual precipitation was set to 1600 mm with reference to the data of the Japan Meteorological Agency.
  • the test environment temperature assuming a rainy day in winter, the test machine environment temperature was 5 ° C, the precipitation temperature was 5 ° C, and the rainfall rate was about 500 mm / h.
  • the first oil component and the second oil component remaining in the test piece film after the water resistance test are extracted, and the reduction rate of the second oil component before and after the water resistance test is calculated from the change in the ratio of the first oil component and the second oil component. did. It has been confirmed that the first component oil does not decrease in the water resistance test.
  • the method of extracting the first oil and the second oil in the film, the method of calculating the reduction rate of the second oil, and the evaluation criteria were the same as those in the above ⁇ UV resistance>.
  • the evaluation results are shown in Table 3 below. For convenience, Table 3 also shows the composition of the oil-containing resin layer, that is, the resin component, the first oil component, and the second oil component.
  • a product capable of preventing icing and / or snow accretion particularly a paint that can be used in a more flexible manner than a sheet or the like having a fixed shape from the beginning of use. And a film is provided.

Abstract

The purpose of the present invention is to provide products, in particular, a coating material, capable of preventing icing and/or snow accretion. The coating material comprises a first oil ingredient, a second oil ingredient, and a first resin precursor, which is a precursor of a resin ingredient. Curing the first resin precursor which contains the first and second oil ingredients gives an oil-containing resin layer comprising the first and second oil ingredients and the resin ingredient. The second oil ingredient constitutes a low-temperature separable oil ingredient which, when the temperature declines to or below a given value, can separate from the first-oil-ingredient phase to ooze out of the oil-containing resin layer.

Description

塗料およびフィルムPaints and films
 本発明は、塗料、特に、着氷及び/又は着雪を防止することができる塗料およびフィルムに関する。 The present invention relates to a paint, particularly a paint and a film capable of preventing icing and / or snow accretion.
 各種構造物、例えば、家の屋根、送電線、マット、車両、船舶等に対する、着氷や着雪を防止することができる製品が幾つか開発されている。 Several products have been developed that can prevent icing and snow on various structures such as house roofs, power lines, mats, vehicles, and ships.
 例えば、特開平7-148879号公報(特許文献1)には、寒冷地における各種構造物への着氷雪の付着を防止することができる着氷雪付着防止シートが開示されている。このシートは、スポンジ材から成る断熱層と、該断熱層上に積層された表面層とから成り、該表面層は、油剤がその表面にブリードし得る様に分散されているゴムもしくは樹脂から形成されている。油剤は、表面層中に保持されており、表面層の表面に、常時、ブリードするようになっている。一方、油剤の著しいブリードアウトを防止するため、ここでは、油剤の粘度を所定以上の値に設定して、着氷雪付着防止効果を可能な限り長期間にわたって維持するようになっている。 For example, Japanese Unexamined Patent Publication No. 7-148879 (Patent Document 1) discloses an ice-and-snow adhesion preventing sheet that can prevent ice-and-snow adhesion to various structures in cold regions. This sheet comprises a heat-insulating layer made of a sponge material and a surface layer laminated on the heat-insulating layer, the surface layer being made of rubber or resin dispersed so that an oil agent can bleed on the surface. Has been done. The oil agent is held in the surface layer and constantly bleeds onto the surface of the surface layer. On the other hand, in order to prevent remarkable bleeding out of the oil agent, the viscosity of the oil agent is set to a value equal to or higher than a predetermined value here to maintain the effect of preventing snow from adhering to the snow for as long as possible.
 特開2003-328308号公報(特許文献2)には、氷雪の固着を防止することができるゴムマットが開示されている。このゴムマットは、所定の硬度を有する合成ゴムから成り、気温5℃以下の条件下においては、その表面に着氷雪付着防止効果を有する液状添加剤がブリードするように構成されている。液状添加剤のブリード量を調整するため、ここでは、ゴムマットのゴムに対する液体添加剤の量が所定の範囲内に調整されている。 Japanese Unexamined Patent Publication No. 2003-328308 (Patent Document 2) discloses a rubber mat that can prevent ice and snow from sticking. This rubber mat is made of a synthetic rubber having a predetermined hardness, and is configured such that a liquid additive having an effect of preventing snow from adhering to the surface bleeds under the condition that the temperature is 5 ° C. or less. In order to adjust the bleed amount of the liquid additive, the amount of the liquid additive with respect to the rubber of the rubber mat is adjusted within a predetermined range here.
 特許6245714号(特許文献3)には、氷に対して難付着性を有し、温度や化学反応等によって自発的に離漿可能な湿潤ゲルが開示されている。この湿潤ゲルは、 シリコーン樹脂組成物が硬化している架橋シリコーン樹脂と、該シリコーン樹脂組成物を溶解させることが可能な第一の液体と、 該第一の液体と混和することが可能な(即ち、第二の液体と第一の液体を混合した場合に、相分離することなく、透明な混合溶液となること)第二の液体を含む。但し、第一の液体は、第二の液体を兼ねていてもよいこととされている。 Japanese Patent No. 6245714 (Patent Document 3) discloses a wet gel which has poor adhesion to ice and is capable of spontaneous syneresis by temperature or chemical reaction. This wet gel can be mixed with the crosslinked silicone resin in which the silicone resin composition is cured, the first liquid capable of dissolving the silicone resin composition, and the first liquid ( That is, when the second liquid and the first liquid are mixed, a transparent mixed solution is formed without phase separation) The second liquid is included. However, the first liquid may also serve as the second liquid.
特開平7-148879号公報JP-A-7-148879 特開2003-328308号公報JP-A-2003-328308 特許6245714号Patent No. 6245714
 しかしながら、上記特許文献1記載の構成では、温度に関わらず油剤がブリードし続けてしまうため、着氷雪の付着防止効果を長期間得ることが困難である。また、油剤が過剰にブリードしてしまうおそれがある一方、油剤の粘度があまりに高く設定された場合には、ブリードがスムーズに行われないおそれがある。更に、表面層に分散されている油剤は、全て、ブリード可能であるため、油剤が過剰にブリードしてしまうおそれがある。
 また、上記特許文献2記載の構成では、温度条件によって液体添加剤のブリード量を制御することが可能であるものの、ゴムマットのゴムに添加された液体添加剤は、全て、ブリード可能であるため、液体添加剤が過剰にブリードしてしまうおそれがある。
 更には、特許文献3に記載の構成では、湿潤ゲルであり、強度が必要な屋外等での使用を意図したものではなく、その強度が不十分であるといった問題がある。また、第一の液体と第二の液体は混和可能であり、また、第一の液体は第二液体を兼ねてもよいとされていることから、第一の液体及び第二液体が、同時期に、また、過剰に離漿してしまうおそれがある。
 本発明は、これら従来技術における問題点を解決するためになされたものであり、改善された着氷及び/又は着雪防止機能を有する製品、特に、塗料およびフィルムを提供することを目的とする。
However, with the configuration described in Patent Document 1, it is difficult to obtain the effect of preventing the adhered snow from adhering for a long period of time because the oil agent continues to bleed regardless of the temperature. Further, while the oil agent may bleed excessively, when the viscosity of the oil agent is set too high, bleeding may not be performed smoothly. Further, since all the oil agents dispersed in the surface layer can be bleed, there is a possibility that the oil agents may excessively bleed.
Further, in the configuration described in Patent Document 2, although the bleeding amount of the liquid additive can be controlled depending on the temperature condition, all the liquid additive added to the rubber of the rubber mat can be bleeding, The liquid additive may bleed excessively.
Furthermore, the structure described in Patent Document 3 is a wet gel, and is not intended for outdoor use where strength is required, and there is a problem that the strength is insufficient. Further, since the first liquid and the second liquid are miscible, and the first liquid may also serve as the second liquid, the first liquid and the second liquid are the same. At times, there is a risk of excessive syneresis.
The present invention has been made to solve these problems in the prior art, and an object of the present invention is to provide a product having an improved function of preventing ice formation and / or snow accumulation, particularly a paint and a film. ..
 上記の課題を解決するため、本発明の一態様による塗料は、第1オイル成分と、第2オイル成分と、樹脂成分の前駆体である第1の樹脂前駆体と、を含み、前記第1及び第2オイル成分を含有する前記第1の樹脂前駆体が硬化されることによって、前記第1及び第2オイル成分と前記樹脂成分を含有するオイル含有樹脂層を形成する塗料であって、前記第2オイル成分は、温度が所定値以下に低下したとき前記第1オイル成分から相分離して前記オイル含有樹脂層から滲出することができる低温相分離性オイル成分を構成することを特徴として有する。前記所定値は氷点であってもよい。
 この一態様による塗料によれば、柔軟な態様での使用が可能となる。また、オイル含有樹脂層から滲出するオイル成分は、温度が所定値以下に低下したときに滲出することができる低温滲出オイル成分であるため、無駄にブリードされることがなく、必要なときにブリードさせて、例えば着氷雪の付着をより確実に防止することができる。更に、このオイル成分は、オイル含有樹脂層に含まれるオイル成分のうちの一部であるため、オイル成分が過剰にブリードされることもない。
In order to solve the above problems, a paint according to an aspect of the present invention includes a first oil component, a second oil component, and a first resin precursor that is a precursor of a resin component, And a coating composition for forming an oil-containing resin layer containing the first and second oil components and the resin component by curing the first resin precursor containing the second and oil components. The second oil component is characterized in that it constitutes a low temperature phase-separable oil component that can be phase-separated from the first oil component and exude from the oil-containing resin layer when the temperature drops below a predetermined value. .. The predetermined value may be a freezing point.
The paint according to this one aspect enables use in a flexible aspect. In addition, the oil component exuding from the oil-containing resin layer is a low-temperature exuding oil component that can exude when the temperature falls below a predetermined value, so that it does not bleed wastefully and bleeds when necessary. Thus, for example, it is possible to more reliably prevent the accretion of icing snow. Furthermore, since this oil component is a part of the oil component contained in the oil-containing resin layer, the oil component will not be excessively bleed.
 上記態様の塗料において、前記第1及び第2オイル成分は、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第1オイル成分の溶解パラメータの値との差が、前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第2オイル成分の溶解パラメータの値との差よりも小さいことが好ましい。 In the coating composition according to the above aspect, the first and second oil components are a solubility parameter value (SP value) of a resin component of the oil-containing resin layer formed by curing the first resin precursor. The difference from the value of the solubility parameter of the first oil component is smaller than the difference between the value of the solubility parameter (SP value) of the resin component of the oil-containing resin layer and the value of the solubility parameter of the second oil component. Is preferred.
 また、上記態様の塗料において、前記第1の樹脂前駆体は、湿分により硬化する湿分硬化型であってもよいし、紫外線照射により硬化する紫外線硬化型であってもよいし、加熱により硬化する熱硬化型であってもよいし、前記第1の樹脂前駆体と架橋反応する硬化剤を添加することによって硬化するものであってもよいし、前記塗料の前記第1の樹脂前駆体と架橋反応することによって該第1の樹脂前駆体を硬化させる、液状の硬化剤との組合せであってもよい。 Further, in the coating material of the above aspect, the first resin precursor may be a moisture-curable type that is cured by moisture, or an ultraviolet-curable type that is cured by ultraviolet irradiation, or by heating. It may be a thermosetting type that hardens, or may be a type that hardens by adding a curing agent that causes a crosslinking reaction with the first resin precursor, or the first resin precursor of the coating composition. It may be a combination with a liquid curing agent that cures the first resin precursor by a crosslinking reaction with.
 更に、上記態様の塗料において、前記オイル含有樹脂層全体の重量を基準として、前記オイル含有樹脂層の樹脂成分を25wt%以上含有するのが好ましい。 Furthermore, in the coating material of the above aspect, it is preferable that the resin component of the oil-containing resin layer is contained in an amount of 25 wt% or more based on the total weight of the oil-containing resin layer.
 また、上記態様の塗料において、前記オイル含有樹脂層全体の重量を基準として前記第2オイル成分を3wt%以上の割合で含むのが好ましい。 In addition, in the paint of the above aspect, it is preferable that the second oil component is contained in a proportion of 3 wt% or more based on the weight of the entire oil-containing resin layer.
 また、上記態様の塗料において、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の上で硬化されることによって、表面樹脂層を形成する第2の樹脂前駆体と、を更に含み、前記表面樹脂層は、前記オイル含有樹脂層から滲出した低温相分離性オイル成分を、前記オイル含有樹脂層とは反対側の該表面樹脂層の表面まで透過させることができるオイル透過性を有するものであってもよい。 Moreover, in the coating material of the above aspect, a second resin precursor that forms a surface resin layer by being cured on the oil-containing resin layer formed by curing the first resin precursor. The surface resin layer can further allow the low temperature phase-separable oil component exuded from the oil-containing resin layer to penetrate to the surface of the surface resin layer on the side opposite to the oil-containing resin layer. It may have oil permeability.
 また、上記態様の塗料において、前記表面樹脂層は、前記オイル含有樹脂層よりも高い耐摩耗性を有するのが好ましい。
 また、上記態様の塗料において、-20℃における表面オイル量が40μg/cm2以上であるのが好ましい。
 更に、上記態様の塗料において、前記第1オイル成分と前記オイル含有樹脂層の樹脂成分との間の溶解パラメータの差が0.6(J/cm31/2以内であるのが好ましい。
Further, in the coating material according to the above aspect, it is preferable that the surface resin layer has higher abrasion resistance than the oil-containing resin layer.
Further, in the coating material of the above aspect, the amount of surface oil at −20 ° C. is preferably 40 μg / cm 2 or more.
Further, in the coating material of the above aspect, it is preferable that the difference in the solubility parameter between the first oil component and the resin component of the oil-containing resin layer is within 0.6 (J / cm 3 ) 1/2 .
 また、上記態様の塗料において、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータの値(SP値)と第2オイル成分の溶解パラメータの値(SP値)との差の絶対値で求められる、濡れパラメータが1.5(J/cm31/2以下であるのが好ましい。
 また、上記態様の塗料であって、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータ寄与値が0.1以上であるのが好ましい。
In the coating material of the above aspect, the solubility parameter value (SP value) of the oil-containing resin layer formed by curing the first resin precursor and the solubility parameter value (SP of the second oil component (SP value) It is preferable that the wetting parameter, which is obtained by the absolute value of the difference with the value), is 1.5 (J / cm 3 ) 1/2 or less.
Further, in the paint according to the above aspect, it is preferable that the oil-containing resin layer formed by curing the first resin precursor have a solubility parameter contribution value of 0.1 or more.
 上記の課題を解決するため、本発明の一の態様によるフィルムは、第1及び第2オイル成分を含有するオイル含有樹脂層を備えたフィルムであり、前記第2オイル成分は、温度が所定値以下に低下したとき前記第1オイル成分から相分離して前記オイル含有樹脂層から滲出することができる低温相分離性オイル成分を構成することを特徴として有する。 In order to solve the above problems, a film according to one aspect of the present invention is a film including an oil-containing resin layer containing first and second oil components, and the second oil component has a temperature of a predetermined value. It is characterized in that it comprises a low temperature phase-separable oil component that can be phase-separated from the first oil component and exude from the oil-containing resin layer when the temperature decreases below.
 本発明によれば、着氷及び/又は着雪を防止することができる製品、特に、使用の当初から物理的に定まった形状を有するシート等に比して柔軟な態様での使用が可能な塗料およびフィルムが提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a product capable of preventing icing and / or snow accretion, in particular, can be used in a flexible manner as compared with a sheet or the like having a physically defined shape from the beginning of use. Paints and films are provided.
本発明の一実施形態による塗料から形成されたオイル含有樹脂層を構造物とともに示す図である。It is a figure which shows the oil-containing resin layer formed from the coating material with one Embodiment of this invention with a structure. 本発明の一実施形態による塗料から形成された表面樹脂層を含む層構成を構造物とともに示す図である。It is a figure which shows the layer structure containing the surface resin layer formed from the coating material by one Embodiment of this invention with a structure. オイル含有樹脂層の表面に現れたオイル状態を撮影した光学顕微鏡画像である。It is the optical microscope image which image | photographed the oil state which appeared on the surface of the oil-containing resin layer. 耐摩耗試験に用いる試験機の概略図である。It is a schematic diagram of a testing machine used for an abrasion resistance test.
 以下、本発明の好適な実施形態について説明するが、本発明は、以下の実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
1.塗料の種類
(1)第一の塗料
 第一の塗料は、樹脂成分の前駆体である第1の樹脂前駆体と、2種類のオイル成分、即ち、第1オイル成分と第2オイル成分を含む。これら第1オイル成分と第2オイル成分を含有する第1の樹脂前駆体を硬化させることによって、オイル含有樹脂層11が形成される。オイル含有樹脂層11は、第1オイル成分、第2オイル成分、及び樹脂成分を含有し、含有されたオイルの一部、特に、第2オイル成分を樹脂成分から滲出(ブリード)することができる固形状の樹脂層であって、滲出させた第2オイル成分によって着氷及び/又は着雪を防止する。
1. Kind of paint (1) First paint The first paint contains a first resin precursor which is a precursor of a resin component and two kinds of oil components, that is, a first oil component and a second oil component. .. The oil-containing resin layer 11 is formed by curing the first resin precursor containing the first oil component and the second oil component. The oil-containing resin layer 11 contains a first oil component, a second oil component, and a resin component, and a part of the contained oil, particularly the second oil component, can be exuded (bleed) from the resin component. The solid resin layer prevents the icing and / or snowing by the exuded second oil component.
 図1に、第一の塗料を塗布し硬化させることによって形成されたオイル含有樹脂層11を構造物10とともに示す。オイル含有樹脂層11の層厚は、塗布した第一の塗料の厚さによって略決定される。特に限定されないが、オイルを適切に滲出させるため、10000μm以下とするのが好ましく、また、強度の点から、10μm以上とするのが好ましい。 FIG. 1 shows an oil-containing resin layer 11 formed by applying and curing the first paint together with the structure 10. The layer thickness of the oil-containing resin layer 11 is substantially determined by the thickness of the applied first coating material. Although not particularly limited, it is preferably 10,000 μm or less in order to properly exude oil, and from the viewpoint of strength, it is preferably 10 μm or more.
<第1の樹脂前駆体>
 第1の樹脂前駆体は、オイル含有樹脂層11の樹脂成分を構成する前駆体であって、湿分により硬化する湿分硬化型、紫外線照射により硬化する紫外線硬化型、加熱により硬化する熱硬化型のいずれであってもよい。また、第1の樹脂前駆体と架橋反応する硬化剤を添加することによって硬化するものであってもよい。更に、第1の樹脂前駆体と架橋反応する硬化剤を添加することによって硬化する塗料と、該塗料の第1の樹脂前駆体と架橋反応することによって当該第1の樹脂前駆体を硬化させる、液状の硬化剤との組合せであってもよい。
<First resin precursor>
The first resin precursor is a precursor that constitutes the resin component of the oil-containing resin layer 11, and is a moisture-curable type that cures with moisture, an ultraviolet-curable type that cures with ultraviolet irradiation, and a thermoset that cures with heating. It may be of any type. Further, it may be cured by adding a curing agent that causes a crosslinking reaction with the first resin precursor. Furthermore, a coating material that is cured by adding a curing agent that causes a crosslinking reaction with the first resin precursor, and a curing reaction of the first resin precursor by performing a crosslinking reaction with the first resin precursor of the coating material, It may be a combination with a liquid curing agent.
 第1の樹脂前駆体としては、特に限定されないが、例えば、シリコーン樹脂、ポリウレタン樹脂、ポリウレタンアクリル樹脂、塩化ビニル樹脂、ポリエステル樹脂、エラストマー類、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、アクリル樹脂等が挙げられ、中でもオイル成分のブリード効果並びに屋外曝露耐久性に優れるという観点から、シリコーン樹脂が好ましい。 The first resin precursor is not particularly limited, but for example, silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluorine resin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.) , Acrylic resins, and the like. Among them, silicone resins are preferable from the viewpoints of excellent bleeding effect of oil components and excellent outdoor exposure durability.
 シリコーン樹脂としては、本発明の効果を損なわない範囲で、任意の適切なシリコーン樹脂を採用し得る。シリコーン樹脂は、1種のみであってもよいし、2種以上であってもよい。このようなシリコーン樹脂としては、縮合型のシリコーン樹脂であってもよいし、付加型のシリコーン樹脂であってもよい。また、このようなシリコーン樹脂としては、単独で乾燥させる1液型のシリコーン樹脂(例えば、1液型の室温硬化性(RTV)樹脂)であってもよいし、2液型のシリコーン樹脂(例えば、2液型の室温硬化性(RTV)樹脂)であってもよい。 As the silicone resin, any appropriate silicone resin can be adopted as long as the effect of the present invention is not impaired. Only one type of silicone resin may be used, or two or more types may be used. Such silicone resin may be a condensation type silicone resin or an addition type silicone resin. The silicone resin may be a one-component type silicone resin (for example, a one-component type room temperature curable (RTV) resin) that is dried alone, or a two-component type silicone resin (eg, a one-component type). Two-part type room temperature curable (RTV) resin).
 シリコーン樹脂としては、例えば、信越化学工業株式会社製の1液型RTVゴム(例えば、KE-3423、KE-347、KE-3475、KE-3495、KE-4895、KE-4896、KE-1830、KE-1884、KE-3479、KE-348、KE-4897、KE-4898、KE-1820、KE-1825、KE-1831、KE-1833、KE-1885、KE-1056、KE-1151、KE-1842、KE-1886、KE-3424G、KE-3494、KE-3490、KE-40RTV、KE-4890、KE-3497、KE-3498、KE-3493、KE-3466、KE-3467、KE-1862、KE-1867、KE-3491、KE-3492、KE-3417、KE-3418、KE-3427、KE-3428、KE-41、KE-42、KE-44、KE-45、KE-441、KE-445、KE-45S等)、信越化学工業株式会社製の2液型RTVゴム(例えば、KE-1800T-A/B、KE-66、KE-1031-A/B、KE-200、KE-118、KE-103、KE-108、KE-119、KE-109E-A/B、KE-1051J-A/B、KE-1012-A/B、KE-106、KE-1282-A/B、KE-1283-A/B、KE-1800-A/B/C、KE-1801-A/B/C、KE-1802-A/B/C、KE-1281-A/B、KE-1204-A/B、KE-1204-AL/BL、KE-1280-A/B、KE-513-A/B、KE-521-A/B、KE-1285-A/B、KE-1861-A/B、KE-12、KE-14、KE-17、KE-113、KE-24、KE-26、KE-1414、KE-1415、KE-1416、KE-1417、KE-1300T、KE-1310ST、KE-1314-2、KE-1316、KE-1600、KE-1603-A/B、KE-1606、KE-1222-A/B、KE-1241等)、信越化学工業株式会社製のシリコーンシーラント(例えば、KE-42AS、KE-420、KE-450等)、信越化学工業株式会社製のゴムコンパウンド(例えば、KE-655-U、KE-675-U、KE-931-U、KE-941-U、KE-951-U、KE-961-U、KE-971-U、KE-981-U、KE-961T-U、KE-971T-U、KE-871C-U、KE-9410-U、KE-9510-U、KE-9610-U、KE-9710-U、KE-742-U、KE-752-U、KE-762-U、KE-772-U、KE-782-U、KE-850-U、KE-870-U、KE-880-U、KE-890-U、KE-9590-U、KE-5590-U、KE-552-U、KE-582-U、KE-552B-U、KE-555-U、KE-575-U、KE-541-U、KE-551-U、KE-561-U、KE-571-U、KE-581-U、KE-520-U、KE-530B-2-U、KE-540B-2-U、KE-1551-U、KE-1571-U、KE-152-U、KE-174-U、KE-3601SB-U、KE-3711-U、KE-3801M-U、KE-5612G-U、KE-5620BL-U、KE-5620W-U、KE-5634-U、KE-7511-U、KE-7611-U、KE-765-U、KE-785-U、KE-7008-U、KE-7005-U、KE-503-U、KE-5042-U、KE-505-U、KE-6801-U、KE-136Y-U等)、信越化学工業株式会社製のLIMS(液状シリコーンゴム射出成形システム)(例えば、KEG-2000-40A/B、KEG-2000-50A/B、KEG-2000-60A/B、KEG-2000-70A/B、KEG-2001-40A/B、KEG-2001-50A/B、KE-1950-10A/B、KE-1950-20A/B、KE-1950-30A/B、KE-1950-35A/B、KE-1950-40A/B、KE-1950-50A/B、KE-1950-60A/B、KE-1950-70A/B、KE-1935A/B、KE-1987A/B、KE-1988A/B、KE-2019-40A/B、KE-2019-50A/B、KE-2019-60A/B、KE-2017-30A/B、KE-2017-40A/B、KE-2017-50A/B、KE-2090-40A/B、KE-2090-50A/B、KE-2090-60A/B、KE-2090-70A/B、KE-2096-40A/B、KE-2096-50A/B、KE-2096-60A/B等)、旭化成ワッカーシリコーン株式会社製のLR7665シリーズ、旭化成ワッカーシリコーン株式会社製のLR3033シリーズ、モメンティブ株式会社製のTSE3032シリーズ等、東レダウコーニング製のシルガード184等が挙げられる。 Examples of the silicone resin include 1-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-498, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE- 1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-3498, KE-3493, KE-3466, KE-3467, KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE- 418, KE-3427, KE-3428, KE-41, KE-42, KE-44, KE-45, KE-441, KE-445, KE-45S, etc.), Shin-Etsu Chemical Co., Ltd. RTV rubber (eg KE-1800T-A / B, KE-66, KE-1031-A / B, KE-200, KE-118, KE-103, KE-108, KE-119, KE-109E-A / B, KE-1051J-A / B, KE-1012-A / B, KE-106, KE-1282-A / B, KE-1283-A / B, KE-1800-A / B / C, KE -1801-A / B / C, KE-1802-A / B / C, KE-1281-A / B, KE-1204-A / B, KE-1204-AL / BL, KE-1280-A / B , KE-513-A / B, KE- 21-A / B, KE-1285-A / B, KE-1861-A / B, KE-12, KE-14, KE-17, KE-113, KE-24, KE-26, KE-1414, KE-1415, KE-1416, KE-1417, KE-1300T, KE-1310ST, KE-1314-2, KE-1316, KE-1600, KE-1603-A / B, KE-1606, KE-1222 A / B, KE-1241, etc.), Shin-Etsu Chemical Co., Ltd. silicone sealant (eg, KE-42AS, KE-420, KE-450, etc.), Shin-Etsu Chemical Co., Ltd. rubber compound (eg, KE- 655-U, KE-675-U, KE-931-U, KE-941-U, KE-951-U, KE-961-U, KE-971-U, KE-981- U, KE-961T-U, KE-971T-U, KE-871C-U, KE-9410-U, KE-9510-U, KE-9610-U, KE-9710-U, KE-742-U, KE-752-U, KE-762-U, KE-772-U, KE-782-U, KE-850-U, KE-870-U, KE-880-U, KE-890-U, KE- 9590-U, KE-5590-U, KE-552-U, KE-582-U, KE-552B-U, KE-555-U, KE-575-U, KE-541-U, KE-551- U, KE-561-U, KE-571-U, KE-581-U, KE-520-U, KE-530B-2-U, KE-540B-2-U, KE-1551-U, KE- 1571-U, KE-152-U, KE-174- , KE-3601SB-U, KE-3711-U, KE-3801M-U, KE-5612G-U, KE-5620BL-U, KE-5620W-U, KE-5634-U, KE-7511-U, KE -7611-U, KE-765-U, KE-785-U, KE-7008-U, KE-7005-U, KE-503-U, KE-5042-U, KE-505-U, KE-6801 -U, KE-136Y-U, etc., LIMS (Liquid Silicone Rubber Injection Molding System) manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KEG-2000-40A / B, KEG-2000-50A / B, KEG-2000- 60A / B, KEG-2000-70A / B, KEG-2001-40A / B, KEG-2001-50A / B, KE-1950-10A / B, KE 1950-20A / B, KE-1950-30A / B, KE-1950-35A / B, KE-1950-40A / B, KE-1950-50A / B, KE-1950-60A / B, KE-1950- 70A / B, KE-1935A / B, KE-1987A / B, KE-1988A / B, KE-2019-40A / B, KE-2019-50A / B, KE-2019-60A / B, KE-2017- 30A / B, KE-2017-40A / B, KE-2017-50A / B, KE-2090-40A / B, KE-2090-50A / B, KE-2090-60A / B, KE-2090-70A / B, KE-2096-40A / B, KE-2096-50A / B, KE-2096-60A / B, etc.), LR7 manufactured by Asahi Kasei Wacker Silicone Co., Ltd. Examples include 665 series, LR3033 series manufactured by Asahi Kasei Wacker Silicone Co., Ltd., TSE3032 series manufactured by Momentive Co., Ltd., and Silgard 184 manufactured by Toray Dow Corning.
<オイル成分>
 第1オイル成分として、例えば、シリコーンオイル、フッ素オイル、炭化水素系オイル、ポリエーテル系オイル、エステル系オイル、リン化合物系オイル、鉱油系オイル等を用いることができる。
 シリコーンオイルとしては、例えば、信越化学工業株式会社製のシリコーンオイル(例えば、KF96Lシリーズ、KF96シリーズ、KF69シリーズ、KF99シリーズ、KF50シリーズ、KF54シリーズ、KF410シリーズ、KF412シリーズ、KF414シリーズ、FLシリーズ、KF-6000、KF-6001、KF-6002、KF-6003等)、モメンティブ 株式会社製のシリコーンオイル(例えば、Element14*PDMSシリーズ、TSF404シリーズ、TSF410シリーズ、TSF4300シリーズ、TSF431シリーズ、TSF433シリーズ、TSF437シリーズ、TSF4420シリーズ、TSF4421シリーズ等)、東レダウコーニング株式会社製のシリコーンオイル(例えば、BY16-846シリーズ、SF8416シリーズ、SH200シリーズ、SH203シリーズ、SH230シリーズ、SF8419シリーズ、FS1265シリーズ、SH510シリーズ、SH550シリーズ、SH710シリーズ、FZ-2110シリーズ、FZ-2203シリーズ等)旭化成ワッカーシリコーン社製のシリコーンオイル(WACKER(登録商標)SILICONE FLUID AKシリーズ、WACKER(登録商標)SILICONE FLUID APシリーズ、WACKER(登録商標)SILICONE FLUID ARシリーズ、WACKER(登録商標)SILICONE FLUID ASシリーズ、WACKER(登録商標)TNシリーズ、WACKER(登録商標)Lシリーズ、WACKER(登録商標)AFシリーズ等)等が挙げられる。
<Oil component>
As the first oil component, for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil oil or the like can be used.
Examples of the silicone oil include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF). -6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Co., Ltd. (for example, Element14 * PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series, TSF437 series, TSF4420 series, TSF4421 series, etc.), silicone oil manufactured by Toray Dow Corning Co., Ltd. (for example, BY16-846 series, SF8416 series, SH200 series, SH203 series, SH230 series, SF8419 series, FS1265 series, SH510 series, SH550 series, SH710 series, FZ-2110 series, FZ-2203 series, etc.) Silicone manufactured by Asahi Kasei Wacker Silicone Co., Ltd. Oil (WACKER (registered trademark) SILICONE FLUID AK series, WACKER (registered trademark) SILICONE FLUID AP series, WACKER (registered trademark) SILICONE FLUID AR series, WACKER (registered trademark) SILICONE FLUID AS series, WACKER (registered trademark) TN series, WACKER (registered trademark) L series, WACKER (registered trademark ) AF series, etc.), and the like.
 一方、第2オイル成分として、例えば、シリコーンオイル、フッ素オイル、炭化水素系オイル、ポリエーテル系オイル、エステル系オイル、リン化合物系オイル、鉱油系オイル等を用いることができる。
 シリコーンオイルとしては、例えば、信越化学工業株式会社製のシリコーンオイル(例えば、KF96Lシリーズ、KF96シリーズ、KF69シリーズ、KF99シリーズ、KF50シリーズ、KF54シリーズ、KF410シリーズ、KF412シリーズ、KF414シリーズ、FLシリーズ、KF-6000、KF-6001、KF-6002、KF-6003等)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製のシリコーンオイル(例えば、Element14*PDMSシリーズ、TSF404シリーズ、TSF410シリーズ、TSF4300シリーズ、TSF431シリーズ、TSF433シリーズ、TSF437シリーズ、TSF4420シリーズ、TSF4421シリーズ等)、東レダウコーニング株式会社製のシリコーンオイル(例えば、BY16-846シリーズ、SF8416シリーズ、SH200シリーズ、SH203シリーズ、SH230シリーズ、SF8419シリーズ、FS1265シリーズ、SH510シリーズ、SH550シリーズ、SH710シリーズ、FZ-2110シリーズ、FZ-2203シリーズ等)旭化成ワッカーシリコーン株式会社製のシリコーンオイル(WACKER(登録商標)SILICONE FLUID AKシリーズ、WACKER(登録商標)SILICONE FLUID APシリーズ、WACKER(登録商標)SILICONE FLUID ARシリーズ、WACKER(登録商標)SILICONE FLUID ASシリーズ、WACKER(登録商標)TNシリーズ、WACKER(登録商標)Lシリーズ、WACKER(登録商標)AFシリーズ等)等が挙げられる。
On the other hand, as the second oil component, for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil oil or the like can be used.
Examples of the silicone oil include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF). -6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Performance Materials Japan LLC (eg Element14 * PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series). , TSF433 series, TSF437 series, TSF4420 series, TSF4421 series, etc.), Toray Dow Konin Silicone oil manufactured by corporation (for example, BY16-846 series, SF8416 series, SH200 series, SH203 series, SH230 series, SF8419 series, FS1265 series, SH510 series, SH550 series, SH710 series, FZ-2110 series, FZ-2203 series. Etc.) Silicone oil manufactured by Asahi Kasei Wacker Silicone Co., Ltd. (WACKER (registered trademark) SILICONE FLUID AK series, WACKER (registered trademark) SILICONE FLUID AP series, WACKER (registered trademark) SILICONE FLUID AR series, WACKER (registered trademark) SILICONE FLUID AS) Series, WACKER (registered trademark) TN Series, WACKER (Registered trademark) L series, WACKER (registered trademark) AF series, etc.) and the like.
 これら第1オイル成分、第2オイル成分、及びオイル含有樹脂層11の樹脂成分(第1の樹脂前駆体)には、例えば、以下の1)、2)の性質を満たす組み合わせを選択する。 For the first oil component, the second oil component, and the resin component (first resin precursor) of the oil-containing resin layer 11, for example, a combination satisfying the following properties 1) and 2) is selected.
 1) 第1オイル成分と第2オイル成分は、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度、例えば氷点等の所定値よりも有意に高い20℃~80℃程度の常温では、相分離せず相溶しているが、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度、例えば氷点等の所定値以下となる温度環境の下では相分離する。
 2) 第1オイル成分は、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度、及び、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度の双方で、オイル含有樹脂層11の樹脂成分に対して親和性を有するが、これに対し、第2オイル成分は、第1オイル成分の存在下では、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度であるか、又は、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度であるかによって、その挙動を変化させる。
 更に詳細には、第2オイル成分は、第1オイル成分が存在しない場合には、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度、及び、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度の双方で、オイル含有樹脂層11の樹脂成分に対して親和性を有しない、言い換えれば、オイル含有樹脂層11の樹脂成分から滲出する。一方、第1オイル成分の存在下では、第2オイル成分は、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度においては、第1オイル成分と相溶するため、オイル含有樹脂層11の樹脂成分に対して親和性を有する、言い換えれば、そこから滲出しないが、これに対し、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度においては、第1オイル成分から相分離し、オイル含有樹脂層11の樹脂成分に対して親和性を有しない、言い換えれば、第1オイル成分から相分離する低温相分離性オイル成分として機能する。
1) The first oil component and the second oil component have a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11, for example, 20 ° C to 80 ° C which is significantly higher than a predetermined value such as a freezing point. At room temperature, they are compatible with each other without phase separation, but under the temperature environment where it is necessary to exude the second oil component into the oil-containing resin layer 11, for example, a temperature environment below a predetermined value such as a freezing point. To separate.
2) The first oil component has a temperature at which it is not necessary to exude the second oil component to the oil-containing resin layer 11 and a temperature at which it is necessary to exude the second oil component to the oil-containing resin layer 11. Both have an affinity for the resin component of the oil-containing resin layer 11, while the second oil component, in the presence of the first oil component, causes the oil-containing resin layer 11 to contain the second oil component. The behavior is changed depending on whether it is a temperature at which exudation is not required or a temperature at which it is necessary to exude the second oil component into the oil-containing resin layer 11.
More specifically, the second oil component has a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11 when the first oil component is not present, and The second oil component does not have an affinity for the resin component of the oil-containing resin layer 11 at both temperatures that require exudation, in other words, it exudes from the resin component of the oil-containing resin layer 11. On the other hand, in the presence of the first oil component, the second oil component is compatible with the first oil component at a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11, so that the oil component It has an affinity for the resin component of the containing resin layer 11, in other words, does not exude from it, but at the temperature at which it is necessary to exude the second oil component to the oil containing resin layer 11, It is phase-separated from the first oil component and has no affinity for the resin component of the oil-containing resin layer 11, in other words, it functions as a low temperature phase-separable oil component that is phase-separated from the first oil component.
 溶解パラメータの値は、溶媒と溶質の混ざりやすさを判断する目安となることが経験的に知られている。上に説明した、第1オイル成分、第2オイル成分、及びオイル含有樹脂層11(第1の樹脂前駆体)の樹脂成分との間の関係も、それらの溶解パラメータの値(SP値)の関係に基づいて説明することができる。本明細書では、溶解パラメータとしてハンセン溶解度パラメータを使用する。この値は、第1オイル成分、第2オイル成分、及びオイル含有樹脂層11の樹脂成分について、フーリエ変換核磁気共鳴分光法分析を実施して、各成分の分子構造を構成する分子ユニットの種類とそのモル比率を調べ、各分子ユニット種類のハンセン溶解度パラメータをモル比で加重平均を計算することにより求めることができる。各分子ユニット種類のハンセン溶解度パラメータは、リンク(https://hansen-solubility.com/)から入手可能なソフトウェア「HSPiP, Hansen Solubility Parameters in Practice ver4」を用い、分子グループ寄与法から求めることができる。具体的には、対象となる物質における各構成ユニットをSMILES記法で入力し、ユニットごとのHSP値(δd, δp, δh)を算出することができる。 It is empirically known that the value of the dissolution parameter serves as a criterion for judging the easiness of mixing the solvent and the solute. The relationship between the first oil component, the second oil component, and the resin component of the oil-containing resin layer 11 (first resin precursor) described above is also related to the values (SP value) of their solubility parameters. Can be explained based on relationships. The Hansen solubility parameter is used herein as the solubility parameter. This value is the kind of molecular unit that constitutes the molecular structure of each component by performing Fourier transform nuclear magnetic resonance spectroscopy analysis on the first oil component, the second oil component, and the resin component of the oil-containing resin layer 11. And the molar ratio thereof, and the Hansen solubility parameter of each molecular unit type can be obtained by calculating a weighted average by the molar ratio. The Hansen solubility parameter of each molecular unit type can be obtained from the molecular group contribution method using the software "HSPiP, Hansen Solubility Parameters in Practice ver4" available from the link (https://hansen-solubility.com/). .. Specifically, each constituent unit of the target substance can be input by the SMILES notation, and the HSP value (Δ d, Δ p , δ h ) of each unit can be calculated.
 上記1)、2)の関係を保つため、少なくとも、オイル含有樹脂層11の樹脂成分の溶解パラメータの値と第1オイル成分の溶解パラメータの値との差は、オイル含有樹脂層11の樹脂成分の溶解パラメータの値と第2オイル成分の溶解パラメータの値との差よりも小さくなるように設定するのが好ましい。また、上記1)、2)の関係を保つため、配合比率は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、例えば、樹脂成分を少なくとも25wt%以上、第1オイル成分を少なくとも5wt%以上、第2オイル成分を少なくとも3wt%以上の割合で含む。更に、第1オイル成分とオイル含有樹脂層11の樹脂成分との間の溶解パラメータの差は、0.6(J/cm31/2以内に設定するのが好ましい。
 より具体的には、オイル含有樹脂層11の樹脂成分は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、好ましくは30wt%以上、より好ましくは35wt%以上、さらに好ましくは40wt%以上である。上限は特には限定されず、オイル成分との関係で適宜設定されるが、例えば、70wt%以下とすることができる。
 また、第1オイル成分は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、例えば、10wt%以上、15wt%以上、20wt%以上に設定することができる。上限は特には限定されないが、好ましくは65wt%以下、例えば、50wt%以下、40wt%以下、30wt%以下、20wt%以下に設定することができる。
 また、第2オイル成分は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、好ましくは5wt%以上、より好ましくは10wt%以上であり、さらに好ましくは15wt%以上である。上限は特には限定されないが、好ましくは62wt%以下、例えば、60wt%以下、50wt%以下、40wt%以下、30wt%以下に設定できる。
In order to maintain the above relationships 1) and 2), at least the difference between the solubility parameter value of the resin component of the oil-containing resin layer 11 and the solubility parameter value of the first oil component is the resin component of the oil-containing resin layer 11. It is preferable to set it so as to be smaller than the difference between the value of the dissolution parameter of and the value of the solubility parameter of the second oil component. In order to maintain the above relationships 1) and 2), the blending ratio is based on the total weight of the oil-containing resin layer that is finally formed, for example, the resin component is at least 25 wt% or more, and the first oil component is It contains at least 5 wt% or more and the second oil component in a ratio of at least 3 wt% or more. Further, the difference in the dissolution parameter between the first oil component and the resin component of the oil-containing resin layer 11 is preferably set within 0.6 (J / cm 3 ) 1/2 .
More specifically, the resin component of the oil-containing resin layer 11 is preferably 30 wt% or more, more preferably 35 wt% or more, still more preferably 40 wt% based on the weight of the entire finally formed oil-containing resin layer. % Or more. The upper limit is not particularly limited and is appropriately set depending on the relationship with the oil component, but may be 70 wt% or less, for example.
The first oil component can be set to, for example, 10 wt% or more, 15 wt% or more, 20 wt% or more, based on the total weight of the finally formed oil-containing resin layer. The upper limit is not particularly limited, but can be preferably set to 65 wt% or less, for example, 50 wt% or less, 40 wt% or less, 30 wt% or less, 20 wt% or less.
The second oil component is preferably 5 wt% or more, more preferably 10 wt% or more, still more preferably 15 wt% or more, based on the total weight of the finally formed oil-containing resin layer. The upper limit is not particularly limited, but it can be preferably set to 62 wt% or less, for example, 60 wt% or less, 50 wt% or less, 40 wt% or less, 30 wt% or less.
 例えば上記1)、2)の関係を満たす場合には、第2オイル成分は、オイル含有樹脂層11に第2オイル成分を滲出させることを必要としない温度では、第1オイル成分と相溶し、従って、オイル含有樹脂層11の表面から滲出することはなく、一方、オイル含有樹脂層11に第2オイル成分を滲出させることを必要とする温度に変化したときには、第1オイル成分から相分離してオイル含有樹脂層11の表面から滲出(ブリード)することができる低温滲出オイル成分として機能し得る。 For example, when the above relationships 1) and 2) are satisfied, the second oil component is compatible with the first oil component at a temperature at which it is not necessary to exude the second oil component into the oil-containing resin layer 11. Therefore, it does not exude from the surface of the oil-containing resin layer 11, and on the other hand, when the temperature changes to require exuding the second oil component into the oil-containing resin layer 11, phase separation from the first oil component occurs. Then, it can function as a low-temperature exudation oil component that can exude (bleed) from the surface of the oil-containing resin layer 11.
 また、下記式で表される、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータの値(SP値)SP1と第2オイル成分の溶解パラメータの値(SP値)SP2との差の絶対値で求められる、濡れパラメータ「Z」が1.5(J/cm31/2以下であることが好ましい。
 濡れパラメータ「Z」は、より好ましくは0.8(J/cm31/2以下であり、さらに好ましくは0.5(J/cm31/2以下であり、特に好ましくは0.3(J/cm31/2以下である。Zの下限については0(J/cm31/2より高い値であれば特に限定されないが、例えば、0.001(J/cm31/2以上、より好ましくは0.01(J/cm31/2以上に設定することができる。Zがこれら範囲であれば、形成されるオイル含有樹脂層に対してブリードする第2オイル成分の濡れ性が高くなり、ブリードするオイルが少量であっても効率よくオイル含有樹脂層表面に広がる。これにより、より少ないオイル量で着氷防止効果を発現できる。
 なお、オイル含有樹脂層の溶解パラメータの値と第2オイル成分の溶解パラメータの値は、前述した方法で算出することができる。
In addition, the solubility parameter value (SP value) SP 1 of the oil-containing resin layer formed by curing the first resin precursor and the solubility parameter of the second oil component represented by the following formula The wetting parameter “Z”, which is obtained by the absolute value of the difference from the value (SP value) SP 2 , is preferably 1.5 (J / cm 3 ) 1/2 or less.
The wetting parameter “Z” is more preferably 0.8 (J / cm 3 ) 1/2 or less, further preferably 0.5 (J / cm 3 ) 1/2 or less, and particularly preferably 0. It is 3 (J / cm 3 ) 1/2 or less. The lower limit of Z is not particularly limited as long as it is a value higher than 0 (J / cm 3 ) 1/2 , for example, 0.001 (J / cm 3 ) 1/2 or more, and more preferably 0.01 (J / cm 3 ) 1/2 or more. / Cm 3 ) 1/2 or more can be set. When Z is in the above range, the wettability of the second oil component bleeding to the oil-containing resin layer to be formed becomes high, and even if the bleeding oil is small, it spreads efficiently on the surface of the oil-containing resin layer. Thereby, the effect of preventing icing can be expressed with a smaller amount of oil.
The value of the solubility parameter of the oil-containing resin layer and the value of the solubility parameter of the second oil component can be calculated by the method described above.
 また、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の、後述する溶解パラメータ寄与値「F」が0.1以上であることが好ましい。より好ましくは0.2以上であり、さらに好ましくは0.3以上であり、特に好ましくは0.4以上である。上限については、例えば、3.0以下とすることができ、好ましくは2.5以下、より好ましくは2.0以下、さらに好ましくは1.5以下とすることができる。溶解パラメータ寄与値「F」は、後述する方法により計算することができる。Fはオイル含有樹脂層の相溶性の度合いを表し、値が大きければ大きいほど非相溶となり易く、上述した範囲であれば、含有するオイル成分がブリードし易くなるため、高い着氷防止効果を発現できる。 Further, it is preferable that the oil-containing resin layer formed by curing the first resin precursor has a solubility parameter contribution value “F” described later of 0.1 or more. It is more preferably 0.2 or more, still more preferably 0.3 or more, and particularly preferably 0.4 or more. The upper limit can be, for example, 3.0 or less, preferably 2.5 or less, more preferably 2.0 or less, and further preferably 1.5 or less. The solubility parameter contribution value “F” can be calculated by the method described later. F represents the degree of compatibility of the oil-containing resin layer, the larger the value, the more likely it becomes incompatibility, and if it is in the above range, the contained oil component is likely to bleed, and thus a high anti-icing effect is obtained. Can be expressed.
 なお、ここでは、オイル含有樹脂層11の樹脂成分の溶解パラメータの値と第1オイル成分および第2オイル成分の溶解パラメータの値との差を所定の関係とすることで、オイル含有樹脂層11における、含有されたオイルの一部、特に、第2オイル成分を滲出(ブリード)させて着氷及び/又は着雪を防止する実施形態を一例として説明したが、本発明の範囲はこれら実施形態には限定されない。例えば、第1オイル成分と第2オイル成分との分子量の違いや分子構造の違いを利用しても同様に相溶性を制御することができ、第2オイル成分を、温度が所定値以下に低下したとき前記第1オイル成分から相分離させてオイル含有樹脂層から滲出することができる。 In addition, here, the difference between the value of the solubility parameter of the resin component of the oil-containing resin layer 11 and the value of the solubility parameter of the first oil component and the second oil component is set to a predetermined relationship, whereby the oil-containing resin layer 11 is formed. The part of the contained oil, in particular, the second oil component is exuded (bleed) to prevent icing and / or snow accretion, but the scope of the present invention is not limited to these embodiments. It is not limited to. For example, the compatibility can be similarly controlled by utilizing the difference in the molecular weight and the difference in the molecular structure between the first oil component and the second oil component, and the temperature of the second oil component can be lowered to a predetermined value or lower. At this time, it can be phase-separated from the first oil component and exude from the oil-containing resin layer.
 以上の説明から明らかなように、第1オイル成分と第2オイル成分は、物質的に区別される必要はなく、上に説明した機能、作用の面から互いに区別されれば足りる。従って、第1オイル成分及び第2オイル成分は共に、1つのオイル成分で構成されている必要はなく、上記の条件を満たすのであれば、第1オイル成分及び第2オイル成分の各々に、複数のオイル成分を含有してもよい。 As is clear from the above description, the first oil component and the second oil component do not have to be physically distinguished, and it is sufficient if they are distinguished from each other in terms of the function and action described above. Therefore, both the first oil component and the second oil component do not have to be composed of one oil component, and if the above conditions are satisfied, a plurality of oil components may be provided for each of the first oil component and the second oil component. The oil component may be included.
(2)第二の塗料
 第二の塗料は、少なくとも、樹脂成分の前駆体である第2の樹脂前駆体を含む。更に、第一の塗料と同様に、2種類のオイル成分、即ち、第3オイル成分と第4オイル成分を含んでもよい。第一の塗料を用いてオイル含有樹脂層を形成した後、該オイル含有樹脂層の上に第二の塗料を塗布して、第2の樹脂前駆体を硬化させることによって、又は、第3オイル成分と第4オイル成分を含有する第2の樹脂前駆体を硬化させることによって、少なくとも、樹脂成分を含有し、更に、第3オイル成分と第4オイル成分をも含有する表面樹脂層12を形成することができる。ここで、第3オイル成分と第4オイル成分は、必ずしも第二の塗料に含める必要はなく、第一の塗料に含めてもよい。従って、第二の塗料において、3オイル成分と第4オイル成分の使用は任意である。
(2) Second paint The second paint contains at least a second resin precursor which is a precursor of the resin component. Further, like the first paint, it may contain two kinds of oil components, that is, a third oil component and a fourth oil component. After forming the oil-containing resin layer using the first paint, applying the second paint on the oil-containing resin layer and curing the second resin precursor, or the third oil. By curing the second resin precursor containing the component and the fourth oil component, the surface resin layer 12 containing at least the resin component and further containing the third oil component and the fourth oil component is formed. can do. Here, the third oil component and the fourth oil component do not necessarily have to be included in the second paint, and may be included in the first paint. Therefore, the use of the third oil component and the fourth oil component in the second paint is optional.
 第二の塗料を用いて形成され得る表面樹脂層12は、オイル含有樹脂層11の表面を保護することを目的として、オイル含有樹脂層11の一方の面に積層された状態で設けることができる固形状の樹脂層である。表面樹脂層12は、オイル含有樹脂層11の表面を保護するために任意に設けるものであり、従って、第二の塗料の使用は任意である。表面樹脂層12は、オイル含有樹脂層11の表面に配置されるものであるから、オイル含有樹脂層11に蓄積された第2オイル成分による着氷及び/又は着雪防止機能が妨げられないように、表面樹脂層12は、オイル含有樹脂層11を覆ってもなおオイル含有樹脂層11から滲出した第2オイル成分をオイル含有樹脂層11とは反対側の表面樹脂層12の表面まで透過させることができるオイル透過性を有する。 The surface resin layer 12 that can be formed using the second paint can be provided in a state of being laminated on one surface of the oil-containing resin layer 11 for the purpose of protecting the surface of the oil-containing resin layer 11. It is a solid resin layer. The surface resin layer 12 is optionally provided to protect the surface of the oil-containing resin layer 11, and thus the use of the second coating material is optional. Since the surface resin layer 12 is disposed on the surface of the oil-containing resin layer 11, the second oil component accumulated in the oil-containing resin layer 11 does not hinder the function of preventing ice formation and / or snow formation. In addition, the surface resin layer 12 allows the second oil component exuded from the oil-containing resin layer 11 to penetrate to the surface of the surface resin layer 12 on the opposite side of the oil-containing resin layer 11 even when the oil-containing resin layer 11 is covered. It has oil permeability.
 図2に、オイル含有樹脂層11の上に第二の塗料を塗布し硬化させることによって形成された表面樹脂層12を含む層構成を構造物10とともに示す。構造物10は、表面樹脂層12が積層された一方の面とは反対側のオイル含有樹脂層11の他方の面に配置される。 FIG. 2 shows, together with the structure 10, a layer structure including a surface resin layer 12 formed by applying a second coating material on the oil-containing resin layer 11 and curing the second coating material. The structure 10 is arranged on the other surface of the oil-containing resin layer 11 opposite to the one surface on which the surface resin layer 12 is laminated.
 特に限定されないが、第2の樹脂前駆体としては、第一の塗料の第1の樹脂前駆体と同じ材料を用いることができ、また、第3オイル成分としては、第一の塗料の第1オイル成分と同じ材料を、一方、第4オイル成分としては、第一の塗料の第2オイル成分と同じ材料を、それぞれ用いることができる。 Although not particularly limited, the same material as the first resin precursor of the first paint can be used as the second resin precursor, and the first oil of the first paint can be used as the third oil component. The same material as the oil component can be used, while the same material as the second oil component of the first paint can be used as the fourth oil component.
 第3オイル成分、第4オイル成分、及び表面樹脂層12の樹脂成分(第2の樹脂前駆体)は、第一の塗料の第1オイル成分、第2オイル成分、及びオイル含有樹脂層11の樹脂成分(第1の樹脂前駆体)と同様に、上記1)、2)の性質を有するものとする。従って、第一の塗料と同様に、配合比率は、最終的に形成される表面樹脂層全体の重量を基準として、少なくとも、樹脂成分を少なくとも25wt%以上、第3オイル成分を少なくとも5wt%以上、第4オイル成分を少なくとも3wt%以上の割合で含み、その他、好ましい値等についても、第一の塗料の第1オイル成分等と同様である。但し、表面樹脂層12は、オイル含有樹脂層11の表面を保護することを目的として設けるものであるため、オイル含有樹脂層11よりも高い耐摩耗性を有するのが好ましい。この場合は、オイル含有樹脂層11よりも耐摩耗性を向上させるため、第二の塗料に占める第2の樹脂前駆体の割合は、第一の塗料に占める第1の樹脂前駆体の割合よりも有意に大きな値に設定する。例えば、最終的に形成される表面樹脂層全体の重量を基準として、樹脂成分を30wt%以上とし、一方、第3オイル成分を20wt%、第4オイル成分を10wt%の割合とするのが好ましい。 The third oil component, the fourth oil component, and the resin component (second resin precursor) of the surface resin layer 12 are the first oil component, the second oil component, and the oil-containing resin layer 11 of the first coating material. Like the resin component (first resin precursor), it has the properties of 1) and 2) above. Therefore, like the first paint, the blending ratio is based on the weight of the entire surface resin layer to be finally formed, at least 25 wt% or more of the resin component and at least 5 wt% or more of the third oil component, The fourth oil component is contained in a proportion of at least 3 wt% or more, and other preferable values and the like are the same as those of the first oil component and the like of the first paint. However, since the surface resin layer 12 is provided for the purpose of protecting the surface of the oil-containing resin layer 11, it preferably has higher abrasion resistance than the oil-containing resin layer 11. In this case, since the abrasion resistance is improved more than that of the oil-containing resin layer 11, the proportion of the second resin precursor in the second coating is smaller than that of the first resin precursor in the first coating. Is also set to a significantly large value. For example, it is preferable that the resin component is 30 wt% or more, while the third oil component is 20 wt% and the fourth oil component is 10 wt% based on the total weight of the finally formed surface resin layer. ..
(3)フィルム
 第一の塗料、又は、第一の塗料及び第二の塗料を、例えば、10~1000μmの薄い膜を形成した状態で予め硬化させて、フィルムを形成してもよい。この場合、各種構造物等には、塗料を塗布する代わりに、フィルムを貼り付けることができる。該フィルムは、塗料と同様に、第1及び第2オイル成分を含有するオイル含有樹脂層を備え、第2オイル成分は、温度が所定値以下に低下したときに第1オイル成分から相分離してオイル含有樹脂層から滲出することができる低温相分離性オイル成分として機能する。オイル含有樹脂層を構成する樹脂成分としては、例えば、「<第1の樹脂前駆体>」にて説明した第1の樹脂前駆体を架橋反応させて得られる樹脂を好適に用いることができ、好ましくは架橋されたシリコーン樹脂である。第1及び第2オイル成分は、上述した「<オイル成分>」を用いることができる。また、各成分の配合比率も、上述と同様に設計される。このように、第一の塗料及び第二の塗料を用いて、フィルムを提供することもできる。
(3) Film The film may be formed by pre-curing the first coating material or the first coating material and the second coating material in a state of forming a thin film of 10 to 1000 μm. In this case, a film can be attached to various structures or the like instead of applying the paint. Like the paint, the film has an oil-containing resin layer containing first and second oil components, and the second oil component is phase-separated from the first oil component when the temperature drops below a predetermined value. Function as a low temperature phase-separable oil component that can be exuded from the oil-containing resin layer. As the resin component forming the oil-containing resin layer, for example, a resin obtained by crosslinking reaction of the first resin precursor described in “<First Resin Precursor>” can be suitably used, Preferred is a crosslinked silicone resin. As the first and second oil components, the above-mentioned “<oil component>” can be used. Further, the blending ratio of each component is designed in the same manner as described above. Thus, the first paint and the second paint can also be used to provide a film.
2.実施例等
 以下、オイル含有樹脂層を形成するための第一の塗料について、実施例等を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
2. Examples, etc. Hereinafter, the first coating material for forming the oil-containing resin layer will be described more specifically with reference to examples and the like, but the invention is not limited to the following examples. is not.
[実施例1]
 第一の塗料を以下の方法で作製した。
1)第1の樹脂前駆体
 第1の樹脂前駆体として、ジメチルポリシロキサンゴム(東レ・ダウコーニング社製のSylgard184)を用いた。このゴムは、加熱によって硬化する(後述する表3も参照)。
[Example 1]
The first paint was prepared by the following method.
1) First Resin Precursor As the first resin precursor, dimethylpolysiloxane rubber (Sylgard 184 manufactured by Dow Corning Toray Co., Ltd.) was used. This rubber is cured by heating (see also Table 3 below).
2)オイル成分
 第1オイル成分として、ジメチルシロキサンオイル(信越シリコーン社製の品番KF-96―100CS)を、また、第2オイル成分として、メチルフェニルシロキサンオイル(モメンティブ社製のTSF437)を用いた(後述する表3も参照)。
2) Oil component Dimethylsiloxane oil (product number KF-96-100CS manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the first oil component, and methylphenylsiloxane oil (TSF437 manufactured by Momentive Co.) was used as the second oil component. (See also Table 3 below).
3)混合
 1)の第1の樹脂前駆体と、2)の第1オイル成分及び第2オイル成分とを、25℃、101kPaの条件下で混合し、その混合液をスパチュラで約120rpmの速さで60秒間撹拌し、その後、自転・公転ミキサー(シンキー社製 CONDITIONING MIXER AR-250)でさらに60秒間の撹拌と60秒間の脱泡をして第一の塗料を得た。配合比率は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、樹脂成分を60wt%、第1オイル成分を23wt%、第2オイル成分を17wt%とした。
3) Mixing The first resin precursor of 1) and the first oil component and the second oil component of 2) are mixed under the condition of 25 ° C. and 101 kPa, and the mixed liquid is spun at a speed of about 120 rpm. Then, the mixture was stirred for 60 seconds, and then the mixture was further stirred for 60 seconds and defoamed for 60 seconds with a rotation / revolution mixer (CONDITIONING MIXER AR-250 manufactured by Shinky Co., Ltd.) to obtain a first paint. The blending ratio was 60 wt% for the resin component, 23 wt% for the first oil component, and 17 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer.
 上記の方法で得た第一の塗料を、PETフィルム(東レ株式会社製 ルミラーS10#125)上に塗布し、100℃環境下において3時間、加熱硬化させることによって、厚さ約140μmのオイル含有樹脂層を形成し、該オイル含有樹脂層について以下の評価を行った。ここで第1オイル成分であるジメチルシロキサンオイルの溶解パラメータの値は11.7(J/cm31/2、第2オイル成分であるメチルフェニルシロキサンオイルの溶解パラメータの値は13.9(J/cm31/2、更に、第1の樹脂前駆体を硬化させることによって形成される樹脂成分としてのジメチルポリシロキサンゴムの溶解パラメータの値は11.9(J/cm31/2である。 The first coating material obtained by the above method was applied onto a PET film (Lumirror S10 # 125 manufactured by Toray Industries, Inc.) and heat-cured at 100 ° C. for 3 hours to contain an oil having a thickness of about 140 μm. A resin layer was formed, and the oil-containing resin layer was evaluated as follows. Here, the value of the solubility parameter of the first oil component dimethylsiloxane oil is 11.7 (J / cm 3 ) 1/2 , and the value of the solubility parameter of the second oil component methylphenylsiloxane oil is 13.9 ( J / cm 3 ) 1/2 , and the dimethylpolysiloxane rubber as a resin component formed by curing the first resin precursor has a solubility parameter value of 11.9 (J / cm 3 ) 1 / Is 2 .
5)評価
<層厚>
 層厚の測定には、膜厚計MFC-101(Nikon製)を用いた。
 特に限定されないが、表面樹脂層を設ける場合、表面樹脂層の層厚は、オイルが表面樹脂層の表面まで容易に透過することができるように、言い換えれば、表面樹脂層に対するオイル透過性を担保するため、オイル含有樹脂層の75%以下とするのが好ましく、50%以下とするのがより好ましく、35%以下とするのが更に好ましい。また、表面樹脂層の樹脂成分にもよるが、強度の点から、オイル含有樹脂層の5%以上とするのが好ましく、20%以上とするのがより好ましく、30%以上とするのが更に好ましい。
5) Evaluation <layer thickness>
A film thickness meter MFC-101 (manufactured by Nikon) was used for measuring the layer thickness.
Although not particularly limited, when the surface resin layer is provided, the layer thickness of the surface resin layer is set so that the oil can easily permeate to the surface of the surface resin layer, in other words, the oil permeability to the surface resin layer is ensured. Therefore, it is preferably 75% or less of the oil-containing resin layer, more preferably 50% or less, and further preferably 35% or less. Further, depending on the resin component of the surface resin layer, from the viewpoint of strength, it is preferably 5% or more of the oil-containing resin layer, more preferably 20% or more, and further preferably 30% or more. preferable.
<相分離性及び相溶性等>
 a)「第1オイル成分」と「第2オイル成分」との間の温度変化に応じた相分離性及び相溶性、b)「第1オイル成分」と「オイル含有樹脂層の樹脂成分」との間の温度変化に応じた親和性、c)「第2オイル成分」と「オイル含有樹脂層の樹脂成分」との間の温度変化に応じた親和性を評価した。但し、直接的な分析対象は、オイル含有樹脂層から抜き出した「第1オイル成分」と「第2オイル成分」の混合物、及び、オイル含有樹脂層の表面からブリードしたオイル成分である。
 上記a)について評価するため、先ず、オイル含有樹脂層を20℃24時間トルエン(富士フィルム和光純薬株式会社製)に浸漬することにより、第1オイル成分と第2オイル成分を混合物として抜き出した。混合物中の第1オイル成分と第2オイル成分は、液層クロマトグラフィを用いて分離した。抜き出した第1オイル成分と第2オイル成分の混合物について、「20℃、500nmにおける透過率」と「3℃、500nmにおける透過率」をそれぞれ測定し、それらの差が「20℃、500nmにおける透過率」に占める割合に基づいて、「相分離している(相溶していない)」か、「相溶している(相分離していない)」かを判断した。より詳細には、その差が10%以上のときは「温度変化に応じて相分離している(相溶していない)」と評価し、その差が10%未満であるときは「温度変化に応じて相溶している(相分離していない)」と評価した。透過率の測定には、紫外可視分光光度計(日本分光製、V-750 )を用い、測定波長を500nm、スキャン速度を1000 nm/min、撹拌速度を400 rpmに設定し、20℃又は3℃にそれぞれ設定後、10分間静置した後に測定を行った。リファレンスは大気とした。
 評価基準は以下のとおりである。
○ ・・・ 10%以上
× ・・・ 10%未満
 上記b)、c)については、オイル成分を抜き出した前記オイル含有樹脂層に各オイル成分のみを含有させたオイル含有時樹脂層を、20℃の環境下においたとき、及び、3℃の環境下においたときのそれぞれにおいて、オイル含有樹脂層の表面から第1オイル成分や第2オイル成分がブリードするか否かによって評価した。
 評価基準は以下のとおりである。
○ ・・・ 20℃および3℃の何れもブリードした
× ・・・ 20℃および3℃の何れもブリードしなかった
<Phase separation and compatibility>
a) Phase separation and compatibility depending on temperature changes between the "first oil component" and the "second oil component", b) "first oil component" and "resin component of oil-containing resin layer" Affinity according to temperature change between the two, and c) Affinity according to temperature change between the "second oil component" and the "resin component of the oil-containing resin layer" were evaluated. However, direct analysis targets are a mixture of the “first oil component” and the “second oil component” extracted from the oil-containing resin layer, and the oil component bleeding from the surface of the oil-containing resin layer.
In order to evaluate the above a), first, the oil-containing resin layer was immersed in toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) at 20 ° C. for 24 hours to extract the first oil component and the second oil component as a mixture. .. The first oil component and the second oil component in the mixture were separated using liquid layer chromatography. With respect to the extracted mixture of the first oil component and the second oil component, "transmittance at 20 ° C and 500 nm" and "transmittance at 3 ° C and 500 nm" were measured, and the difference between them was measured at "20 ° C and 500 nm. Based on the ratio of the "rate", it was determined whether "phase separated (not compatible)" or "compatible (not phase separated)". More specifically, when the difference is 10% or more, it is evaluated as "phase separated according to temperature change (not compatible)", and when the difference is less than 10%, "temperature change" According to the above, they are compatible (no phase separation). " An ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, V-750) was used to measure the transmittance, the measurement wavelength was 500 nm, the scan speed was 1000 nm / min, the stirring speed was 400 rpm, and the temperature was 20 ° C or 3 ° C. The measurement was performed after the temperature was set at 0 ° C. and the sample was left standing for 10 minutes. The reference was the atmosphere.
The evaluation criteria are as follows.
◯: 10% or more ×: Less than 10% For the above b) and c), the oil-containing resin layer containing only each oil component was added to the oil-containing resin layer from which the oil component was extracted. It was evaluated by whether or not the first oil component and the second oil component bleed from the surface of the oil-containing resin layer under the environment of 0 ° C. and under the environment of 3 ° C., respectively.
The evaluation criteria are as follows.
◯: Bleed at both 20 ° C and 3 ° C ×: Neither bleed at 20 ° C nor 3 ° C
<表面オイル量>
 測定対象は、20℃、氷点である0℃、及び、-20℃それぞれにおける、オイル含有樹脂層の表面にブリードしたオイル量である。測定に際し、ブリードしたオイルが、主として第2オイル成分であることを確認した。図3に、オイル含有樹脂層の表面にブリードしたオイル状態を撮影した光学顕微鏡画像の一例を示す。
 表面オイル量の測定は、以下の方法で行う。
 中心付近において10cm×2cmのサイズにカットしたオイル含有樹脂層を、20℃、0℃、及び、-20℃の各温度で16時間放置したときにオイル含有樹脂層の表面にブリードしたオイルを、20℃、0℃、及び、-20℃の各温度環境下においてセルスクレーパー(ケニス社製、CSS-10)で採取し、そのオイルを油取り紙の重量(吸油量)変化が見られなくなるまで吸い取る。セルスクレーパーによるオイル採取と油取り紙の吸い取りは1分間に7回繰り返す。オイル吸い取り前後の油取り紙の重量差を表面オイル量とした。試験は3回行い、その平均値を算出した。
 評価基準は以下のとおりである。
◎ ・・・ 300μg/cm2以上
○ ・・・ 40μg/cm2以上300μg/cm2未満
× ・・・ 40μg/cm2未満
 無駄なブリードを防ぐため、表面オイル量は、20℃において40μg/cm2未満であるのが好ましく、着氷雪を防止するため、0℃及び-20℃において40μg/cm2以上であるのが好ましく、300μg/cm2以上であるのがより好ましい。但し、20℃において40μg/cm2以上であっても、また、0℃及び-20℃において40μg/cm2以下であっても、使用可能な場合がある。
<Amount of surface oil>
The measurement target is the amount of oil bleeding on the surface of the oil-containing resin layer at 20 ° C., the freezing point of 0 ° C., and −20 ° C., respectively. During the measurement, it was confirmed that the bleeding oil was mainly the second oil component. FIG. 3 shows an example of an optical microscope image of a state of oil bleeding on the surface of the oil-containing resin layer.
The amount of surface oil is measured by the following method.
When the oil-containing resin layer cut into a size of 10 cm × 2 cm near the center was left at 20 ° C., 0 ° C., and −20 ° C. for 16 hours, the oil bleeding on the surface of the oil-containing resin layer was removed. Under a temperature environment of 20 ° C, 0 ° C, and -20 ° C, collect with a cell scraper (Kennis Co., Ltd., CSS-10) until the oil does not show any change in weight (oil absorption). Suck up. Oil collection with a cell scraper and absorption of oil removal paper are repeated 7 times per minute. The difference in weight of the oil removing paper before and after oil absorption was defined as the amount of surface oil. The test was performed 3 times, and the average value was calculated.
The evaluation criteria are as follows.
◎ ・ ・ ・ 300 μg / cm 2 or more ○ ・ ・ ・ 40 μg / cm 2 or more and less than 300 μg / cm 2 × ・ ・ ・ less than 40 μg / cm 2 In order to prevent wasteful bleeding, the surface oil amount is 40 μg / cm at 20 ° C. It is preferably less than 2, more preferably 40 μg / cm 2 or more, and more preferably 300 μg / cm 2 or more at 0 ° C. and −20 ° C., in order to prevent snow accretion. However, even at 20 ℃ 40μg / cm 2 or more, even 40 [mu] g / cm 2 or less at 0 ℃ and -20 ° C., is sometimes available.
<耐摩耗性>
 オイル含有樹脂層の耐摩耗性を評価した。
 測定装置として学振型摩耗試験機((型番:RT-300S、大栄科学精器製作所)を使用した。図4に、試験機の概略図を示す。試験機2は、試験台21と、ネジ22a等によって試験台21に固定された支持板22と、支持体22の上方にあって、且つ、重り23によって荷重をかけられた片持ち梁状の荷重腕24の下側に配置された摩擦子25(サイズ:2cm×2cm)と、を備える。この試験機2を用いて、支持板22の上に粘着材31(日東電工製、No.5000NS)を介して貼り付けた試験片32のオイル含有樹脂層、特にその20mm×120mmの領域に対して、摩擦子25の下側に上記の粘着剤31を介して貼り付けた#120の目粗さの耐水研磨子34を、重り23と荷重腕24によって調節された125g/cm2の押圧力下で、且つ、秒速100mm/sにて、30往復させたときの、オイル含有樹脂層の減少率を求めた。室温は、20℃に設定した。
 評価基準は以下のとおりである。
◎ ・・・ 50%未満
○ ・・・ 50%以上80%未満
× ・・・ 80%以上
 耐摩耗性は、80%未満が好ましく、50%未満がより好ましく、35%未満が更に好ましい。但し、80%以上であっても、使用可能な場合がある。
<Abrasion resistance>
The abrasion resistance of the oil-containing resin layer was evaluated.
A Gakushin abrasion tester ((model number: RT-300S, Daiei Kagaku Seiki Seisakusho) was used as a measuring device. A schematic diagram of the tester is shown in Fig. 4. The tester 2 includes a test stand 21 and screws. A support plate 22 fixed to the test table 21 by 22a and the like, and friction disposed above the support body 22 and below the cantilever-shaped load arm 24 loaded by the weight 23. The child 25 (size: 2 cm × 2 cm) is provided with the test piece 32 of the test piece 2 attached on the support plate 22 via the adhesive material 31 (Nitto Denko No. 5000NS). For the oil-containing resin layer, in particular, for the area of 20 mm × 120 mm, a water resistant abrasive 34 having a # 120 roughness was attached to the lower side of the friction element 25 via the pressure-sensitive adhesive 31 as a weight 23. 125g / cm 2 adjusted by load arm 24 The reduction rate of the oil-containing resin layer was calculated when the blade was reciprocated 30 times at a pressing force of 100 mm / s per second, and the room temperature was set to 20 ° C.
The evaluation criteria are as follows.
◎ ・ ・ ・ less than 50% ◯ ・ ・ ・ 50% or more and less than 80% × ・ ・ ・ 80% or more The wear resistance is preferably less than 80%, more preferably less than 50%, and further preferably less than 35%. However, it may be usable even at 80% or more.
<着氷力>
 測定対象は、-20℃の環境下において、オイル含有樹脂層に着氷された氷塊を移動させるために要する力であって、便宜上、本明細書では、この力の大きさを「着氷力」と定義した。
 着氷力の測定は、以下の方法で行う。
1.先ず、円柱状の氷塊を作製する。氷塊は、スチロール角型ケース16型(アズワン製)の底面にステンレスリング(内径25mm)を置き、そこに6gの純水を注ぎ込んで-20℃で16時間以上凍結させ、凍結後にステンレスリングを除去することによって作製する。
2.次いで、-20℃環境に16時間静置したフィルムを、床面に対し平行に設置したステンレス板に、オイル含有樹脂層が表面となるように貼着し、そこに付着面積4.9cm2とした上記円柱状の氷塊を着氷させた。
3.環境温度-20℃に設定し、円柱状の氷塊を着氷させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセル(株式会社イマダ製 DPU-50、アタッチメント治具 A型A-4)で速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージ(株式会社イマダ製 ZTS-50N)で測定し、測定された最大荷重を付着面積4.9cm2で除算した値を着氷力として記録した。試験は3回行い、その平均値を求めた。
 尚、この測定方法は、「着雪氷防止技術に関する研究(第1報)、北海道立工業試験場報告No.292(1993)」を参考にして決定したものである。着氷力は、少なくとも-20℃においては、表面オイル量の増加に応答して略比例的に増加する。
 評価基準は以下のとおりである。
◎ ・・・ 0.1N/cm2未満
○ ・・・ 0.1N/cm2以上1.0N/cm2未満
× ・・・ 1.0N/cm2以上
 着氷力の値は小さければ小さい程良いが、1.0N/cm2未満であれば、実際の使用には十分と考えられる。但し、1.0N/cm2以上であっても、使用可能な場合がある。
<Icing power>
The object to be measured is the force required to move the ice blocks iced on the oil-containing resin layer in the environment of −20 ° C. For convenience, in the present specification, the magnitude of this force is referred to as “icing force”. It was defined as.
The icing force is measured by the following method.
1. First, a column-shaped ice mass is prepared. For the ice block, place a stainless steel ring (inner diameter 25 mm) on the bottom of a styrene square case 16 type (made by AS ONE), pour 6 g of pure water into it and freeze at -20 ° C for 16 hours or more, and remove the stainless steel ring after freezing. It is made by doing.
2. Then, the film left standing in an environment of −20 ° C. for 16 hours was attached to a stainless plate placed parallel to the floor so that the oil-containing resin layer was on the surface, and the adhesion area was 4.9 cm 2 . The above-mentioned columnar ice blocks were put on ice.
3. The environment temperature was set to -20 ° C, and three hours after the column-shaped ice blocks were iced, the ice blocks were loaded from the direction parallel to the floor surface in a load cell (DPU-made by Imada Co., Ltd.) in an environment of -20 ° C. 50, the attachment jig A type A-4) was pressed at a speed of 0.1 mm / sec, the load applied during 40 seconds was measured with a force gauge (ZTS-50N manufactured by Imada Co., Ltd.), and the maximum load measured The value obtained by dividing the adhesion area by 4.9 cm 2 was recorded as the icing force. The test was performed 3 times and the average value was calculated.
This measurement method was determined with reference to "Study on Snow and Ice Prevention Technology (1st Report), Hokkaido Industrial Test Site Report No.292 (1993)". The icing power increases almost proportionally in response to an increase in the amount of surface oil, at least at -20 ° C.
The evaluation criteria are as follows.
◎ ・ ・ ・ Less than 0.1 N / cm 2 ○ ・ ・ ・ 0.1 N / cm 2 or more and less than 1.0 N / cm 2 × ・ ・ ・ 1.0 N / cm 2 or more The smaller the value of icing force is Good, but if less than 1.0 N / cm 2 , it is considered to be sufficient for actual use. However, it may be usable even at 1.0 N / cm 2 or more.
[実施例2乃至6、及び、参考例1乃至6]
 第一の塗料を作製する際に、樹脂成分、第1オイル成分、及び第2オイル成分の配合比率を変更したこと以外は、実施例1と同様である。
[Examples 2 to 6 and Reference Examples 1 to 6]
Example 1 is the same as Example 1 except that the mixing ratio of the resin component, the first oil component, and the second oil component was changed when the first paint was produced.
[実施例7]
 第一の塗料を以下の方法で作製したこと以外は、実施例1と同様である。
1)第1の樹脂前駆体
 実施例1と同じ第1の樹脂前駆体を用いた。
[Example 7]
Example 1 is the same as Example 1 except that the first paint was produced by the following method.
1) First Resin Precursor The same first resin precursor as in Example 1 was used.
2)オイル成分
 第1オイル成分として、ジメチルシロキサンオイル(信越シリコーン社製の品番KF-96-50CS)を、また、第2オイル成分として、カルビノール性シリコーンオイル(信越シリコーン社製の品番KF-6001)を用いた。
2) Oil component As the first oil component, dimethylsiloxane oil (product number KF-96-50CS manufactured by Shin-Etsu Silicone Co., Ltd.), and as the second oil component, carbinol silicone oil (product number KF- manufactured by Shin-Etsu Silicone Co., Ltd.). 6001) was used.
3)混合
 1)の第1の樹脂前駆体と、2)の第1オイル成分及び第2オイル成分とを混合して第一の塗料を得た。配合比率は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、樹脂成分を60wt%、第1オイル成分を28wt%、第2オイル成分を12wt%とした。
 ここで、第1オイル成分であるジメチルシロキサンオイルの溶解パラメータの値は11.7、第2オイル成分であるカルビノール変性シリコーンオイルの溶解パラメータの値は12.2、更に、前述した第1の樹脂前駆体を硬化させることによって形成される樹脂成分としてのジメチルポリシロキサンゴムの溶解パラメータの値は11.9(J/cm31/2である。
3) Mixing The first resin precursor of 1) and the first oil component and the second oil component of 2) were mixed to obtain a first paint. The blending ratio was 60 wt% for the resin component, 28 wt% for the first oil component, and 12 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer.
Here, the value of the solubility parameter of the first oil component, dimethylsiloxane oil, is 11.7, and the value of the solubility parameter of the second oil component, carbinol-modified silicone oil, is 12.2. The dimethylpolysiloxane rubber as a resin component formed by curing the resin precursor has a solubility parameter value of 11.9 (J / cm 3 ) 1/2 .
[比較例1]
 第一の塗料として第1の樹脂前駆体のみを含有し、オイル成分を含有しないこと以外は、実施例1と同様である。
[Comparative Example 1]
Example 1 is the same as Example 1 except that the first coating material contains only the first resin precursor and does not contain the oil component.
[比較例2]
 第一の塗料を以下の方法で作製したこと以外は、実施例1と同様である。
1)第1の樹脂前駆体
 実施例1と同じ第1の樹脂前駆体を用いた。
[Comparative example 2]
Example 1 is the same as Example 1 except that the first paint was produced by the following method.
1) First Resin Precursor The same first resin precursor as in Example 1 was used.
2)オイル成分
 第1オイル成分として、メチルフェニルシロキサンオイル(旭化成ワッカーシリコーン社製の品番AR-20)を、また、第2オイル成分として、第1オイル成分とはSP値の異なるSP値の異なるメチルフェニルシロキサンオイル(モメンティブ社製のTSF437)を用いた。
2) Oil component Methylphenylsiloxane oil (Product No. AR-20 manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) is used as the first oil component, and the SP value is different from the first oil component as the second oil component. Methylphenylsiloxane oil (TSF437 manufactured by Momentive) was used.
3)混合
 1)の第1の樹脂前駆体と、2)の第1オイル成分及び第2オイル成分とを、実施例1と同じ方法で混合して第一の塗料を得た。配合比率は、最終的に形成されるオイル含有樹脂層全体の重量を基準として、樹脂成分を25wt%、第1オイル成分を56wt%、第2オイル成分を19wt%とした。また、上記の方法で得た第一の塗料を、実施例1と同じ方法で硬化させることによって、厚さ約140μmのオイル含有樹脂層を形成し、該オイル含有樹脂層について以下の評価を行った。ここで、第1オイル成分であるメチルフェニルシロキサンオイルの溶解パラメータの値は12.7(J/cm31/2、第2オイル成分であるメチルフェニルシロキサンオイルの溶解パラメータの値は13.9(J/cm31/2、更に、前述した第1の樹脂前駆体を硬化させることによって形成される樹脂成分としてのジメチルポリシロキサンゴムの溶解パラメータの値は11.9(J/cm31/2である。
3) Mixing The first resin precursor of 1) and the first oil component and the second oil component of 2) were mixed in the same manner as in Example 1 to obtain a first coating material. The blending ratio was 25 wt% for the resin component, 56 wt% for the first oil component, and 19 wt% for the second oil component, based on the total weight of the finally formed oil-containing resin layer. The first coating material obtained by the above method was cured in the same manner as in Example 1 to form an oil-containing resin layer having a thickness of about 140 μm, and the oil-containing resin layer was evaluated as follows. It was Here, the value of the solubility parameter of methylphenylsiloxane oil, which is the first oil component, is 12.7 (J / cm 3 ) 1/2 , and the value of the solubility parameter of methylphenylsiloxane oil, which is the second oil component, is 13. 9 (J / cm 3 ) 1/2 , and the dimethylpolysiloxane rubber as a resin component formed by curing the above-mentioned first resin precursor has a solubility parameter value of 11.9 (J / cm 3). 3 ) 1/2 .
 評価結果を以下の表1に示す。
 尚、表中の「相分離性及び相溶性等(透過率変化等)」の評価に関して、「第1オイル/第2オイル」の表記は、前述したa)に対応する「第1オイル成分」と「第2オイル成分」との間の相分離性及び相溶性の、また、「第1オイル/樹脂」の表記は、前述したb)に対応する「第1オイル成分」と「オイル含有樹脂層の樹脂成分」との間の親和性の、「第2オイル/樹脂」の表記は、前述したc)に対応する「第2オイル成分」と「オイル含有樹脂層の樹脂成分」との間の親和性の、それぞれの評価結果を示す。
The evaluation results are shown in Table 1 below.
Regarding the evaluation of “phase separation and compatibility (change in transmittance, etc.)” in the table, the notation “first oil / second oil” refers to “first oil component” corresponding to a) described above. Of the phase separation and compatibility between the oil and the "second oil component", and the notation "first oil / resin" corresponds to the above-mentioned b) "first oil component" and "oil-containing resin". The expression “second oil / resin”, which has an affinity with the “resin component of the layer”, is between the “second oil component” and the “resin component of the oil-containing resin layer” corresponding to the above c). The respective evaluation results of the affinity of are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 溶媒と溶質の混ざりやすさを判断する目安となる溶解パラメータに関して、実施例1乃至6、及び、参考例1乃至6においては、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第1オイル成分の溶解パラメータの値の差、即ち、|11.9-11.7|=0.2(J/cm31/2は、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第2オイル成分の溶解パラメータの値の差、即ち、|11.9-13.9|=2.0(J/cm31/2より小さく、また、第1オイル成分とオイル含有樹脂層11の樹脂成分との間の溶解パラメータの差、即ち、|11.7-11.9|=0.2(J/cm31/2は、0.6(J/cm31/2以内に設定されている。
 実施例7においても同様に、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第1オイル成分の溶解パラメータの値の差、即ち、|11.9-11.7|=0.2(J/cm31/2は、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第2オイル成分の溶解パラメータの値の差、即ち、|11.9-12.2|=0.3(J/cm31/2より小さく、また、第1オイル成分とオイル含有樹脂層11の樹脂成分との間の溶解パラメータの差、即ち、|11.7-11.9|=0.2(J/cm31/2は、0.6(J/cm31/2以内に設定されている。
 一方、比較例2においては、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第1オイル成分の溶解パラメータの値の差、即ち、|11.9-12.7|=0.8(J/cm31/2は、オイル含有樹脂層の樹脂成分の溶解パラメータの値と第2オイル成分の溶解パラメータの値の差、即ち、|11.9-13.9|=2.0(J/cm31/2より小さいが、第1オイル成分とオイル含有樹脂層11の樹脂成分との間の溶解パラメータの差、即ち、|12.7-11.9|=0.8(J/cm31/2は、0.6(J/cm31/2より大きな値になっている。
Regarding the solubility parameter which is a standard for determining the easiness of mixing the solvent and the solute, in Examples 1 to 6 and Reference Examples 1 to 6, the value of the solubility parameter of the resin component of the oil-containing resin layer and the first oil component Of the solubility parameter of the oil component, that is, | 11.9-11.7 | = 0.2 (J / cm 3 ) 1/2 , is the difference between the solubility parameter of the resin component of the oil-containing resin layer and the second oil. The difference in the value of the solubility parameter of the component, that is, less than | 11.9-13.9 | = 2.0 (J / cm 3 ) 1/2 , and the first oil component and the resin of the oil-containing resin layer 11 The difference in solubility parameter between the components, that is, | 11.7-11.9 | = 0.2 (J / cm 3 ) 1/2 is within 0.6 (J / cm 3 ) 1/2 It is set.
Similarly, in Example 7, the difference between the solubility parameter value of the resin component of the oil-containing resin layer and the solubility parameter value of the first oil component, that is, | 11.9-11.7 | = 0.2 (J / Cm 3 ) 1/2 is the difference between the value of the solubility parameter of the resin component of the oil-containing resin layer and the value of the solubility parameter of the second oil component, that is, | 11.9-12.2 | = 0.3 ( J / cm 3 ) 1/2 and a difference in solubility parameter between the first oil component and the resin component of the oil-containing resin layer 11, that is, | 11.7-11.9 | = 0.2. (J / cm 3 ) 1/2 is set within 0.6 (J / cm 3 ) 1/2 .
On the other hand, in Comparative Example 2, the difference between the solubility parameter value of the resin component of the oil-containing resin layer and the solubility parameter value of the first oil component, that is, | 11.9-12.7 | = 0.8 (J / Cm 3 ) 1/2 is the difference between the value of the solubility parameter of the resin component of the oil-containing resin layer and the value of the solubility parameter of the second oil component, that is, | 11.9-13.9 | = 2.0 ( J / cm 3 ) 1/2, but a difference in solubility parameter between the first oil component and the resin component of the oil-containing resin layer 11, that is, | 12.7-11.9 | = 0.8 ( J / cm 3 ) 1/2 is larger than 0.6 (J / cm 3 ) 1/2 .
 相分離性及び相溶性に関して、第1オイル成分と第2オイル成分の混合物の透過率は、温度が20℃から3℃に変化したときに有意に変化していることから、第1オイル成分と第2オイル成分が相分離したことは明らかである。
 第1オイル成分は、温度が20℃及び3℃の双方でオイル含有樹脂層の表面に実質的にブリードしていないことから、オイル含有樹脂層の樹脂成分に対して親和性を有していると言える。一方、第2オイル成分は、オイル含有樹脂層を20℃の環境下においたときはオイル含有樹脂層の表面からブリードし、3℃の環境下においたときは実質的にブリードせず、この挙動は、第1オイル成分と第2オイル成分との間の相分離性に対応していることから、第2オイル成分は、第1オイル成分の存在下において、温度変化に応じて挙動を変化させたことが分かる。更に言えば、第2オイル成分は、20℃の環境下では、表面樹脂層の樹脂成分に対して親和性を有するが、3℃の環境下では、表面樹脂層の樹脂成分に対して親和性を有しない。この挙動は、表面オイル量の結果からも明らかである。
With regard to phase separation and compatibility, the transmittance of the mixture of the first oil component and the second oil component changed significantly when the temperature changed from 20 ° C to 3 ° C. It is clear that the second oil component has phase separated.
Since the first oil component does not substantially bleed on the surface of the oil-containing resin layer at both temperatures of 20 ° C. and 3 ° C., it has an affinity for the resin component of the oil-containing resin layer. Can be said. On the other hand, the second oil component does not bleed from the surface of the oil-containing resin layer when the oil-containing resin layer is placed in an environment of 20 ° C, and does not substantially bleed when placed in an environment of 3 ° C. Corresponds to the phase separation between the first oil component and the second oil component, the second oil component changes its behavior in the presence of the first oil component in response to temperature changes. I understand that Furthermore, the second oil component has an affinity for the resin component of the surface resin layer under the environment of 20 ° C., but has an affinity for the resin component of the surface resin layer under the environment of 3 ° C. Does not have. This behavior is also clear from the result of the amount of surface oil.
 実施例において、表面オイル量及び着氷力は、常温である例えば20℃では有意な値とはならず、所定値以下となる温度となって初めて、例えば、-20℃における表面オイル量は40μg/cm2以上となり、この結果、着氷力は1.0未満となった。また、オイル含有樹脂層11からブリードしたオイル成分は、オイル含有樹脂層に含まれるオイル成分のうちの主として第2オイル成分であることから、本構成によれば、従来のようにオイル成分が過剰にブリードされることはなく、無駄なブリードを防止しつつ、第2オイル成分を、例えば着氷雪の付着を防止するために使用することができる。
 以上のことから、第2オイル成分は、所定値以下となる温度環境の下では、表面樹脂層の側のオイル含有樹脂層の表面からブリード(滲出)することができる低温滲出オイル成分として機能していることが分かる。
In the examples, the surface oil amount and the icing force do not become significant at room temperature, for example, 20 ° C., and the surface oil amount at −20 ° C. is 40 μg only when the temperature becomes a predetermined value or less. / Cm 2 or more, and as a result, the icing power was less than 1.0. Further, since the oil component bleeding from the oil-containing resin layer 11 is mainly the second oil component of the oil components contained in the oil-containing resin layer, according to this configuration, the oil component is excessive as in the conventional case. The second oil component can be used, for example, to prevent the adhesion of icing snow while preventing unnecessary bleeding.
From the above, the second oil component functions as a low-temperature exudation oil component capable of bleeding (exuding) from the surface of the oil-containing resin layer on the surface resin layer side under the temperature environment where the value is equal to or lower than the predetermined value. I understand that.
 また、第1オイル成分と第2オイル成分とが低温でも相分離しない、比較例2では、所定値以下となる温度環境の下では、表面樹脂層の側のオイル含有樹脂層の表面からオイル成分をブリード(滲出)させることができるが、第1オイル成分と第2オイル成分とが低温でも相分離しないため、ブリードさせるためにオイル成分を多く含有させる必要がある。その結果、耐摩耗性は100%となり、オイル含有樹脂層の強度を高くできない。一方、本実施例の塗料から作製した、オイル含有樹脂層では、第1オイル成分と第2オイル成分とが低温で相分離するため、比較的少量のオイル成分でもオイル含有樹脂層の表面からブリードさせることができるため、樹脂成分の含有量を高くすることができ、強度の高いオイル含有樹脂層を実現することができる。 In Comparative Example 2, the first oil component and the second oil component do not phase-separate even at a low temperature, and in a temperature environment of a predetermined value or less, the oil component is removed from the surface of the oil-containing resin layer on the surface resin layer side. However, since the first oil component and the second oil component do not phase separate even at low temperatures, it is necessary to contain a large amount of oil component for bleeding. As a result, the abrasion resistance is 100%, and the strength of the oil-containing resin layer cannot be increased. On the other hand, in the oil-containing resin layer produced from the coating material of this example, the first oil component and the second oil component are phase-separated at low temperature, so that even a relatively small amount of oil component bleeds from the surface of the oil-containing resin layer. Therefore, the content of the resin component can be increased, and an oil-containing resin layer having high strength can be realized.
 実施例7に示すように、第2オイル成分としてカルビノール変性シリコーンオイルを用いた場合には、特に、着氷力が著しく低下した。これは、第2オイル成分としてフェニル変性シリコーンオイルを用いた場合と比べて、オイル含有樹脂層への濡れ性が向上したためであると推測される。 As shown in Example 7, especially when the carbinol-modified silicone oil was used as the second oil component, the icing power was significantly reduced. It is presumed that this is because the wettability to the oil-containing resin layer was improved as compared with the case where phenyl-modified silicone oil was used as the second oil component.
 尚、第2のオイル成分が第1オイル成分から相分離する温度、言い換えれば、表面樹脂層からブリードする温度は、第1オイル成分と第2オイル成分を適当に選択することによって調整することができるから、第2オイル成分は、様々な温度、例えば、氷点又はそれ以下の温度や氷点より高い温度においても、低温滲出オイル成分として機能し得る。 The temperature at which the second oil component is phase-separated from the first oil component, in other words, the temperature at which the surface resin layer bleeds can be adjusted by appropriately selecting the first oil component and the second oil component. As such, the second oil component may function as a cold exudate oil component at various temperatures, for example, at or below freezing and above freezing.
 [実施例8~20、比較例3]
 第一の塗料について、樹脂成分、第1オイル成分、及び第2オイル成分の種類及び配合比率を表2に示したように変更したこと以外は、実施例1と同様に作製した。
 詳細には、実施例8~20、及び比較例3の全てにおいて、樹脂成分には、「ジメチルポリシロキサンゴム KE-1935」;商品名「KE-1935」(信越シリコーン社製)を用い、また、第1オイル成分には、「ジメチルシロキサン KF-96 50CS」;商品名「KF-96 50CS」(信越シリコーン社製)を用いた。
 第2オイル成分については、
  実施例8乃至11には、「長鎖アルキル変性シロキサンオイル KF-4917」;商品名「KF-4917」(信越シリコーン社製)を、
  実施例12、13、17には、「エポキシ変性シロキサンオイル X-22-163」;商品名「X-22-163」(信越シリコーン社製)を、
  実施例14、15、19、20には、「カルビノール変性オイル KF-6001」;商品名「KF-6001」(信越シリコーン社製)を、
  実施例16、18、及び比較例3には、「メチルフェニルシロキサンオイル TSF437」;商品名「TSF437」(モメンティブ社製)を、
それぞれ用いた。
 評価結果を以下の表2に示す。
[Examples 8 to 20, Comparative Example 3]
The first paint was prepared in the same manner as in Example 1 except that the types and mixing ratios of the resin component, the first oil component, and the second oil component were changed as shown in Table 2.
Specifically, in all of Examples 8 to 20 and Comparative Example 3, "dimethylpolysiloxane rubber KE-1935"; trade name "KE-1935" (manufactured by Shin-Etsu Silicone Co., Ltd.) was used as the resin component, and As the first oil component, "dimethylsiloxane KF-96 50CS"; trade name "KF-96 50CS" (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
For the second oil component,
In Examples 8 to 11, "long-chain alkyl-modified siloxane oil KF-4917"; trade name "KF-4917" (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
In Examples 12, 13, and 17, "epoxy-modified siloxane oil X-22-163"; trade name "X-22-163" (manufactured by Shin-Etsu Silicone Co., Ltd.) was used.
In Examples 14, 15, 19 and 20, "carbinol modified oil KF-6001"; trade name "KF-6001" (manufactured by Shin-Etsu Silicone Co., Ltd.),
In Examples 16 and 18 and Comparative Example 3, "methylphenylsiloxane oil TSF437"; trade name "TSF437" (manufactured by Momentive),
Used respectively.
The evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例等に関して、更に、以下の事項を評価した。
<溶解パラメータ寄与値>
 溶解パラメータ寄与値「F」は、以下の式によって算出した。
 F=f×φ×100
ここで、fは、「オイル含有樹脂層において最も多く存在するモノマー構造を構成する分子ユニット(相溶性分子ユニット)」の「溶解パラメータの寄与値」(fd1、 fp1、 fh1)と、「前記相溶性分子ユニットの溶解パラメータとの差が0.01(J/cm31/2以上である、第2オイル成分における、モノマー構造を構成する分子ユニット(非相溶性分子ユニット)」の「溶解パラメータの寄与値」(fd2、 fp2、 fh2)とを用いて下記式により算出することができる。
 f= ((fd1-fd2 )2+(fp1-fp22+(fh1-fh220.5
 なお、非相溶性分子ユニットが複数ある場合は、各寄与値を平均して上記fを求める。また、溶解パラメータの寄与値fd、fp、fhは、以下の式によってそれぞれ算出することができる。
d=δd/(δd+δp+δh
p=δp/(δd+δp+δh
h=δh/(δh+δp+δh
 また、φは非相溶性成分の重量分率を意味し、以下の式によって算出することができる。
 φ=(1-ゲル分率) × オイル成分に含まれる非相溶分子ユニットの重量比
 ゲル分率は以下の手順で求めることができる。
1.オイル含有樹脂層を2.0cm×4.5cmにカットし、重量を測定する。
2.前記オイル含有樹脂層を20gのトルエンで満たしたバイアル瓶に入れ、室温で24時間トルエンに浸漬する。
3.オイル含有樹脂層を取り出し、送風乾燥機にて150℃2時間加熱乾燥した後の残渣の重量を測定する。
4.下式よりゲル分率を算出する。
 ゲル分率=加熱乾燥後の残渣重量(g)/加熱乾燥前のオイル含有樹脂層の重量(g)
 「オイル成分に含まれる非相溶性分子ユニットの重量比」は、前記オイル含有樹脂層に含まれる第一オイル成分、第二オイル成分双方を含む全てのオイル成分のNMR測定にて算出することができる。第一オイル成分、第二オイル成分双方を含む全てのオイル成分は以下の手順で得ることができる。
1. オイル含有樹脂層を2.0×4.5cmにカットし、20gのトルエンで満たしたバイアル瓶に入れ、室温で24時間トルエンに浸漬する。
2. 前記オイル含有樹脂層をバイアル瓶から取り出し、送風乾燥機にて150℃12時間乾燥し、残渣を得る。この残渣が第一オイル成分、第二オイル成分双方を含む全てのオイル成分である。
The following items were further evaluated with respect to Examples and the like.
<Contribution value of dissolution parameter>
The solubility parameter contribution value "F" was calculated by the following formula.
F = f × φ × 100
Here, f is the “contribution value of the solubility parameter” (f d1 , f p1 , f h1 ) of the “molecular unit (compatible molecular unit) that constitutes the monomer structure that is most abundant in the oil-containing resin layer”, "Molecular unit constituting the monomer structure in the second oil component (incompatible molecular unit) having a difference of 0.01 (J / cm 3 ) 1/2 or more from the solubility parameter of the compatible molecular unit" And the “contribution value of the dissolution parameter” (f d2 , f p2 , f h2 ).
f = ((f d1 −f d2 ) 2 + (f p1 −f p2 ) 2 + (f h1 −f h2 ) 2 ) 0.5
When there are a plurality of incompatible molecular units, the contribution values are averaged to obtain the above f. Further, the contribution values f d , f p , and f h of the dissolution parameter can be calculated by the following formulas, respectively.
f d = δ d / (δ d + δ p + δ h)
f p = δ p / (δ d + δ p + δ h )
f h = δ h / (δ h + δ p + δ h)
Further, φ means the weight fraction of the incompatible component, and can be calculated by the following formula.
φ = (1-gel fraction) × weight ratio of incompatible molecular unit contained in oil component The gel fraction can be determined by the following procedure.
1. The oil-containing resin layer is cut into 2.0 cm × 4.5 cm, and the weight is measured.
2. The oil-containing resin layer is placed in a vial filled with 20 g of toluene and immersed in toluene at room temperature for 24 hours.
3. The oil-containing resin layer is taken out and heated and dried at 150 ° C. for 2 hours with a blow dryer to measure the weight of the residue.
4. The gel fraction is calculated from the following formula.
Gel fraction = residue weight after heat drying (g) / weight of oil-containing resin layer before heat drying (g)
The “weight ratio of incompatible molecular units contained in the oil component” can be calculated by NMR measurement of all oil components including both the first oil component and the second oil component contained in the oil-containing resin layer. it can. All oil components including both the first oil component and the second oil component can be obtained by the following procedure.
1. The oil-containing resin layer is cut into 2.0 × 4.5 cm, placed in a vial filled with 20 g of toluene, and immersed in toluene at room temperature for 24 hours.
2. The oil-containing resin layer is taken out of the vial and dried at 150 ° C. for 12 hours with a blow dryer to obtain a residue. This residue is all the oil components including both the first oil component and the second oil component.
<濡れパラメータ>
 濡れパラメータ「Z」は、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータの値と第2オイル成分の溶解パラメータの値との差の絶対値によって求めることができる。オイル含有樹脂層の溶解パラメータは、樹脂成分、第1オイル成分、第2オイル成分の各溶解パラメータの重量分率による加重平均より算出する。
<Wet parameter>
The wetting parameter “Z” is determined by the absolute value of the difference between the value of the solubility parameter of the oil-containing resin layer formed by curing the first resin precursor and the value of the solubility parameter of the second oil component. You can ask. The solubility parameter of the oil-containing resin layer is calculated from the weighted average of the solubility parameters of the resin component, the first oil component, and the second oil component by weight fraction.
<耐UV性>
 オイル含有樹脂層の耐UV性は下記の通り評価した。
 試験装置としてスーパーキセノンウェザーメーター(型番:SX75、スガ試験機株式会社)を使用した。試料ホルダのサイズにカットした試験片フィルム(サイズ:55mm×130mm)を試験機に投入し、紫外線(波長:300nm~400nm)を照射した。試験方法は、JIS D0205 自動車部品の耐候性試験方法を参考に、紫外線(波長:300nm~400nm)の年平均放射露光量を306kW/m2とし、この放射露光量を試験片フィルムに照射した。試験環境温度は、夏季を想定し試験機内環境温度 30℃ 、試験片背面温度55℃、 湿度55%RH、回転速度1回転/minとした。
 紫外線照射後の試験片フィルム内に残存する第1オイル成分と第2オイル成分を抽出し、第1オイル成分と第2オイル成分の比率変化からUV照射前後における第2オイル成分の減少率を算出した。なお、第1成分オイルはUV照射で減少しないことを確認済である。
 フィルム内の第1オイルと第2オイルの抽出方法および第2オイルの減少率の算出方法は以下のとおりである。
1. フィルムを20mm×40mmにカットし、スクリュー管瓶に入れる。
2. スクリュー管瓶に約30gのクロロホルムを入れ、栓をする。
3. 振とう機(ダブルアクションラボシェイカー SRR-2, アズワン株式会社)を用いて100rpmで15h振動し、フィルム内の残存オイルを抽出する。
4. スクリュー管瓶に残った固形物を取り除く。
5. 抽出されたオイルを含むクロロホルムを100℃の乾燥機で2h乾燥し、第1オイルと第2オイルの混合物を得る。
6. 得られた第1オイルと第2オイルの混合物を約3mg、重クロロホルム約700mgをバイアル瓶に採取し、混合液を作る。
7. 混合液をNMRサンプルチューブへ移す。
8. NMR(型番:ULTRASHIELD 300, BRUKER社製)にて1H NMRを測定し、各種第2成分オイルの分子構造に基づき帰属する。
9. 紫外線照射前後のSi-CH3のH数の変化から、UV照射に起因する第2成分オイルの減少率を算出する。
  
 評価基準は以下のとおりである。
1 ・・・ 第2成分オイル減少率 10%未満
2 ・・・ 第2成分オイル減少率 10~30%未満
3 ・・・ 第2成分オイル減少率 30~50%未満
<UV resistance>
The UV resistance of the oil-containing resin layer was evaluated as follows.
A super xenon weather meter (model number: SX75, Suga Test Instruments Co., Ltd.) was used as a test device. A test piece film (size: 55 mm × 130 mm) cut to the size of the sample holder was put into a tester and irradiated with ultraviolet rays (wavelength: 300 nm to 400 nm). Regarding the test method, with reference to JIS D0205 Weather resistance test method for automobile parts, the annual average radiant exposure amount of ultraviolet rays (wavelength: 300 nm to 400 nm) was set to 306 kW / m 2, and this radiant exposure amount was irradiated to the test piece film. As for the test environment temperature, assuming the summer, the test machine environment temperature was 30 ° C., the test piece back surface temperature was 55 ° C., the humidity was 55% RH, and the rotation speed was 1 rotation / min.
The first oil component and the second oil component remaining in the test piece film after ultraviolet irradiation are extracted, and the reduction rate of the second oil component before and after UV irradiation is calculated from the change in the ratio of the first oil component and the second oil component. did. It has been confirmed that the first component oil does not decrease with UV irradiation.
The method for extracting the first oil and the second oil in the film and the method for calculating the reduction rate of the second oil are as follows.
1. The film is cut into 20 mm × 40 mm and placed in a screw tube bottle.
2. Add about 30 g of chloroform to a screw bottle and cap.
3. Using a shaker (Double Action Lab Shaker SRR-2, As One Co., Ltd.), vibrate at 100 rpm for 15 hours to extract the residual oil in the film.
4. Remove any solids left in the screw vial.
5. Chloroform containing the extracted oil is dried in a dryer at 100 ° C. for 2 hours to obtain a mixture of the first oil and the second oil.
6. About 3 mg of the obtained mixture of the first oil and the second oil and about 700 mg of deuterated chloroform are collected in a vial to prepare a mixed solution.
7. Transfer the mixture to an NMR sample tube.
8. 1H NMR is measured by NMR (model number: ULTRASHIELD 300, manufactured by BRUKER), and attribution is based on the molecular structures of various second component oils.
9. The decrease rate of the second component oil due to UV irradiation is calculated from the change in the H number of Si—CH 3 before and after UV irradiation.

The evaluation criteria are as follows.
1 ... 2nd component oil reduction rate less than 10% 2 ... 2nd component oil reduction rate 10 to less than 30% 3 ... 2nd component oil reduction rate 30 to less than 50%
<耐水性>
 オイル含有樹脂層の耐水性は下記の通り評価した。
 試験装置として降雨試験機(西山製作所社製)を使用した。試験片フィルム(サイズ:150mm×150mm)を投入し、フィルム上部から年間降水量に値する量を降雨した。年間降水量は気象庁のデータを参考に1600mmとした。試験環境温度は、冬季の雨天日を想定し試験機内環境温度 5℃、降水温 5℃とし、降雨速度は約500mm/hとした。
 耐水試験後の試験片フィルム内に残存する第1オイル成分と第2オイル成分を抽出し、第1オイル成分と第2オイル成分の比率変化から耐水試験前後における第2オイル成分の減少率を算出した。なお、第1成分オイルは耐水試験で減少しないことを確認済である。
 フィルム内の第1オイルと第2オイルの抽出方法および第2オイルの減少率の算出方法および評価基準は前項<耐UV性>と同様とした。
 評価結果を以下の表3に示す。便宜上、表3には、オイル含有樹脂層の組成、即ち、樹脂成分、第1オイル成分、及び第2オイル成分も併せて記載した。
<Water resistance>
The water resistance of the oil-containing resin layer was evaluated as follows.
A rain tester (manufactured by Nishiyama Seisakusho) was used as a test device. A test piece film (size: 150 mm × 150 mm) was put in, and an amount equivalent to the annual precipitation was rained from the upper part of the film. The annual precipitation was set to 1600 mm with reference to the data of the Japan Meteorological Agency. As for the test environment temperature, assuming a rainy day in winter, the test machine environment temperature was 5 ° C, the precipitation temperature was 5 ° C, and the rainfall rate was about 500 mm / h.
The first oil component and the second oil component remaining in the test piece film after the water resistance test are extracted, and the reduction rate of the second oil component before and after the water resistance test is calculated from the change in the ratio of the first oil component and the second oil component. did. It has been confirmed that the first component oil does not decrease in the water resistance test.
The method of extracting the first oil and the second oil in the film, the method of calculating the reduction rate of the second oil, and the evaluation criteria were the same as those in the above <UV resistance>.
The evaluation results are shown in Table 3 below. For convenience, Table 3 also shows the composition of the oil-containing resin layer, that is, the resin component, the first oil component, and the second oil component.
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005
<着氷力が0.15N/cm2となるオイル量>
 樹脂成分、第1オイル成分、及び第2オイル成分のうち、樹脂成分のみを所定の配合比率(wt%)に維持したまま、第1オイル成分と第2オイル成分の比率を変更することにより、着氷力0.15N/cm2となるオイル量を見積もった。その結果を、以下の表4に示す。尚、表4には、表3と同様に、オイル含有樹脂層の組成、即ち、樹脂成分、第1オイル成分、及び第2オイル成分も併せて記載した。
<Amount of oil that gives an icing power of 0.15 N / cm 2 >
By changing the ratio of the first oil component and the second oil component while maintaining only the resin component of the resin component, the first oil component, and the second oil component at a predetermined blending ratio (wt%), The amount of oil that gives an icing force of 0.15 N / cm 2 was estimated. The results are shown in Table 4 below. As in Table 3, Table 4 also shows the composition of the oil-containing resin layer, that is, the resin component, the first oil component, and the second oil component.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記の結果から明らかなように、第2オイル成分として、長鎖アルキル変性シロキサンオイルまたはカルビノール変性シリコーンオイルを用いた場合、50μg/cm2と少量のオイル量でも低い着氷力、すなわち高い着雪着氷防止性を示すことが判明した。 As is clear from the above results, when a long-chain alkyl-modified siloxane oil or carbinol-modified silicone oil is used as the second oil component, a low icing power, that is, a high icing power is obtained even with a small oil amount of 50 μg / cm 2. It has been found to exhibit anti-icing properties.
 以上、本発明によれば、着氷及び/又は着雪を防止することができる製品、特に、使用の当初から定まった形状を有するシート等に比して柔軟な態様での使用が可能な塗料およびフィルムが提供される。 As described above, according to the present invention, a product capable of preventing icing and / or snow accretion, particularly a paint that can be used in a more flexible manner than a sheet or the like having a fixed shape from the beginning of use. And a film is provided.
 以上の説明は、好ましい実施形態に関するものであり、物品を単に代表するものであることを理解すべきである。異なる実施形態の変形及び修正が上述の教示に照らして当業者に容易に明らかになることを認めることができる。従って、例示的実施形態並びに代替的な実施形態は、添付の特許請求の範囲で説明する物品の精神から逸脱することなく行うことができる。 It should be understood that the above description is of the preferred embodiment and is merely representative of the article. It can be appreciated that variations and modifications of the different embodiments will be readily apparent to those skilled in the art in light of the above teachings. Accordingly, the exemplary and alternative embodiments can be made without departing from the spirit of the article as set forth in the appended claims.
10 構造物
11 オイル含有樹脂層
12 表面樹脂層
10 structure 11 oil-containing resin layer 12 surface resin layer

Claims (27)

  1.  第1オイル成分と、
     第2オイル成分と、
     樹脂成分の前駆体である第1の樹脂前駆体と、
    を含み、
     前記第1及び第2オイル成分を含有する前記第1の樹脂前駆体が硬化されることによって、前記第1及び第2オイル成分と前記樹脂成分を含有するオイル含有樹脂層を形成する塗料であって、
     前記第2オイル成分は、温度が所定値以下に低下したとき前記第1オイル成分から相分離して前記オイル含有樹脂層から滲出することができる低温相分離性オイル成分を構成する
    ことを特徴とする塗料。
    The first oil component,
    A second oil component,
    A first resin precursor which is a precursor of a resin component;
    Including,
    A paint for forming an oil-containing resin layer containing the first and second oil components and the resin component by curing the first resin precursor containing the first and second oil components. hand,
    The second oil component constitutes a low temperature phase-separable oil component capable of phase-separating from the first oil component and leaching from the oil-containing resin layer when the temperature drops below a predetermined value. Paint to do.
  2.  請求項1に記載した塗料であって、前記第1及び第2オイル成分は、前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第1オイル成分の溶解パラメータの値との差が、前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第2オイル成分の溶解パラメータの値との差よりも小さいことを特徴とする塗料。 The paint according to claim 1, wherein the first and second oil components are values of a solubility parameter of a resin component of the oil-containing resin layer formed by curing the first resin precursor. The difference between the (SP value) and the solubility parameter value of the first oil component is the difference between the solubility parameter value (SP value) of the resin component of the oil-containing resin layer and the solubility parameter value of the second oil component. Paint that is smaller than the difference.
  3.  請求項1又は2に記載した塗料であって、前記第1の樹脂前駆体は、湿分により硬化する湿分硬化型であることを特徴とする塗料。 The paint according to claim 1 or 2, wherein the first resin precursor is a moisture-curable type that is cured by moisture.
  4.  請求項1又は2に記載した塗料であって、前記第1の樹脂前駆体は、紫外線照射により硬化する紫外線硬化型であることを特徴とする塗料。 The paint according to claim 1 or 2, wherein the first resin precursor is an ultraviolet curable type that is cured by irradiation with ultraviolet rays.
  5.  請求項1又は2に記載した塗料であって、前記第1の樹脂前駆体は、加熱により硬化する熱硬化型であることを特徴とする塗料。 The paint according to claim 1 or 2, wherein the first resin precursor is a thermosetting type that is cured by heating.
  6.  請求項1又は2に記載した塗料であって、前記第1の樹脂前駆体は、該第1の樹脂前駆体と架橋反応する硬化剤を添加することによって硬化するものであることを特徴とする塗料。 The coating material according to claim 1 or 2, wherein the first resin precursor is cured by adding a curing agent that causes a crosslinking reaction with the first resin precursor. paint.
  7.  請求項6に記載した塗料と、前記塗料の前記第1の樹脂前駆体と架橋反応することによって該第1の樹脂前駆体を硬化させる、液状の硬化剤との組合せ。 A combination of the coating composition according to claim 6 and a liquid curing agent that cures the first resin precursor by a crosslinking reaction with the first resin precursor of the coating composition.
  8.  請求項1から請求項7までのいずれか1項に記載した塗料であって、
     前記オイル含有樹脂層全体の重量を基準として、前記オイル含有樹脂層の樹脂成分を25wt%以上含有することを特徴とする塗料。
    The paint according to any one of claims 1 to 7,
    A coating material containing 25 wt% or more of a resin component of the oil-containing resin layer based on the weight of the entire oil-containing resin layer.
  9.  請求項8に記載した塗料であって、
     前記オイル含有樹脂層全体の重量を基準として、前記第2オイル成分を3wt%以上の割合で含むことを特徴とする塗料。
    It is the paint according to claim 8,
    A coating material comprising the second oil component in a proportion of 3 wt% or more based on the total weight of the oil-containing resin layer.
  10.  請求項1から請求項9までのいずれか1項に記載した塗料であって、
     前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の上で硬化されることによって、表面樹脂層を形成する第2の樹脂前駆体と、
    を更に含み、
     前記表面樹脂層は、前記オイル含有樹脂層から滲出した低温相分離性オイル成分を、前記オイル含有樹脂層とは反対側の該表面樹脂層の表面まで透過させることができるオイル透過性を有することを特徴とする塗料。
    The paint according to any one of claims 1 to 9,
    A second resin precursor that forms a surface resin layer by being cured on the oil-containing resin layer formed by curing the first resin precursor;
    Further including,
    The surface resin layer has an oil permeability that allows the low-temperature phase-separable oil component exuded from the oil-containing resin layer to permeate to the surface of the surface resin layer on the side opposite to the oil-containing resin layer. A paint characterized by.
  11.  請求項10に記載した塗料であって、前記表面樹脂層は、前記オイル含有樹脂層よりも高い耐摩耗性を有することを特徴とする塗料。 The paint according to claim 10, wherein the surface resin layer has higher abrasion resistance than the oil-containing resin layer.
  12.  請求項1乃至11のいずれかに記載した塗料であって、-20℃における表面オイル量が40μg/cm2以上であることを特徴とする塗料。 The paint according to any one of claims 1 to 11, wherein the amount of surface oil at -20 ° C is 40 µg / cm 2 or more.
  13.  請求項1乃至12のいずれかに記載した塗料であって、前記第1オイル成分と前記オイル含有樹脂層の樹脂成分との間の溶解パラメータの差が0.6(J/cm31/2以内であることを特徴とする塗料。 A paint as claimed in any one of claims 1 to 12, the difference in solubility parameter 0.6 (J / cm 3) between the resin component of the first oil component the oil-containing resin layer 1 / A paint characterized by being within 2 .
  14.  前記所定値は氷点である、請求項1乃至13のいずれかに記載の塗料。 The paint according to any one of claims 1 to 13, wherein the predetermined value is a freezing point.
  15.  請求項1乃至12のいずれかに記載した塗料であって、
     前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータの値(SP値)と第2オイル成分の溶解パラメータの値(SP値)との差の絶対値で求められる、濡れパラメータが1.5(J/cm31/2以下であることを特徴とする塗料。
    The paint according to any one of claims 1 to 12,
    Absolute value of the difference between the solubility parameter value (SP value) of the oil-containing resin layer formed by curing the first resin precursor and the solubility parameter value (SP value) of the second oil component. A coating material having a wetting parameter of 1.5 (J / cm 3 ) 1/2 or less, which is obtained in 1 .
  16.  請求項1乃至12のいずれかに記載した塗料であって、
     前記第1の樹脂前駆体が硬化されることによって形成される前記オイル含有樹脂層の溶解パラメータ寄与値が0.1以上であることを特徴とする塗料。
    The paint according to any one of claims 1 to 12,
    A coating material, wherein the oil-containing resin layer formed by curing the first resin precursor has a solubility parameter contribution value of 0.1 or more.
  17.  第1及び第2オイル成分を含有するオイル含有樹脂層を備えたフィルムであり、
     前記第2オイル成分は、温度が所定値以下に低下したとき前記第1オイル成分から相分離して前記オイル含有樹脂層から滲出することができる低温相分離性オイル成分を構成する
    ことを特徴とするフィルム。
    A film having an oil-containing resin layer containing first and second oil components,
    The second oil component constitutes a low temperature phase-separable oil component capable of phase-separating from the first oil component and leaching from the oil-containing resin layer when the temperature drops below a predetermined value. A film to do.
  18.  請求項17に記載したフィルムであって、前記第1及び第2オイル成分は、前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第1オイル成分の溶解パラメータの値(SP値)との差が、前記オイル含有樹脂層の樹脂成分の溶解パラメータの値(SP値)と前記第2オイル成分の溶解パラメータ(SP値)の値との差よりも小さいことを特徴とするフィルム。 The film according to claim 17, wherein the first and second oil components have a solubility parameter value (SP value) of a resin component of the oil-containing resin layer and a solubility parameter value of the first oil component ( The difference with the SP value) is smaller than the difference between the solubility parameter value (SP value) of the resin component of the oil-containing resin layer and the solubility parameter value (SP value) of the second oil component. A film to do.
  19.  請求項17または18に記載したフィルムであって、
     前記オイル含有樹脂層全体の重量を基準として、前記オイル含有樹脂層の樹脂成分を25wt%以上含有することを特徴とするフィルム。
    The film according to claim 17 or 18, wherein
    A film comprising the resin component of the oil-containing resin layer in an amount of 25 wt% or more based on the total weight of the oil-containing resin layer.
  20.  請求項19に記載した塗料であって、
     前記オイル含有樹脂層全体の重量を基準として、前記第2オイル成分を3wt%以上の割合で含むことを特徴とするフィルム。
    The paint according to claim 19,
    A film comprising the second oil component in a proportion of 3 wt% or more based on the total weight of the oil-containing resin layer.
  21.  請求項17乃至20までのいずれか1項に記載したフィルムであって、
     前記オイル含有樹脂層の上に表面樹脂層をさらに備え、
     前記表面樹脂層は、前記オイル含有樹脂層から滲出した低温相分離性オイル成分を、前記オイル含有樹脂層とは反対側の該表面樹脂層の表面まで透過させることができるオイル透過性を有することを特徴とするフィルム。
    The film according to any one of claims 17 to 20, wherein
    Further comprising a surface resin layer on the oil-containing resin layer,
    The surface resin layer has an oil permeability that allows the low-temperature phase-separable oil component exuded from the oil-containing resin layer to permeate to the surface of the surface resin layer on the side opposite to the oil-containing resin layer. A film characterized by.
  22.  請求項21に記載したフィルムであって、前記表面樹脂層は、前記オイル含有樹脂層よりも高い耐摩耗性を有することを特徴とするフィルム。 The film according to claim 21, wherein the surface resin layer has higher abrasion resistance than the oil-containing resin layer.
  23.  請求項17乃至22のいずれか1項に記載した塗料であって、-20℃における表面オイル量が40μg/cm2以上であることを特徴とするフィルム。 The paint according to any one of claims 17 to 22, wherein the amount of surface oil at -20 ° C is 40 µg / cm 2 or more.
  24.  請求項17乃至23のいずれかに記載したフィルムであって、前記第1オイル成分と前記オイル含有樹脂層の樹脂成分との間の溶解パラメータの差が0.6(J/cm31/2以内であることを特徴とするフィルム。 The film according to any one of claims 17 to 23, wherein a difference in solubility parameter between the first oil component and the resin component of the oil-containing resin layer is 0.6 (J / cm 3 ) 1 / A film characterized by being within 2 .
  25.  前記所定値は氷点である、請求項17乃至24のいずれかに記載のフィルム。 The film according to any one of claims 17 to 24, wherein the predetermined value is a freezing point.
  26.  請求項17乃至25のいずれか1項に記載したフィルムであって、
     前記オイル含有樹脂層の溶解パラメータの値(SP値)と第2オイル成分の溶解パラメータの値(SP値)との差の絶対値で求められる、濡れパラメータが1.5(J/cm31/2以下であることを特徴とするフィルム。
    The film according to any one of claims 17 to 25,
    The wetting parameter, which is obtained by the absolute value of the difference between the solubility parameter value (SP value) of the oil-containing resin layer and the solubility parameter value (SP value) of the second oil component, is 1.5 (J / cm 3 ). A film characterized by being 1/2 or less.
  27.  請求項17乃至26のいずれか1項に記載したフィルムであって、
     前記オイル含有樹脂層の溶解パラメータ寄与値が0.1以上であることを特徴とするフィルム。
    The film according to any one of claims 17 to 26,
    A film, wherein the oil-containing resin layer has a solubility parameter contribution value of 0.1 or more.
PCT/JP2019/044131 2018-11-09 2019-11-11 Coating material and film WO2020096071A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980073654.8A CN112969765B (en) 2018-11-09 2019-11-11 Coating and film
EP19882471.6A EP3878916A4 (en) 2018-11-09 2019-11-11 Coating material and film
US17/292,229 US20210403754A1 (en) 2018-11-09 2019-11-11 Coating material and film
RU2021116476A RU2770085C1 (en) 2018-11-09 2019-11-11 Coating material and film
JP2020555679A JPWO2020096071A1 (en) 2018-11-09 2019-11-11 Paints and films
CA3118554A CA3118554A1 (en) 2018-11-09 2019-11-11 Coating material and film
JP2024005062A JP2024050632A (en) 2018-11-09 2024-01-17 Paints and Films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211489 2018-11-09
JP2018-211489 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020096071A1 true WO2020096071A1 (en) 2020-05-14

Family

ID=70612450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044131 WO2020096071A1 (en) 2018-11-09 2019-11-11 Coating material and film

Country Status (7)

Country Link
US (1) US20210403754A1 (en)
EP (1) EP3878916A4 (en)
JP (2) JPWO2020096071A1 (en)
CN (1) CN112969765B (en)
CA (1) CA3118554A1 (en)
RU (1) RU2770085C1 (en)
WO (1) WO2020096071A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193313A1 (en) * 2020-03-27 2021-09-30 日東電工株式会社 Coating, coating film layer, and laminate
WO2021225129A1 (en) * 2020-05-08 2021-11-11 日東電工株式会社 Coating material and laminate
WO2021225130A1 (en) * 2020-05-08 2021-11-11 日東電工株式会社 Coating material and laminate
WO2022202721A1 (en) * 2021-03-26 2022-09-29 日東電工株式会社 Coating material
WO2023190795A1 (en) * 2022-03-31 2023-10-05 日東電工株式会社 Coating film layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021151781A (en) * 2020-03-23 2021-09-30 日東電工株式会社 Sheet body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245714B2 (en) 1982-10-18 1987-09-28 Nippon Electric Co
JPH07148879A (en) 1993-11-30 1995-06-13 Shin Etsu Chem Co Ltd Ice coated snow-adhesion preventive sheet
JPH10298434A (en) * 1997-04-25 1998-11-10 Natoko Paint Kk Novel composition, anti-sticking agent and thermal transfer recording film
JP2001040338A (en) * 1999-07-28 2001-02-13 Jsr Corp Coating composition for preventing deposition of snow and ice and formation of coating film for preventing deposition of snow and ice
JP2001181509A (en) * 1999-10-13 2001-07-03 Chugoku Marine Paints Ltd Curable composition, coating composition, coating material, antifouling coating material, its cured product, and antifouling method of substrate
JP2002114941A (en) * 2000-07-31 2002-04-16 Nippon Paint Co Ltd Curable resin composition for water repellent paint and coated material
JP2003328308A (en) 2002-05-14 2003-11-19 Mitsuuma:Kk Ice/snow accretion preventing rubber mat
JP2004106228A (en) * 2002-09-13 2004-04-08 Three M Innovative Properties Co Method for manufacturing water-repellent sheet with protection film, anti-snow coating sheet and water-repellent substrate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448919A (en) * 1982-09-30 1984-05-15 Kansai Paint Company Anti-icing compositions
GB8708876D0 (en) * 1987-04-14 1987-08-05 Qmc Ind Res Ice release surfaces
JP2506768B2 (en) * 1987-05-29 1996-06-12 ポリプラスチックス株式会社 Polyacetal resin composition
US6245836B1 (en) * 1998-04-22 2001-06-12 Oiles Corporation Lubricating coating compound, sliding structure combining two sliding members in which lubricating coating compound is applied to one of the sliding members, and slide bearing apparatus using the same
JP2000239571A (en) * 1999-02-17 2000-09-05 Dainippon Toryo Co Ltd Antifouling coating composition
US6702953B2 (en) * 2000-12-14 2004-03-09 Microphase Coatings, Inc. Anti-icing composition
WO2005100495A1 (en) * 2004-04-12 2005-10-27 Daikin Industries, Ltd. Antifouling coating composition
US20060281861A1 (en) * 2005-06-13 2006-12-14 Putnam John W Erosion resistant anti-icing coatings
RU2006121401A (en) * 2006-06-13 2008-01-10 Юнайтед Текнолоджиз Корпорейшн (US) DESTRUCTIVE RESISTANT COVERINGS
JP4798396B2 (en) * 2008-07-07 2011-10-19 信越化学工業株式会社 Underwater biological adhesion prevention coating composition and underwater structure using the same
US10144523B1 (en) * 2013-11-01 2018-12-04 Sunlight Products Inc. Multi-layer de-icing skin for aircraft platforms: failure resistant, energy efficient and extended lifetime method of use
US10023701B2 (en) * 2014-06-24 2018-07-17 National Institute Of Advanced Industrial Science And Technology Wet gel and method of producing thereof
CN104673188A (en) * 2015-02-13 2015-06-03 中国科学院化学研究所 Anti-icing material, preparation method and application thereof
CA3023908A1 (en) * 2016-05-09 2017-11-16 Eric Loth Methods and systems for self-lubricating icephobic elastomer coatings
EP3526295B1 (en) * 2016-10-14 2021-08-04 HRL Laboratories, LLC Bugphobic and icephobic compositions with liquid additives
WO2018143029A1 (en) * 2017-02-03 2018-08-09 ダイキン工業株式会社 Composition and coating film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245714B2 (en) 1982-10-18 1987-09-28 Nippon Electric Co
JPH07148879A (en) 1993-11-30 1995-06-13 Shin Etsu Chem Co Ltd Ice coated snow-adhesion preventive sheet
JPH10298434A (en) * 1997-04-25 1998-11-10 Natoko Paint Kk Novel composition, anti-sticking agent and thermal transfer recording film
JP2001040338A (en) * 1999-07-28 2001-02-13 Jsr Corp Coating composition for preventing deposition of snow and ice and formation of coating film for preventing deposition of snow and ice
JP2001181509A (en) * 1999-10-13 2001-07-03 Chugoku Marine Paints Ltd Curable composition, coating composition, coating material, antifouling coating material, its cured product, and antifouling method of substrate
JP2002114941A (en) * 2000-07-31 2002-04-16 Nippon Paint Co Ltd Curable resin composition for water repellent paint and coated material
JP2003328308A (en) 2002-05-14 2003-11-19 Mitsuuma:Kk Ice/snow accretion preventing rubber mat
JP2004106228A (en) * 2002-09-13 2004-04-08 Three M Innovative Properties Co Method for manufacturing water-repellent sheet with protection film, anti-snow coating sheet and water-repellent substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Investigation on Technology of Preventing Icing (Part I", REPORTS OF HOKKAIDO INDUSTRIAL RESEARCH INSTITUTE NO. 292, 1993
See also references of EP3878916A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193313A1 (en) * 2020-03-27 2021-09-30 日東電工株式会社 Coating, coating film layer, and laminate
WO2021225129A1 (en) * 2020-05-08 2021-11-11 日東電工株式会社 Coating material and laminate
WO2021225130A1 (en) * 2020-05-08 2021-11-11 日東電工株式会社 Coating material and laminate
WO2022202721A1 (en) * 2021-03-26 2022-09-29 日東電工株式会社 Coating material
WO2023190795A1 (en) * 2022-03-31 2023-10-05 日東電工株式会社 Coating film layer

Also Published As

Publication number Publication date
EP3878916A4 (en) 2022-08-24
US20210403754A1 (en) 2021-12-30
RU2770085C1 (en) 2022-04-14
JP2024050632A (en) 2024-04-10
CN112969765A (en) 2021-06-15
EP3878916A1 (en) 2021-09-15
JPWO2020096071A1 (en) 2021-09-30
CA3118554A1 (en) 2020-05-14
CN112969765B (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2020096071A1 (en) Coating material and film
JP7443243B2 (en) sheet body
Golovin et al. Designing durable icephobic surfaces
Urata et al. Transparent organogel films showing extremely efficient and durable anti-icing performance
CN104704067A (en) Slippery self-lubricating polymer surfaces
WO2021193474A1 (en) Sheet body
WO2021193973A1 (en) Coating material and multilayer body
WO2023190417A1 (en) Sheet body
US20230109348A1 (en) Coating material, coating film layer, and laminate
US20230167307A1 (en) Coating material and laminate
US20230183436A1 (en) Coating material and laminate
WO2022196824A1 (en) Sheet body
WO2023190795A1 (en) Coating film layer
WO2014050356A1 (en) Waterproofing method for outdoor tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3118554

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020555679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882471

Country of ref document: EP

Effective date: 20210609