WO2023190795A1 - Coating film layer - Google Patents

Coating film layer Download PDF

Info

Publication number
WO2023190795A1
WO2023190795A1 PCT/JP2023/013033 JP2023013033W WO2023190795A1 WO 2023190795 A1 WO2023190795 A1 WO 2023190795A1 JP 2023013033 W JP2023013033 W JP 2023013033W WO 2023190795 A1 WO2023190795 A1 WO 2023190795A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
coating layer
group
component
amount
Prior art date
Application number
PCT/JP2023/013033
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 江口
愛佳 石井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023190795A1 publication Critical patent/WO2023190795A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D191/00Coating compositions based on oils, fats or waxes; Coating compositions based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to a coating layer, and more specifically, the present invention relates to a coating layer that prevents snow from forming on the surface of objects such as solar panels, aircraft, railways, automobiles, wind power generators, houses, traffic lights, signboards, tunnels, snow eaves prevention boards, bridges, and road signs. It relates to a coating layer used to prevent ice from adhering.
  • oil-containing paints and coating layers have been developed in various industrial fields as a measure to prevent snow and ice from accreting on the surfaces of objects.
  • Patent Document 1 discloses an anti-icing and snow coating composition containing chemically reactive silicone rubber and silicone oil.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and provides a coating layer that causes less contamination of coated objects even in low-temperature environments and has excellent icing and/or snow accumulation prevention functions. This is an issue that must be solved.
  • the coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C.
  • the collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
  • Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute.
  • the difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil.
  • the amount of surface oil is measured three times and the average value is used. (Measurement method of icing force)
  • the coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours.
  • a cylindrical block of ice having a weight of 6 g and an adhering area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
  • the environmental temperature was set to -20°C, and 3 hours after the ice block was attached, in an environment of -20°C, the ice block was pushed from a direction parallel to the floor surface using a load cell at a speed of 0.1 mm/sec.
  • the load applied during 40 seconds is measured with a force gauge.
  • the value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force.
  • the icing force was measured three times and the average value was used.
  • the coating layer of the present invention causes less contamination of the coated object even in a low-temperature environment and has an excellent function of preventing icing and/or snow accretion.
  • FIG. 1 is a sectional view showing the coating layer of the present invention together with an object to be coated.
  • FIG. 2 is a cross-sectional view showing an example of a layer structure including a coating layer of the present invention together with an object to be coated.
  • the coating layer of the present invention is a coating layer containing a resin component and at least one oil component, and the oil component has a hydrophilic group, and the coating layer is measured by the method described below.
  • the amount of surface oil is less than 40 ⁇ g/cm 2
  • the icing force of the coating layer measured by the method described below is 0.7 N/cm 2 or less.
  • the coating layer of the present invention contains a resin component and at least one oil component.
  • the resin component may be any of a moisture-curable resin that is cured by moisture, an ultraviolet-curable resin that is cured by ultraviolet irradiation, and a thermosetting resin that is cured by heating. Further, the resin component may be a resin or a thermoplastic resin that is cured by adding a curing agent that crosslinks with the resin component.
  • the resin component is not particularly limited, but includes, for example, silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), acrylic resin, Examples include EPDM (ethylene propylene diene rubber), SEBS (styrene thermoplastic elastomer), and SBR (styrene butadiene rubber).
  • any suitable silicone resin may be employed as long as the effects of the present invention are not impaired.
  • the number of silicone resins may be one, or two or more.
  • Such silicone resin may be a condensation type silicone resin or an addition type silicone resin.
  • such silicone resin may be a one-component silicone resin that is dried alone (for example, a one-component room temperature curable (RTV) resin), or a two-component silicone resin (for example, a one-component room temperature curable (RTV) resin). , two-component room temperature curable (RTV) resin).
  • silicone resin examples include one-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-4898, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE- 1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-3498, KE-3493, KE-3466, KE-3467, KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE-3418, KE-3427, KE-3428, KE-
  • KE-1800T-A/B, KE-66, KE-1031-A/B, KE-200, KE-118) , KE-103, KE-108, KE-119, KE-109E-A/B, KE-1051J-A/B, KE-1012-A/B, KE-106, KE-1282-A/B, KE -1283-A/B, KE-1800-A/B/C, KE-1801-A/B/C, KE-1802-A/B/C, KE-1281-A/B, KE-1204-A /B, KE-1204-AL/BL, KE-1280-A/B, KE-513-A/B, KE-521-A/B, KE-1285-A/B, KE-1861-A/B , KE-12, KE-14, KE-17, KE-113, KE-24, KE-26, KE-1414, KE-1415, KE-1416,
  • KEG-2000-40A/B KEG-2000-50A/B, KEG-2000-60A/B, KEG-2000-70A/B, KEG-2001-40A/B, KEG-2001-50A/B, KE-1950-10A/B, KE-1950-20A/B, KE-1950-30A/B, KE-1950-35A/B, KE- 1950-40A/B, KE-1950-50A/B, KE-1950-60A/B, KE-1950-70A/B, KE-1935A/B, KE-1987A/B, KE-1988A/B, KE- 2019-40A/B, KE-2019-50A/B, KE-2019-60A/B, KE-2017-30A/B, KE-2017-40A/B, KE-2017-50A/B, KE-2090- 40A/B, KE-2090-50A/B, KE-2090-60A/B, KE-2090-70A/B, KE-2096-40A
  • the content of the resin component in the coating layer of the present invention is preferably 15% by mass or more, more preferably 25% by mass or more, and still more preferably 35% by mass or more. Further, the content of the resin component in the coating layer of the present invention is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less.
  • the coating layer of the present invention contains at least one oil component.
  • the oil component has hydrophilic groups.
  • the oil component does not exude from the coating layer of the present invention in air at a temperature of -20°C.
  • oil component for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil, alcohol, etc. can be used.
  • silicone oil examples include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF -56A, KF-6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Corporation (e.g. Element14*PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series) , TSF437 series, TSF4420 series, TSF4421 series, etc.), silicone oil manufactured by Dow Corning Toray Co., Ltd.
  • silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, K
  • WACKER registered trademark
  • SILICONE FLUID AK series WACKER (registered trademark) SILICONE FLUID AP series
  • WACKER registered trademark
  • SILICONE FLUID AR series WACKER (registered trademark) SILICONE FLUID AR series
  • WACKER registered trademark
  • SILICONE FLUID AS series WACKER (registered trademark)
  • WACKER registered trademark
  • TN series WACKER (registered trademark) TN series
  • WACKER registered trademark) L series
  • WA CKER registered trademark Liquid paraffin such as AF series
  • Preferred hydrophilic groups possessed by the oil component include, for example, at least one group selected from the group consisting of carbinol groups, hydroxy groups, carboxy groups, amino groups, sulfo groups, ether groups, and ester groups. .
  • carbinol groups are more preferred from the viewpoint of exhibiting excellent icing and/or snow accretion prevention functions.
  • the number average molecular weight of the oil component is preferably 2000 or more. If the number average molecular weight of the oil component is 2,000 or more, excellent icing and/or snow accretion prevention function can be exhibited.
  • the number average molecular weight of the oil component is more preferably 2,500 or more, still more preferably 3,000 or more. Further, the number average molecular weight of the oil component is more preferably 20,000 or less, still more preferably 10,000 or less. Note that the number average molecular weight of the oil component can be measured by the method described in Examples.
  • the resin component is an addition-type silicone resin with a curing agent ratio of 0.8 or more and less than 1.4
  • the oil component is a carbinol-modified silicone oil with both ends modified
  • the number average molecular weight of the oil component is 2100 to 10000.
  • the content of the oil component in the coating layer of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more. Further, in this case, the content of the oil component in the coating layer of the present invention is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less.
  • the resin component is an addition type silicone resin with a curing agent ratio of 1.4 or more and 5.0 or less
  • the oil component is a carbinol-modified silicone oil with a modified type at both ends
  • the number average molecular weight of the oil component is 100 to 2000.
  • the content of the oil component in the coating layer of the present invention is preferably 3% by mass or more, more preferably 4% by mass or more, and still more preferably 5% by mass or more. Further, in this case, the content of the oil component in the coating layer of the present invention is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the resin component is an addition type silicone resin with a curing agent ratio of 1.4 or more and 5.0 or less
  • the oil component is a carbinol-modified silicone oil with both terminals modified
  • the number average molecular weight of the oil component is 2,100 to 10,000.
  • the content of the oil component in the coating layer of the present invention is preferably 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more.
  • the content of the oil component in the coating layer of the present invention is preferably 80% by mass or less, more preferably 70% by mass or less, and still more preferably 60% by mass or less.
  • only one type of oil component may be used, or two or more types may be used.
  • the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is preferably 1.4 or more.
  • the curing agent preferably has a hydrosilyl group.
  • the curing agent has a hydrosilyl group, and the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more. It is thought that the hydrosilyl group of the curing agent and the resin component react, and further the hydrosilyl group of the curing agent and the oil component react, and the oil component is incorporated into the resin component. As a result, it is thought that the bleeding of oil components in a low-temperature environment is suppressed, and the object to be coated is not contaminated.
  • the curing agent and the oil component are combined in the coating layer of the present invention. Further, it is preferable that the curing agent and the resin component are combined.
  • Examples of the curing agent include those whose main chain is a repeating unit of diorganosiloxane and whose terminal end is a triorganosiloxane structure, and may have a branched or cyclic structure.
  • Examples of the organo group bonded to silicon at the terminal or in the repeating unit include methyl group, ethyl group, octyl group, phenyl group, etc.
  • a curing agent in which two or more of these groups are substituted with hydrogen is preferred.
  • Specific examples include hydrogen silicone and the like.
  • Specific curing agents include, for example, cat-1310s, KF-99, and KF-9901 manufactured by Shin-Etsu Chemical Co., Ltd., and HMS-151, HMS-301, and HMS-501 manufactured by Gelest.
  • the ratio of the amount of reactive groups (moles) in the curing agent to the amount (moles) of reactive groups in the resin component is more preferably 1.6 or more, and still more preferably 2.0 or more. Further, the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is preferably 6 or less, more preferably 4 or less.
  • silane coupling agent At least one silane coupling agent may be added to the resin component of the present invention.
  • the silane coupling agent include those having as a functional group at least one group selected from the group consisting of isocyanate groups, vinyl groups, epoxy groups, amino groups, and mercapto groups, acid anhydrides, and the like. .
  • silane coupling agent examples include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyldimethoxymethylsilane, 3-isocyanatepropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyltriethoxysilane, and isocyanatemethyldimethoxymethylsilane. etc.
  • silane coupling agent examples include vinyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane, -aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and the like.
  • the silane coupling agent is preferably used in combination with a curing agent.
  • a curing agent By combining the silane coupling agent and the curing agent, the anti-icing and/or snow accretion function of the formed coating layer and the adhesion to the substrate are improved. The reason for this is not clear, but it is speculated that in addition to the hydrosilyl group, the functional groups of the silane coupling agent react and/or interact with the functional groups of the base material, resulting in improved adhesion. .
  • the silane coupling agent reacts with the hydrosilyl group of the resin component, the hydrosilyl group of the resin component and the hydrophilic group of the oil component can prevent the oil component from seeping out from the coating layer under low temperature conditions. It is thought that this reaction can be suppressed. As a result, it is possible to provide a coating layer that has excellent adhesion to the substrate and has an excellent ability to prevent icing and/or snow accretion.
  • a resin containing the silane coupling agent in advance may be used, or an additional silane coupling agent independent of the resin may be added.
  • resins that contain a silane coupling agent in advance include KE-2098-60A/B.
  • an additional silane coupling agent may be added independently from this resin.
  • the content of the silane coupling agent in the coating layer of the present invention is preferably 0.05 parts by mass or more, more preferably 0.10 parts by mass or more, and even more preferably 0.15 parts by mass, based on 100 parts by mass of the resin. It is more than 100%. Further, the content of the silane coupling agent in the coating layer of the present invention is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, even more preferably 6 parts by mass or less, based on 100 parts by mass of the resin. . In addition, only one type of silane coupling agent may be used, or two or more types may be used.
  • the coating material for forming the coating layer of the present invention can contain a solvent.
  • solvents include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, hydrocarbon solvents such as hexane, octane, decane, and isoparaffin, and ketone solvents such as acetone and methyl ethyl ketone. Examples include solvents.
  • the coating material of the present invention can further contain a curing catalyst.
  • a curing catalyst for example, platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, hexachloride platinum (IV) acid, chlorotris (triphenylphosphine) rhodium (I) Examples include metal catalysts such as.
  • the paint of the present invention can further contain fillers such as silica, talc, calcium carbonate, titanium oxide, clay, and pigments.
  • silica for example, silica manufactured by Nippon Aerosil Co., Ltd. (for example, AEROSIL50, 130, 200, 300, R972, R974, R976, RX50, RX200, RX300, RY50, RY300, R7200, R8200, R9200), etc. may be used. I can do it.
  • the coating material of the present invention may contain any other appropriate additives as long as the effects of the present invention are not impaired.
  • examples of such other additives include weathering agents, ultraviolet absorbers, and light stabilizers. Ultraviolet absorbers and light stabilizers are highly effective when used together.
  • ultraviolet absorbers include ADEKA LA-24, LA-29, LA-31, LA-31RG, LA-31G, LA-32, LA-36, LA-46, LA-F70, 1413, BASF TinuvinPS, Tinuvin99-2, Tinuvin326, Tinuvin384-2, Tinuvin900, Tinuvin928, Tinuvin970, Tinuvin1130, Tinuvin400, Tinuvin405, Ti Examples include nuvin460, Tinuvin477, Tinuvin479, UVA-903KT, UVA-935LH, and the like.
  • light stabilizers include LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77Y, LA-77G, LA-81, LA-82, and LA- manufactured by ADEKA. 87, LA-402AF, LA-40MP, LA-40Si, BASF Tinuvin111, Tinuvin123, Tinuvin144, Tinuvin152, Tinuvin249, Tinuvin292, Tinuvin770DF, Tinuvin5 100, etc.
  • the coating material of the present invention can be obtained by mixing and/or stirring the above-mentioned components by a known method.
  • the coating layer of the present invention preferably has a surface oil amount of less than 40 ⁇ g/cm 2 as measured by the method described below.
  • the amount of surface oil is more preferably less than 30 ⁇ g/cm 2 , even more preferably less than 20 ⁇ g/cm 2 . Further, the amount of surface oil is preferably as small as possible, but may be, for example, 10 ⁇ g/cm 2 or more.
  • the coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C.
  • the collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
  • Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute.
  • the difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil.
  • the amount of surface oil is measured three times and the average value is used.
  • the coating layer of the present invention preferably has an icing force of 0.7 N/cm 2 or less as measured by the method below.
  • the coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours.
  • a cylindrical block of ice having a weight of 6 g and an adhesion area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
  • the environmental temperature was set to -20°C, and 3 hours after the ice block was attached, the ice block was pushed at a speed of 0.1 mm/sec with a load cell from a direction parallel to the floor surface in an environment of -20°C.
  • the load applied during 40 seconds is measured with a force gauge.
  • the value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force.
  • the icing force was measured three times and the average value was used.
  • 10° C. constant temperature surface refers to the surface of a device whose temperature can be changed using, for example, a Peltier element, and is used to partially melt the bottom of the ice block.
  • the icing force is 0.7 N/cm 2 or less, excellent icing and/or snow accretion prevention function can be exhibited.
  • the icing force is more preferably 0.6 N/cm 2 or less, still more preferably 0.5 N/cm 2 or less. Further, the icing force is preferably as small as possible, but may be, for example, 0.2 N/cm 2 or more, or 0.4 N/cm 2 or more.
  • another embodiment of the coating layer of the present invention is a coating layer containing a resin component and at least one oil component, and the amount of surface oil of the coating layer measured by the above method is 40 ⁇ g/
  • the icing force of the coating layer , measured by the above method, is preferably less than 0.3 N/cm 2 .
  • a first coating layer 11 can be obtained by applying the paint of the present invention to an object 10 to be coated.
  • a method for applying the paint of the present invention general methods such as brush painting, spray painting, and various types of coater painting can be used. Painting is usually done once or twice.
  • a primer is applied to the object 10 to be coated, and the primer is coated on top of the primer.
  • the paint of the present invention may be applied from.
  • the thickness of the first coating layer 11 is not particularly limited, but from the viewpoint of the quality of the dried coating film, it is preferably 2000 ⁇ m or less, and from the viewpoint of strength, it is preferably 50 ⁇ m or more.
  • coated object 10 used in the present invention examples include polyurethane resins, polyurethane acrylic resins, rubber resins, vinyl chloride resins, polyester resins, silicone resins, elastomers, fluororesins, polyamide resins, polyolefin resins (polyethylene, polypropylene, etc.). ), metal plates or metal foils (aluminum, copper, silver, iron, nickel, tin, stainless steel, etc.), concrete, ceramics, etc. can be used. Further, the object to be coated 10 may be in the form of a film or a sheet.
  • the coating material of the present invention After the coating material of the present invention is applied to the object to be coated 10, the coating material can be cured or dried by allowing it to stand in an environment of, for example, 20 to 180° C. for, for example, 3 minutes to 3 hours.
  • a top coat can be applied as necessary on the first coating layer 11 obtained from the paint of the present invention to form a second coating layer 12.
  • the top coat There are no particular limitations on the top coat, and for example, the same paint as the paint of the present invention can be used, but the top coat does not need to contain an oil component.
  • top coat As a method for applying the top coat, general methods such as brush painting, spray painting, and various coater coatings can be used. Painting is usually done once or twice.
  • the thickness of the second coating layer 12 is not particularly limited, but should be such that the oil component can easily permeate to the surface of the coating layer, in other words, ensuring oil permeability to the second coating layer 12. Therefore, it is preferably 500 ⁇ m or less, and from the viewpoint of strength, it is preferably 50 ⁇ m or more.
  • the curing or drying temperature and curing or drying time when applying the top coat to the first coating layer 11 are the curing or drying temperature and curing or drying time when applying the coating of the present invention to the object to be coated 10. It is similar to The curing or drying of the paint of the present invention and the curing or drying of the top coat may be performed simultaneously or separately.
  • the oil component has a hydrophilic group
  • the amount of surface oil of the coating layer measured by the following method is less than 40 ⁇ g/cm 2
  • the coating layer has an icing force of 0.7 N/cm 2 or less as measured by the following method. (Method for measuring surface oil amount)
  • the coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C.
  • the collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
  • Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute.
  • the difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil.
  • the amount of surface oil is measured three times and the average value is used. (Measurement method of icing force)
  • the coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours.
  • a cylindrical block of ice having a weight of 6 g and an adhesion area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
  • the environmental temperature was set to -20°C, and 3 hours after the ice block was attached, the ice block was pushed at a speed of 0.1 mm/sec with a load cell from a direction parallel to the floor surface in an environment of -20°C.
  • the load applied during 40 seconds is measured with a force gauge.
  • the value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force.
  • the icing force was measured three times and the average value was used.
  • ⁇ 3> The coating layer according to ⁇ 1> or ⁇ 2>, wherein the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more.
  • ⁇ 4> ⁇ 1> to ⁇ 3>, wherein the hydrophilic group is at least one group selected from the group consisting of a carbinol group, a hydroxy group, a carboxy group, an amino group, a sulfo group, an ether group, and an ester group.
  • ⁇ 5> A paint for forming a coating layer according to any one of ⁇ 1> to ⁇ 4>.
  • resin component silicone resin "KE-1935" (manufactured by Shin-Etsu Chemical Co., Ltd.), first oil component (incompatible oil): carbinol-modified silicone oil "KF-6003" (manufactured by Shin-Etsu Chemical Co., Ltd.). (manufactured by Shin-Etsu Chemical Co., Ltd.) and second oil component (compatible oil): dimethylsiloxane oil "KF-96 (50cs)” (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a resin component (50 parts by mass), a first oil component (25 parts by mass), and a second oil component (25 parts by mass) were mixed under conditions of 25° C. and 101 kPa.
  • the resulting mixed solution was stirred for 60 seconds with a spatula, and further stirred for 120 seconds and defoamed for 300 seconds using a rotation/revolution mixer (CONDITIONING MIXER AR-250, manufactured by Shinky Co., Ltd.) to obtain a paint.
  • the obtained coating material was applied onto a PET film (Lumirror #75S10 manufactured by Toray Industries, Inc.) and cured by heating in a 150° C. environment for 10 minutes to form a coating layer with a thickness of about 250 ⁇ m.
  • Examples 2-3, Comparative Examples 1-3 A paint and a coating layer were obtained according to the method described in Example 1, except that the paint components and their contents were as shown in Table 1.
  • Examples 4 to 6 Comparative Example 4
  • a paint and a coating layer were obtained according to the method described in Example 1, except that the paint components and their contents were as shown in Table 2.
  • the curing agent ratio is the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component.
  • the composition of the resin component was analyzed by NMR under the following measurement conditions, and the amount of reactive groups (mol) in the resin component and the amount (mol) of reactive groups in the curing agent were determined, and the curing agent ratio was calculated using the following formula. Calculated. The results are shown in Tables 1 and 2.
  • Curing agent ratio (Number of moles of hydrosilyl groups in the curing agent) / (Number of moles of carbon-carbon double bonds of vinyl groups in the resin component)
  • Measurement conditions equipment Bruker Biospin, AVANCEIII-600 with Cryo Probe observation frequency: 600MHz (1H), 79MHz (29Si) Measurement solvent: CDCl3 Measurement temperature: 300K Chemical shift standard: Measurement solvent [7.25ppm (1H)] Internal standard (TMS) [0.00ppm (29Si)]
  • the number average molecular weight of the first oil component was determined using the following measuring method and conditions. The results are shown in Tables 1 and 2.
  • the first oil component was prepared to 0.2% by mass with an eluent, left to stand for 20 hours, filtered through a 0.45 ⁇ m membrane filter, and the filtrate was subjected to GPC measurement under the following conditions.
  • Measurement conditions equipment Waters, ACQUITY APC Column: Agilent, PLgel Mixed-C + PLgel Mixed-E Column temperature: 40°C Eluent: toluene Flow rate: 0.8mL/min Injection volume: 100 ⁇ L Detector: RI Standard sample: polystyrene (PS)
  • the object of measurement is the amount of oil bled onto the surface of the coating layer at -20°C.
  • the amount of surface oil was measured using the following method, and the result was taken as a -20°C scraping test.
  • the paint layer cut into a size of 10 cm x 2 cm near the center was left at -20°C for 16 hours, and the oil that had bled onto the surface of the paint layer was removed using a cell scraper (manufactured by Kennis Co., Ltd.) under a temperature environment of -20°C. , CSS-10).
  • the oil was absorbed until no change in the mass (oil absorption amount) of the oil-absorbing paper was observed.
  • Collecting oil with a cell scraper and blotting it with oil-blotting paper was repeated 7 times per minute.
  • the difference in mass of the oil-blotting paper before and after oil-blotting was taken as the amount of surface oil.
  • the amount of surface oil was measured three times, and the average value was calculated.
  • the evaluation criteria for the -20°C scraping test are as follows. ⁇ ...Less than 40 ⁇ g/ cm2 ⁇ ...40 ⁇ g/cm2 or more
  • the object of measurement is the force required to move ice blocks attached to the coating layer in an environment of -20°C, and for convenience, in this specification, the magnitude of this force is defined as "icing force”. did.
  • the icing force was measured using the following method. First, a cylindrical block of ice was created. To make ice cubes, place a stainless steel ring (inner diameter 25 mm) on the bottom of a styrene square case type 16 (manufactured by As One), pour 6 g of pure water into it, freeze it at -20°C for more than 16 hours, and then remove the stainless steel ring after freezing. It was made by removing.
  • the coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours.
  • a cylindrical block of ice having a weight of 6 g and an adhering area of 4.9 cm 2 was prepared, and the bottom surface of the block of ice was brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
  • the environmental temperature was set to -20°C, and 3 hours after the ice cubes were attached, the ice cubes were placed on a load cell (DPU-50 manufactured by Imada Co., Ltd., with attachment treatment) in a -20°C environment from a direction parallel to the floor surface.
  • a type A-4 was pressed at a speed of 0.1 mm/sec, and the load applied during 40 seconds was measured with a force gauge (ZTS-50N manufactured by Imada Co., Ltd.). The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 was recorded as the icing force.
  • the test was conducted three times and the average value was determined.
  • the paint of the present invention can provide a coating layer that causes less contamination of the coated object even in low-temperature environments and has excellent anti-icing and/or snow accretion functions. .
  • the coating layer of the present invention causes less contamination of the coated object even in low-temperature environments and has excellent icing and/or snow accumulation prevention functions, so it can be applied to solar panels, aircraft, railways, automobiles, and wind power generators. It can be used to prevent snow and ice from adhering to the surfaces of objects such as houses, traffic lights, signboards, tunnels, snow eaves prevention boards, bridges, and road signs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a coating film layer that largely does not contaminate an adherend even in a low-temperature environment, the coating film layer having an exceptional function for preventing accretion of ice and/or snow. The present invention relates to a coating film layer containing a resin component and at least one type of oil component, the oil component having hydrophylic groups, the amount of oil on the surface of the coating film layer being less than 40 μg/cm 2, and the ice accretion force of the coating film layer being equal to or less than 0.7 N/cm2.

Description

塗膜層Paint layer
 本発明は、塗膜層に関し、詳しくは、太陽光パネル、航空機、鉄道、自動車、風力発電機、住宅、信号機、看板、トンネル、雪庇防止板、橋梁、道路標識等の物体表面への雪や氷の付着を防止するために用いられる塗膜層に関する。 The present invention relates to a coating layer, and more specifically, the present invention relates to a coating layer that prevents snow from forming on the surface of objects such as solar panels, aircraft, railways, automobiles, wind power generators, houses, traffic lights, signboards, tunnels, snow eaves prevention boards, bridges, and road signs. It relates to a coating layer used to prevent ice from adhering.
 物体表面への氷の付着(着氷)や降雪による雪片の付着(着雪)は、様々な分野において多くの被害や障害をもたらす原因となっている。例えば、航空機翼への着氷、機関車下部への着雪及び凍結、自動車のヘッドライトへの着雪、太陽光パネルや風力発電機のブレードへの着氷、信号機の灯器への着雪及び凍結等は、これらの運行、運転、安全性に対する障害となり得る。
 また、住宅屋根や看板等への着雪及び凍結は、これらの構築物の損傷や落雪による人への被害の原因となり得る。
The adhesion of ice to the surface of objects (icing) and the adhesion of snowflakes due to snowfall (snow accretion) are causes of much damage and trouble in various fields. For example, ice on aircraft wings, snow and ice on the bottom of locomotives, snow on car headlights, ice on solar panels and wind turbine blades, and snow on traffic light equipment. and freezing, etc., can pose obstacles to their operation, operation, and safety.
Furthermore, snow accretion and freezing on residential roofs, signboards, etc. can cause damage to these structures and damage to people due to falling snow.
 従来、各産業分野において、このような物体表面への着雪や着氷を防止するための対策として、オイルを含有する塗料や塗膜層が開発されている。 Conventionally, oil-containing paints and coating layers have been developed in various industrial fields as a measure to prevent snow and ice from accreting on the surfaces of objects.
 例えば、特許文献1では、化学反応形シリコーンゴムとシリコーンオイルを含有する着氷雪防止塗料組成物が開示されている。 For example, Patent Document 1 discloses an anti-icing and snow coating composition containing chemically reactive silicone rubber and silicone oil.
日本国特開昭62-252477号公報Japanese Patent Publication No. 62-252477
 しかしながら、本発明者の検討によると、特許文献1に開示されているような従来の塗料から得られる塗膜層においては、低温環境下ではオイル成分がブリードしてしまい被塗物及びその周辺が汚染されることがある。 However, according to the study of the present inventor, in the coating layer obtained from the conventional paint as disclosed in Patent Document 1, the oil component bleeds out in a low temperature environment, causing damage to the coated object and its surroundings. May be contaminated.
 本発明は、上記従来の実情に鑑みてなされたものであって、低温環境下でも被塗物への汚染が少なく、優れた着氷及び/又は着雪防止機能を有する塗膜層を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and provides a coating layer that causes less contamination of coated objects even in low-temperature environments and has excellent icing and/or snow accumulation prevention functions. This is an issue that must be solved.
 本発明者は鋭意検討を重ねた結果、以下の塗膜層によって上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of extensive studies, the inventors of the present invention have found that the above-mentioned problems can be solved by the following coating layer, and have completed the present invention.
 すなわち、本発明は下記[1]~[5]に関するものである。
[1]
 樹脂成分及び少なくとも1種のオイル成分を含有する塗膜層であって、
 前記オイル成分は親水性基を有し、
 前記塗膜層の下記の方法によって測定される表面オイル量は40μg/cm未満であり、
 前記塗膜層の下記の方法によって測定される着氷力は0.7N/cm以下である、塗膜層。
(表面オイル量の測定方法)
 前記塗膜層を-20℃で16時間放置し、前記塗膜層の表面にブリードしたオイル成分を、-20℃の環境下においてセルスクレーパーで採取する。採取したオイル成分を油取り紙によって、油取り紙の質量変化が見られなくなるまで吸い取る。
 セルスクレーパーによるオイル採取と油取り紙による吸い取りは、1分間に7回繰り返す。オイル吸い取り前後の油取り紙の質量差を表面オイル量とする。表面オイル量の測定は3回行い、その平均値を採用する。
(着氷力の測定方法)
 ステンレス平板に、前記塗膜層が表面となるように前記塗膜層を貼着し、-20℃環境に16時間静置する。重さ6g、付着面積4.9cmとした円柱状の氷塊を準備し、氷塊の底面を10℃恒温の表面に10秒間接触させ、前記塗膜層上に付着させる。
 環境温度-20℃に設定し、氷塊を付着させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセルで、速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージで測定する。測定された最大荷重を付着面積4.9cmで除算した値を着氷力とする。着氷力の測定は3回行い、その平均値を採用する。
[2]
 前記オイル成分の数平均分子量が2000以上である、[1]に記載の塗膜層。
[3]
 前記樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比が1.4以上である、[1]又は[2]に記載の塗膜層。
[4]
 前記親水性基が、カルビノール基、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、エーテル基及びエステル基からなる群から選択される少なくとも1種の基である、[1]又は[2]に記載の塗膜層。
[5]
 [1]又は[2]に記載の塗膜層を形成するための塗料。
That is, the present invention relates to the following [1] to [5].
[1]
A coating layer containing a resin component and at least one oil component,
The oil component has a hydrophilic group,
The amount of surface oil of the coating layer measured by the following method is less than 40 μg/cm 2 ,
The coating layer has an icing force of 0.7 N/cm 2 or less as measured by the following method.
(Method for measuring surface oil amount)
The coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C. The collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute. The difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil. The amount of surface oil is measured three times and the average value is used.
(Measurement method of icing force)
The coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours. A cylindrical block of ice having a weight of 6 g and an adhering area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
The environmental temperature was set to -20°C, and 3 hours after the ice block was attached, in an environment of -20°C, the ice block was pushed from a direction parallel to the floor surface using a load cell at a speed of 0.1 mm/sec. The load applied during 40 seconds is measured with a force gauge. The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force. The icing force was measured three times and the average value was used.
[2]
The coating layer according to [1], wherein the oil component has a number average molecular weight of 2000 or more.
[3]
The coating layer according to [1] or [2], wherein the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more.
[4]
[1] or [2], wherein the hydrophilic group is at least one group selected from the group consisting of a carbinol group, a hydroxy group, a carboxy group, an amino group, a sulfo group, an ether group, and an ester group; The coating layer described.
[5]
A paint for forming the coating layer according to [1] or [2].
 本発明の塗膜層は、低温環境下でも被塗物への汚染が少なく、優れた着氷及び/又は着雪防止機能を有する。 The coating layer of the present invention causes less contamination of the coated object even in a low-temperature environment and has an excellent function of preventing icing and/or snow accretion.
図1は、本発明の塗膜層を被塗物とともに示す断面図である。FIG. 1 is a sectional view showing the coating layer of the present invention together with an object to be coated. 図2は、本発明の塗膜層を含む層構成の一例を被塗物とともに示す断面図である。FIG. 2 is a cross-sectional view showing an example of a layer structure including a coating layer of the present invention together with an object to be coated.
 以下、本発明の実施形態をさらに詳しく説明するが、本発明は下記実施形態に何ら制限されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail, but the present invention is not limited to the following embodiments.
[塗膜層]
 本発明の塗膜層は、樹脂成分及び少なくとも1種のオイル成分を含有する塗膜層であって、前記オイル成分は親水性基を有し、前記塗膜層の後述する方法によって測定される表面オイル量は40μg/cm未満であり、前記塗膜層の後述する方法によって測定される着氷力は0.7N/cm以下である。
[Coating film layer]
The coating layer of the present invention is a coating layer containing a resin component and at least one oil component, and the oil component has a hydrophilic group, and the coating layer is measured by the method described below. The amount of surface oil is less than 40 μg/cm 2 , and the icing force of the coating layer measured by the method described below is 0.7 N/cm 2 or less.
 本発明の塗膜層は、樹脂成分及び少なくとも1種のオイル成分を含有する。 The coating layer of the present invention contains a resin component and at least one oil component.
(樹脂成分)
 樹脂成分は、湿分により硬化する湿分硬化型樹脂、紫外線照射により硬化する紫外線硬化型樹脂、加熱により硬化する熱硬化型樹脂のいずれであってもよい。また、樹脂成分は、樹脂成分と架橋反応する硬化剤を添加することによって硬化する樹脂や熱可塑性樹脂であってもよい。
(resin component)
The resin component may be any of a moisture-curable resin that is cured by moisture, an ultraviolet-curable resin that is cured by ultraviolet irradiation, and a thermosetting resin that is cured by heating. Further, the resin component may be a resin or a thermoplastic resin that is cured by adding a curing agent that crosslinks with the resin component.
 樹脂成分としては、特に限定されないが、例えば、シリコーン樹脂、ポリウレタン樹脂、ポリウレタンアクリル樹脂、塩化ビニル樹脂、ポリエステル樹脂、エラストマー類、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、アクリル樹脂、EPDM(エチレンプロピレンジエンゴム)、SEBS(スチレン系熱可塑エラストマー)、SBR(スチレンブタジエンゴム)等が挙げられる。 The resin component is not particularly limited, but includes, for example, silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), acrylic resin, Examples include EPDM (ethylene propylene diene rubber), SEBS (styrene thermoplastic elastomer), and SBR (styrene butadiene rubber).
 シリコーン樹脂としては、本発明の効果を損なわない範囲で、任意の適切なシリコーン樹脂を採用し得る。シリコーン樹脂は、1種のみであってもよいし、2種以上であってもよい。このようなシリコーン樹脂としては、縮合型のシリコーン樹脂であってもよいし、付加型のシリコーン樹脂であってもよい。また、このようなシリコーン樹脂としては、単独で乾燥させる1液型のシリコーン樹脂(例えば、1液型の室温硬化性(RTV)樹脂)であってもよいし、2液型のシリコーン樹脂(例えば、2液型の室温硬化性(RTV)樹脂)であってもよい。 As the silicone resin, any suitable silicone resin may be employed as long as the effects of the present invention are not impaired. The number of silicone resins may be one, or two or more. Such silicone resin may be a condensation type silicone resin or an addition type silicone resin. Further, such silicone resin may be a one-component silicone resin that is dried alone (for example, a one-component room temperature curable (RTV) resin), or a two-component silicone resin (for example, a one-component room temperature curable (RTV) resin). , two-component room temperature curable (RTV) resin).
 シリコーン樹脂としては、例えば、信越化学工業株式会社製の1液型RTVゴム(例えば、KE-3423、KE-347、KE-3475、KE-3495、KE-4895、KE-4896、KE-1830、KE-1884、KE-3479、KE-348、KE-4897、KE-4898、KE-1820、KE-1825、KE-1831、KE-1833、KE-1885、KE-1056、KE-1151、KE-1842、KE-1886、KE-3424G、KE-3494、KE-3490、KE-40RTV、KE-4890、KE-3497、KE-3498、KE-3493、KE-3466、KE-3467、KE-1862、KE-1867、KE-3491、KE-3492、KE-3417、KE-3418、KE-3427、KE-3428、KE-41、KE-42、KE-44、KE-45、KE-441、KE-445、KE-45S等)、信越化学工業株式会社製の2液型RTVゴム(例えば、KE-1800T-A/B、KE-66、KE-1031-A/B、KE-200、KE-118、KE-103、KE-108、KE-119、KE-109E-A/B、KE-1051J-A/B、KE-1012-A/B、KE-106、KE-1282-A/B、KE-1283-A/B、KE-1800-A/B/C、KE-1801-A/B/C、KE-1802-A/B/C、KE-1281-A/B、KE-1204-A/B、KE-1204-AL/BL、KE-1280-A/B、KE-513-A/B、KE-521-A/B、KE-1285-A/B、KE-1861-A/B、KE-12、KE-14、KE-17、KE-113、KE-24、KE-26、KE-1414、KE-1415、KE-1416、KE-1417、KE-1300T、KE-1310ST、KE-1314-2、KE-1316、KE-1600、KE-117603-A/B、KE-1606、KE-1222-A/B、KE-1241等)、信越化学工業株式会社製のシリコーンシーラント(例えば、KE-42AS、KE-420、KE-450等)、信越化学工業株式会社製のゴムコンパウンド(例えば、KE-655-U、KE-675-U、KE-931-U、KE-941-U、KE-951-U、KE-961-U、KE-971-U、KE-981-U、KE-961T-U、KE-971T-U、KE-871C-U、KE-9410-U、KE-9510-U、KE-9610-U、KE-9710-U、KE-742-U、KE-752-U、KE-762-U、KE-772-U、KE-782-U、KE-850-U、KE-870-U、KE-880-U、KE-890-U、KE-9590-U、KE-5590-U、KE-552-U、KE-582-U、KE-552B-U、KE-555-U、KE-575-U、KE-541-U、KE-551-U、KE-561-U、KE-571-U、KE-581-U、KE-520-U、KE-530B-2-U、KE-540B-2-U、KE-1551-U、KE-1571-U、KE-152-U、KE-174-U、KE-3601SB-U、KE-3711-U、KE-3801M-U、KE-5612G-U、KE-5620BL-U、KE-5620W-U、KE-5634-U、KE-7511-U、KE-7611-U、KE-765-U、KE-785-U、KE-7008-U、KE-7005-U、KE-503-U、KE-5042-U、KE-505-U、KE-6801-U、KE-136Y-U等)、信越化学工業株式会社製のLIMS(液状シリコーンゴム射出成形システム)(例えば、KEG-2000-40A/B、KEG-2000-50A/B、KEG-2000-60A/B、KEG-2000-70A/B、KEG-2001-40A/B、KEG-2001-50A/B、KE-1950-10A/B、KE-1950-20A/B、KE-1950-30A/B、KE-1950-35A/B、KE-1950-40A/B、KE-1950-50A/B、KE-1950-60A/B、KE-1950-70A/B、KE-1935A/B、KE-1987A/B、KE-1988A/B、KE-2019-40A/B、KE-2019-50A/B、KE-2019-60A/B、KE-2017-30A/B、KE-2017-40A/B、KE-2017-50A/B、KE-2090-40A/B、KE-2090-50A/B、KE-2090-60A/B、KE-2090-70A/B、KE-2096-40A/B、KE-2096-50A/B、KE-2096-6OA/B等)、KE-2098-40A/B、KE-2098-50A/B、KE-2098-60A/B、信越化学工業株式会社製のジメチコノール(例えば、X-21-5847、X-21-5849)、旭化成ワッカーシリコーン株式会社製のLR7665シリーズ、旭化成ワッカーシリコーン株式会社製のLR3033シリーズ、モメンティブ株式会社製のTSE3032シリーズ等、東レダウコーニング製のシルガード184等を用いることができる。 Examples of the silicone resin include one-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-4898, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE- 1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-3498, KE-3493, KE-3466, KE-3467, KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE-3418, KE-3427, KE-3428, KE-41, KE-42, KE-44, KE-45, KE-441, KE- 445, KE-45S, etc.), two-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-1800T-A/B, KE-66, KE-1031-A/B, KE-200, KE-118) , KE-103, KE-108, KE-119, KE-109E-A/B, KE-1051J-A/B, KE-1012-A/B, KE-106, KE-1282-A/B, KE -1283-A/B, KE-1800-A/B/C, KE-1801-A/B/C, KE-1802-A/B/C, KE-1281-A/B, KE-1204-A /B, KE-1204-AL/BL, KE-1280-A/B, KE-513-A/B, KE-521-A/B, KE-1285-A/B, KE-1861-A/B , KE-12, KE-14, KE-17, KE-113, KE-24, KE-26, KE-1414, KE-1415, KE-1416, KE-1417, KE-1300T, KE-1310ST, KE -1314-2, KE-1316, KE-1600, KE-117603-A/B, KE-1606, KE-1222-A/B, KE-1241, etc.), silicone sealants manufactured by Shin-Etsu Chemical Co., Ltd. (e.g. , KE-42AS, KE-420, KE-450, etc.), rubber compounds manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-655-U, KE-675-U, KE-931-U, KE-941-U) , KE-951-U, KE-961-U, KE-971-U, KE-981-U, KE-961T-U, KE-971T-U, KE-871C-U, KE-9410-U, KE -9510-U, KE-9610-U, KE-9710-U, KE-742-U, KE-752-U, KE-762-U, KE-772-U, KE-782-U, KE-850 -U, KE-870-U, KE-880-U, KE-890-U, KE-9590-U, KE-5590-U, KE-552-U, KE-582-U, KE-552B-U , KE-555-U, KE-575-U, KE-541-U, KE-551-U, KE-561-U, KE-571-U, KE-581-U, KE-520-U, KE -530B-2-U, KE-540B-2-U, KE-1551-U, KE-1571-U, KE-152-U, KE-174-U, KE-3601SB-U, KE-3711-U , KE-3801M-U, KE-5612G-U, KE-5620BL-U, KE-5620W-U, KE-5634-U, KE-7511-U, KE-7611-U, KE-765-U, KE -785-U, KE-7008-U, KE-7005-U, KE-503-U, KE-5042-U, KE-505-U, KE-6801-U, KE-136Y-U, etc.), Shin-Etsu LIMS (liquid silicone rubber injection molding system) manufactured by Kagaku Kogyo Co., Ltd. (for example, KEG-2000-40A/B, KEG-2000-50A/B, KEG-2000-60A/B, KEG-2000-70A/B, KEG-2001-40A/B, KEG-2001-50A/B, KE-1950-10A/B, KE-1950-20A/B, KE-1950-30A/B, KE-1950-35A/B, KE- 1950-40A/B, KE-1950-50A/B, KE-1950-60A/B, KE-1950-70A/B, KE-1935A/B, KE-1987A/B, KE-1988A/B, KE- 2019-40A/B, KE-2019-50A/B, KE-2019-60A/B, KE-2017-30A/B, KE-2017-40A/B, KE-2017-50A/B, KE-2090- 40A/B, KE-2090-50A/B, KE-2090-60A/B, KE-2090-70A/B, KE-2096-40A/B, KE-2096-50A/B, KE-2096-6OA/ B, etc.), KE-2098-40A/B, KE-2098-50A/B, KE-2098-60A/B, dimethiconol manufactured by Shin-Etsu Chemical Co., Ltd. (e.g., X-21-5847, X-21-5849) ), Asahi Kasei Wacker Silicone Co., Ltd.'s LR7665 series, Asahi Kasei Wacker Silicone Co., Ltd.'s LR3033 series, Momentive Co., Ltd.'s TSE3032 series, Toray Dow Corning's Sylgard 184, etc. can be used.
 本発明の塗膜層における樹脂成分の含有量は、好ましくは15質量%以上、より好ましくは25質量%以上、さらに好ましくは35質量%以上である。また、本発明の塗膜層における樹脂成分の含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下である。 The content of the resin component in the coating layer of the present invention is preferably 15% by mass or more, more preferably 25% by mass or more, and still more preferably 35% by mass or more. Further, the content of the resin component in the coating layer of the present invention is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less.
(オイル成分)
 本発明の塗膜層は、少なくとも1種のオイル成分を含有する。オイル成分は親水性基を有する。
 オイル成分は、温度が-20℃の空気中では、本発明の塗膜層から滲出しないことが好ましい。
(oil component)
The coating layer of the present invention contains at least one oil component. The oil component has hydrophilic groups.
Preferably, the oil component does not exude from the coating layer of the present invention in air at a temperature of -20°C.
 オイル成分として、例えば、シリコーンオイル、フッ素オイル、炭化水素系オイル、ポリエーテル系オイル、エステル系オイル、リン化合物系オイル、鉱油系オイル、アルコール等を用いることができる。 As the oil component, for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil, alcohol, etc. can be used.
 シリコーンオイルとしては、例えば、信越化学工業株式会社製のシリコーンオイル(例えば、KF96Lシリーズ、KF96シリーズ、KF69シリーズ、KF99シリーズ、KF50シリーズ、KF54シリーズ、KF410シリーズ、KF412シリーズ、KF414シリーズ、FLシリーズ、KF-56A、KF-6000、KF-6001、KF-6002、KF-6003等)、モメンティブ株式会社製のシリコーンオイル(例えば、Element14*PDMSシリーズ、TSF404シリーズ、TSF410シリーズ、TSF4300シリーズ、TSF431シリーズ、TSF433シリーズ、TSF437シリーズ、TSF4420シリーズ、TSF4421シリーズ等)、東レダウコーニング株式会社製のシリコーンオイル(例えば、BY16-846シリーズ、SF8416シリーズ、SF8427シリーズ、SF-8428シリーズ、SH200シリーズ、SH203シリーズ、SH230シリーズ、SF8419シリーズ、FS1265シリーズ、SH510シリーズ、SH550シリーズ、SH710シリーズ、FZ-2110シリーズ、FZ-2203シリーズ、BY16-201等)、旭化成ワッカーシリコーン社製のシリコーンオイル(WACKER(登録商標)SILICONE FLUID AKシリーズ、WACKER(登録商標)SILICONE FLUID APシリーズ、WACKER(登録商標)SILICONE FLUID ARシリーズ、WACKER(登録商標)SILICONE FLUID ASシリーズ、WACKER(登録商標)TNシリーズ、WACKER(登録商標)Lシリーズ、WACKER(登録商標)AFシリーズ等)等、流動パラフィンを用いることができる。 Examples of silicone oil include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF -56A, KF-6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Corporation (e.g. Element14*PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series) , TSF437 series, TSF4420 series, TSF4421 series, etc.), silicone oil manufactured by Dow Corning Toray Co., Ltd. (for example, BY16-846 series, SF8416 series, SF8427 series, SF-8428 series, SH200 series, SH203 series, SH230 series, SF8419) series, FS1265 series, SH510 series, SH550 series, SH710 series, FZ-2110 series, FZ-2203 series, BY16-201, etc.), silicone oil manufactured by Asahi Kasei Wacker Silicone Co., Ltd. (WACKER (registered trademark) SILICONE FLUID AK series, WACKER (registered trademark) SILICONE FLUID AP series, WACKER (registered trademark) SILICONE FLUID AR series, WACKER (registered trademark) SILICONE FLUID AS series, WACKER (registered trademark) TN series, WACKER (registered trademark) L series, WA CKER (registered trademark) Liquid paraffin such as AF series) can be used.
 オイル成分が有する好ましい親水性基としては、例えば、カルビノール基、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、エーテル基、エステル基からなる群から選択される少なくとも1種の基等が挙げられる。これらの中でも、優れた着氷及び/又は着雪防止機能を発揮する観点から、カルビノール基がより好ましい。 Preferred hydrophilic groups possessed by the oil component include, for example, at least one group selected from the group consisting of carbinol groups, hydroxy groups, carboxy groups, amino groups, sulfo groups, ether groups, and ester groups. . Among these, carbinol groups are more preferred from the viewpoint of exhibiting excellent icing and/or snow accretion prevention functions.
 また、オイル成分の数平均分子量は2000以上が好ましい。オイル成分の数平均分子量が2000以上であれば、優れた着氷及び/又は着雪防止機能を発揮できる。 Furthermore, the number average molecular weight of the oil component is preferably 2000 or more. If the number average molecular weight of the oil component is 2,000 or more, excellent icing and/or snow accretion prevention function can be exhibited.
 オイル成分の数平均分子量は、より好ましくは2500以上、さらに好ましくは3000以上である。また、オイル成分の数平均分子量は、より好ましくは20000以下、さらに好ましくは10000以下である。
 なお、オイル成分の数平均分子量は、実施例に記載の方法で測定できる。
The number average molecular weight of the oil component is more preferably 2,500 or more, still more preferably 3,000 or more. Further, the number average molecular weight of the oil component is more preferably 20,000 or less, still more preferably 10,000 or less.
Note that the number average molecular weight of the oil component can be measured by the method described in Examples.
 樹脂成分が硬化剤比0.8以上1.4未満の付加型シリコーン樹脂であり、オイル成分が両末端変性タイプのカルビノール変性シリコーンオイルであり、オイル成分の数平均分子量が2100~10000である場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。また、この場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。 The resin component is an addition-type silicone resin with a curing agent ratio of 0.8 or more and less than 1.4, the oil component is a carbinol-modified silicone oil with both ends modified, and the number average molecular weight of the oil component is 2100 to 10000. In this case, the content of the oil component in the coating layer of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more. Further, in this case, the content of the oil component in the coating layer of the present invention is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less.
 樹脂成分が硬化剤比1.4以上5.0以下の付加型シリコーン樹脂であり、オイル成分が両末端変性タイプのカルビノール変性シリコーンオイルであり、オイル成分の数平均分子量が100~2000である場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは3質量%以上、より好ましくは4質量%以上、さらに好ましくは5質量%以上である。また、この場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。 The resin component is an addition type silicone resin with a curing agent ratio of 1.4 or more and 5.0 or less, the oil component is a carbinol-modified silicone oil with a modified type at both ends, and the number average molecular weight of the oil component is 100 to 2000. In this case, the content of the oil component in the coating layer of the present invention is preferably 3% by mass or more, more preferably 4% by mass or more, and still more preferably 5% by mass or more. Further, in this case, the content of the oil component in the coating layer of the present invention is preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
 樹脂成分が硬化剤比1.4以上5.0以下の付加型シリコーン樹脂であり、オイル成分が両末端変性タイプのカルビノール変性シリコーンオイルであり、オイル成分の数平均分子量が2100~10000である場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは15質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上である。また、この場合、本発明の塗膜層におけるオイル成分の含有量は、好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは60質量%以下である。
 なお、オイル成分は1種類のみ用いてもよいし、2種類以上用いてもよい。
The resin component is an addition type silicone resin with a curing agent ratio of 1.4 or more and 5.0 or less, the oil component is a carbinol-modified silicone oil with both terminals modified, and the number average molecular weight of the oil component is 2,100 to 10,000. In this case, the content of the oil component in the coating layer of the present invention is preferably 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more. Moreover, in this case, the content of the oil component in the coating layer of the present invention is preferably 80% by mass or less, more preferably 70% by mass or less, and still more preferably 60% by mass or less.
In addition, only one type of oil component may be used, or two or more types may be used.
(硬化剤)
 また、本発明の塗膜層においては、樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比が1.4以上であることが好ましい。硬化剤は、ヒドロシリル基を有するものが好ましい。本発明の塗膜層において、硬化剤がヒドロシリル基を有し、かつ樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比が1.4以上であると、硬化剤のヒドロシリル基と樹脂成分が反応し、さらに硬化剤のヒドロシリル基とオイル成分が反応し、樹脂成分中にオイル成分が取り込まれると考えられる。その結果、低温環境下でのオイル成分のブリードが抑制され、被塗物が汚染されなくなると考えられる。
(hardening agent)
Further, in the coating layer of the present invention, the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is preferably 1.4 or more. The curing agent preferably has a hydrosilyl group. In the coating layer of the present invention, the curing agent has a hydrosilyl group, and the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more. It is thought that the hydrosilyl group of the curing agent and the resin component react, and further the hydrosilyl group of the curing agent and the oil component react, and the oil component is incorporated into the resin component. As a result, it is thought that the bleeding of oil components in a low-temperature environment is suppressed, and the object to be coated is not contaminated.
 例えば、シリコーン樹脂とカルビノール基を有するオイル成分を用いた場合、硬化剤のヒドロシリル基とシリコーン樹脂中の不飽和基(炭素-炭素二重結合)が反応し、さらに硬化剤のヒドロシリル基とオイル成分中のカルビノール基の一部が反応すると考えられる。 For example, when a silicone resin and an oil component having a carbinol group are used, the hydrosilyl group of the curing agent and the unsaturated group (carbon-carbon double bond) in the silicone resin react, and the hydrosilyl group of the curing agent and the oil component react. It is thought that some of the carbinol groups in the components react.
 上記の理由から、本発明の塗膜層においては、硬化剤とオイル成分が結合していることが好ましい。また、硬化剤と樹脂成分が結合していることが好ましい。 For the above reasons, it is preferable that the curing agent and the oil component are combined in the coating layer of the present invention. Further, it is preferable that the curing agent and the resin component are combined.
 硬化剤としては、例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合するオルガノ基としては、メチル基、エチル基、オクチル基、フェニル基などが例示され、これらの2個以上が水素に置換された硬化剤が好ましい。具体例としては、ハイドロジェンシリコーン等が挙げられる。具体的な硬化剤としては、例えば、信越化学工業株式会社製のcat-1310s、KF-99、KF-9901、Gelest社製のHMS-151、HMS-301、HMS-501等が挙げられる。 Examples of the curing agent include those whose main chain is a repeating unit of diorganosiloxane and whose terminal end is a triorganosiloxane structure, and may have a branched or cyclic structure. Examples of the organo group bonded to silicon at the terminal or in the repeating unit include methyl group, ethyl group, octyl group, phenyl group, etc. A curing agent in which two or more of these groups are substituted with hydrogen is preferred. Specific examples include hydrogen silicone and the like. Specific curing agents include, for example, cat-1310s, KF-99, and KF-9901 manufactured by Shin-Etsu Chemical Co., Ltd., and HMS-151, HMS-301, and HMS-501 manufactured by Gelest.
 樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比は、より好ましくは1.6以上、さらに好ましくは2.0以上である。また、樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比は、好ましくは6以下、より好ましくは4以下である。 The ratio of the amount of reactive groups (moles) in the curing agent to the amount (moles) of reactive groups in the resin component is more preferably 1.6 or more, and still more preferably 2.0 or more. Further, the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is preferably 6 or less, more preferably 4 or less.
(シランカップリング剤)
 本発明の樹脂成分に対して、少なくとも1種のシランカップリング剤を添加してもよい。シランカップリング剤としては、例えば、イソシアネート基、ビニル基、エポキシ基、アミノ基及びメルカプト基からなる群から選択される少なくとも1種の基を官能基として有するものや、酸無水物等が挙げられる。
(Silane coupling agent)
At least one silane coupling agent may be added to the resin component of the present invention. Examples of the silane coupling agent include those having as a functional group at least one group selected from the group consisting of isocyanate groups, vinyl groups, epoxy groups, amino groups, and mercapto groups, acid anhydrides, and the like. .
 シランカップリング剤としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン等が挙げられる。 Examples of the silane coupling agent include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyldimethoxymethylsilane, 3-isocyanatepropyltriethoxysilane, isocyanatemethyltrimethoxysilane, isocyanatemethyltriethoxysilane, and isocyanatemethyldimethoxymethylsilane. etc.
 シランカップリング剤としては、例えばビニルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物等が挙げられる。 Examples of the silane coupling agent include vinyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropyltrimethoxysilane, -aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and the like.
 シランカップリング剤は、硬化剤と組み合わせて用いることが好ましい。シランカップリング剤と硬化剤とを組み合わせることにより、形成される塗膜層の着氷及び/又は着雪防止機能、並びに、基材への密着性が向上する。この理由は定かではないが、ヒドロシリル基に加えてシランカップリング剤が有する官能基が基材の官能基と反応および/または相互作用するために、密着性が向上するのではないかと推測される。また、シランカップリング剤は樹脂成分が有するヒドロシリル基と反応するため、低温条件下における塗膜層からのオイル成分の滲出の妨げとなる、樹脂成分のヒドロシリル基とオイル成分の親水性基等との反応を抑制することができると考えられる。その結果として、基材等への密着性に優れ、優れた着氷及び/又は着雪防止機能を持つ塗膜層を提供することができると考えられる。 The silane coupling agent is preferably used in combination with a curing agent. By combining the silane coupling agent and the curing agent, the anti-icing and/or snow accretion function of the formed coating layer and the adhesion to the substrate are improved. The reason for this is not clear, but it is speculated that in addition to the hydrosilyl group, the functional groups of the silane coupling agent react and/or interact with the functional groups of the base material, resulting in improved adhesion. . In addition, since the silane coupling agent reacts with the hydrosilyl group of the resin component, the hydrosilyl group of the resin component and the hydrophilic group of the oil component can prevent the oil component from seeping out from the coating layer under low temperature conditions. It is thought that this reaction can be suppressed. As a result, it is possible to provide a coating layer that has excellent adhesion to the substrate and has an excellent ability to prevent icing and/or snow accretion.
 シランカップリング剤を用いる場合には、あらかじめシランカップリング剤が含まれている樹脂を使用してもよく、樹脂とは独立した追加のシランカップリング剤を添加してもよい。あらかじめシランカップリング剤が含まれている樹脂の具体例としては、KE-2098-60A/B等が挙げられる。また、あらかじめシランカップリング剤が含まれている樹脂を使用する場合は、これとは独立した追加のシランカップリング剤をさらに添加してもよい。 When using a silane coupling agent, a resin containing the silane coupling agent in advance may be used, or an additional silane coupling agent independent of the resin may be added. Specific examples of resins that contain a silane coupling agent in advance include KE-2098-60A/B. Furthermore, when using a resin that contains a silane coupling agent in advance, an additional silane coupling agent may be added independently from this resin.
 本発明の塗膜層におけるシランカップリング剤の含有量は、樹脂100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.10質量部以上、さらに好ましくは0.15質量部以上である。また、本発明の塗膜層におけるシランカップリング剤の含有量は、樹脂100質量部に対して、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは6質量部以下である。
 なお、シランカップリング剤は1種類のみ用いてもよいし、2種類以上用いてもよい。
The content of the silane coupling agent in the coating layer of the present invention is preferably 0.05 parts by mass or more, more preferably 0.10 parts by mass or more, and even more preferably 0.15 parts by mass, based on 100 parts by mass of the resin. It is more than 100%. Further, the content of the silane coupling agent in the coating layer of the present invention is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, even more preferably 6 parts by mass or less, based on 100 parts by mass of the resin. .
In addition, only one type of silane coupling agent may be used, or two or more types may be used.
(溶剤)
 本発明の塗膜層を形成するための塗料(本発明の塗料)は、溶剤を含有することできる。
 溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ヘキサン、オクタン、デカン、イソパラフィン等の炭化水素系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤等を挙げることができる。
(solvent)
The coating material for forming the coating layer of the present invention (coating material of the present invention) can contain a solvent.
Examples of solvents include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, hydrocarbon solvents such as hexane, octane, decane, and isoparaffin, and ketone solvents such as acetone and methyl ethyl ketone. Examples include solvents.
(硬化触媒)
 本発明の塗料は、さらに硬化触媒を含有することができる。
 硬化触媒としては、例えば、白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体、ヘキサクロリド白金(IV)酸、クロロトリス(トリフェニルホスフィン)ロジウム(I)等の金属触媒等を挙げることができる。
(curing catalyst)
The coating material of the present invention can further contain a curing catalyst.
As a curing catalyst, for example, platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, hexachloride platinum (IV) acid, chlorotris (triphenylphosphine) rhodium (I) Examples include metal catalysts such as.
(その他の成分)
 本発明の塗料は、さらにシリカ、タルク、炭酸カルシウム、酸化チタン、クレー、顔料などのフィラーを含有することができる。
 シリカとしては、例えば、日本アエロジル株式会社製のシリカ(例えば、AEROSIL50、130、200、300、R972、R974、R976、RX50、RX200、RX300、RY50、RY300、R7200、R8200、R9200)等を用いることができる。
(Other ingredients)
The paint of the present invention can further contain fillers such as silica, talc, calcium carbonate, titanium oxide, clay, and pigments.
As the silica, for example, silica manufactured by Nippon Aerosil Co., Ltd. (for example, AEROSIL50, 130, 200, 300, R972, R974, R976, RX50, RX200, RX300, RY50, RY300, R7200, R8200, R9200), etc. may be used. I can do it.
 本発明の塗料は、本発明の効果を損なわない範囲で、任意の適切な他の添加剤を含んでいてもよい。このような他の添加剤としては、例えば、耐候剤として紫外線吸収剤、光安定剤が挙げられる。紫外線吸収剤と光安定剤は併用すると効果が高い。 The coating material of the present invention may contain any other appropriate additives as long as the effects of the present invention are not impaired. Examples of such other additives include weathering agents, ultraviolet absorbers, and light stabilizers. Ultraviolet absorbers and light stabilizers are highly effective when used together.
 紫外線吸収剤の具体例としては、ADEKA製のLA-24,LA-29、LA-31、LA-31RG、LA-31G、LA-32、LA-36、LA-46、LA-F70、1413、BASF製のTinuvinPS、Tinuvin99-2、Tinuvin326、Tinuvin384-2、Tinuvin900、Tinuvin928、Tinuvin970、Tinuvin1130、Tinuvin400、Tinuvin405、Tinuvin460、Tinuvin477、Tinuvin479、UVA-903KT、UVA-935LHなどが挙げられる。 Specific examples of ultraviolet absorbers include ADEKA LA-24, LA-29, LA-31, LA-31RG, LA-31G, LA-32, LA-36, LA-46, LA-F70, 1413, BASF TinuvinPS, Tinuvin99-2, Tinuvin326, Tinuvin384-2, Tinuvin900, Tinuvin928, Tinuvin970, Tinuvin1130, Tinuvin400, Tinuvin405, Ti Examples include nuvin460, Tinuvin477, Tinuvin479, UVA-903KT, UVA-935LH, and the like.
 光安定剤の具体例としては、ADEKA製のLA-52、LA-57、LA-63P、LA-68、LA-72、LA-77Y、LA-77G、LA-81、LA-82、LA-87、LA-402AF、LA-40MP、LA-40Si、BASF製のTinuvin111、Tinuvin123、Tinuvin144、Tinuvin152、Tinuvin249、Tinuvin292、Tinuvin770DF、Tinuvin5100などが挙げられる。 Specific examples of light stabilizers include LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77Y, LA-77G, LA-81, LA-82, and LA- manufactured by ADEKA. 87, LA-402AF, LA-40MP, LA-40Si, BASF Tinuvin111, Tinuvin123, Tinuvin144, Tinuvin152, Tinuvin249, Tinuvin292, Tinuvin770DF, Tinuvin5 100, etc.
(塗料の製造方法)
 本発明の塗料は、上述の各成分を、公知の方法によって混合及び/又は撹拌して得ることができる。
(Paint manufacturing method)
The coating material of the present invention can be obtained by mixing and/or stirring the above-mentioned components by a known method.
[塗膜層の特徴]
 本発明の塗膜層は、下記の方法によって測定される表面オイル量は40μg/cm未満であることが好ましい。当該表面オイル量は、30μg/cm未満がより好ましく、20μg/cm未満がさらに好ましい。また、当該表面オイル量は小さいほど好ましいが、例えば、10μg/cm以上であってもよい。
[Characteristics of coating layer]
The coating layer of the present invention preferably has a surface oil amount of less than 40 μg/cm 2 as measured by the method described below. The amount of surface oil is more preferably less than 30 μg/cm 2 , even more preferably less than 20 μg/cm 2 . Further, the amount of surface oil is preferably as small as possible, but may be, for example, 10 μg/cm 2 or more.
(表面オイル量の測定方法)
 前記塗膜層を-20℃で16時間放置し、前記塗膜層の表面にブリードしたオイル成分を、-20℃の環境下においてセルスクレーパーで採取する。採取したオイル成分を油取り紙によって、油取り紙の質量変化が見られなくなるまで吸い取る。
 セルスクレーパーによるオイル採取と油取り紙による吸い取りは、1分間に7回繰り返す。オイル吸い取り前後の油取り紙の質量差を表面オイル量とする。表面オイル量の測定は3回行い、その平均値を採用する。
(Method of measuring surface oil amount)
The coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C. The collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute. The difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil. The amount of surface oil is measured three times and the average value is used.
 本発明の塗膜層の下記の方法によって測定される着氷力は0.7N/cm以下であることが好ましい。 The coating layer of the present invention preferably has an icing force of 0.7 N/cm 2 or less as measured by the method below.
(着氷力の測定方法)
 ステンレス平板に、前記塗膜層が表面となるように前記塗膜層を貼着し、-20℃環境に16時間静置する。重さ6g、付着面積4.9cmとした円柱状の氷塊を準備し、氷塊の底面を10℃恒温の表面に10秒間接触させ、前記塗膜層上に付着させる。
 環境温度-20℃に設定し、氷塊を付着させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセルで、速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージで測定する。測定された最大荷重を付着面積4.9cmで除算した値を着氷力とする。着氷力の測定は3回行い、その平均値を採用する。
(Measurement method of icing force)
The coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours. A cylindrical block of ice having a weight of 6 g and an adhesion area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
The environmental temperature was set to -20°C, and 3 hours after the ice block was attached, the ice block was pushed at a speed of 0.1 mm/sec with a load cell from a direction parallel to the floor surface in an environment of -20°C. The load applied during 40 seconds is measured with a force gauge. The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force. The icing force was measured three times and the average value was used.
 なお、上述の「10℃恒温の表面」とは、例えばペルチェ素子で温度変化できる装置の表面のことであり、氷塊の底面を一部融解させるために用いられる。 Note that the above-mentioned "10° C. constant temperature surface" refers to the surface of a device whose temperature can be changed using, for example, a Peltier element, and is used to partially melt the bottom of the ice block.
 当該着氷力が0.7N/cm以下であれば、優れた着氷及び/又は着雪防止機能を発揮できる。当該着氷力は、より好ましくは0.6N/cm以下、さらに好ましくは0.5N/cm以下である。また、当該着氷力は小さいほど好ましいが、例えば、0.2N/cm以上であってもよく、0.4N/cm以上であってもよい。 If the icing force is 0.7 N/cm 2 or less, excellent icing and/or snow accretion prevention function can be exhibited. The icing force is more preferably 0.6 N/cm 2 or less, still more preferably 0.5 N/cm 2 or less. Further, the icing force is preferably as small as possible, but may be, for example, 0.2 N/cm 2 or more, or 0.4 N/cm 2 or more.
 また、本発明の塗膜層の別の実施形態は、樹脂成分及び少なくとも1種のオイル成分を含有する塗膜層であって、塗膜層の上記方法によって測定される表面オイル量は40μg/cm未満であることが好ましく、塗膜層の上記方法によって測定される着氷力は0.3N/cm未満であることが好ましい。 Further, another embodiment of the coating layer of the present invention is a coating layer containing a resin component and at least one oil component, and the amount of surface oil of the coating layer measured by the above method is 40 μg/ The icing force of the coating layer , measured by the above method, is preferably less than 0.3 N/cm 2 .
 塗膜層を得るには、例えば図1に示すように、本発明の塗料を被塗物10に塗装することによって第1塗膜層11を得ることができる。
 本発明の塗料の塗装方法としては、ハケ塗り、スプレー塗装、各種コーター塗装などの一般的な方法を用いることができる。塗装は、通常1~2回行われる。また、本発明の塗料を用いて形成した塗膜層の被塗物10への接着力向上や被塗物10の錆び止めなどのために、被塗物10にプライマーを塗装し、プライマーの上から本発明の塗料を塗装してもよい。
To obtain the coating layer, for example, as shown in FIG. 1, a first coating layer 11 can be obtained by applying the paint of the present invention to an object 10 to be coated.
As a method for applying the paint of the present invention, general methods such as brush painting, spray painting, and various types of coater painting can be used. Painting is usually done once or twice. Further, in order to improve the adhesion of the coating layer formed using the paint of the present invention to the object 10 to be coated and to prevent the object 10 from rusting, a primer is applied to the object 10 to be coated, and the primer is coated on top of the primer. The paint of the present invention may be applied from.
 第1塗膜層11の厚みは、特に限定されないが、乾燥後塗膜の品質の観点から2000μm以下が好ましく、また、強度の点から、50μm以上が好ましい。 The thickness of the first coating layer 11 is not particularly limited, but from the viewpoint of the quality of the dried coating film, it is preferably 2000 μm or less, and from the viewpoint of strength, it is preferably 50 μm or more.
 本発明で用いる被塗物10としては、例えば、ポリウレタン樹脂、ポリウレタンアクリル樹脂、ゴム系樹脂、塩化ビニル樹脂、ポリエステル樹脂、シリコーン樹脂、エラストマー類、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、金属板若しくは金属箔(アルミニウム、銅、銀、鉄、ニッケル、スズ、ステンレス等)、コンクリート、セラミックス等を用いることができる。また、被塗物10はフィルム状やシート状でもよい。 Examples of the coated object 10 used in the present invention include polyurethane resins, polyurethane acrylic resins, rubber resins, vinyl chloride resins, polyester resins, silicone resins, elastomers, fluororesins, polyamide resins, polyolefin resins (polyethylene, polypropylene, etc.). ), metal plates or metal foils (aluminum, copper, silver, iron, nickel, tin, stainless steel, etc.), concrete, ceramics, etc. can be used. Further, the object to be coated 10 may be in the form of a film or a sheet.
 本発明の塗料を、被塗物10に塗装した後は、例えば20~180℃の環境下で、例えば3分~3時間静置することによって塗料を硬化又は乾燥させることができる。 After the coating material of the present invention is applied to the object to be coated 10, the coating material can be cured or dried by allowing it to stand in an environment of, for example, 20 to 180° C. for, for example, 3 minutes to 3 hours.
 なお、例えば図2に示すように、本発明の塗料から得られる第1塗膜層11の上に、必要に応じて上塗塗料を塗装して、第2塗膜層12を形成することができる。
 上塗塗料としては、特に制限はなく、例えば、本発明の塗料と同様のものを使用することができるが、上塗塗料はオイル成分を含有しなくてもよい。
For example, as shown in FIG. 2, a top coat can be applied as necessary on the first coating layer 11 obtained from the paint of the present invention to form a second coating layer 12. .
There are no particular limitations on the top coat, and for example, the same paint as the paint of the present invention can be used, but the top coat does not need to contain an oil component.
 上塗塗料の塗装方法としては、ハケ塗り、スプレー塗装、各種コーター塗装などの一般的な方法を用いることができる。塗装は、通常1~2回行われる。 As a method for applying the top coat, general methods such as brush painting, spray painting, and various coater coatings can be used. Painting is usually done once or twice.
 第2塗膜層12の厚みは、特に限定されないが、オイル成分が塗膜層の表面まで容易に透過することができるように、言い換えれば、第2塗膜層12に対するオイル透過性を担保するため、500μm以下が好ましく、また、強度の点から、50μm以上が好ましい。 The thickness of the second coating layer 12 is not particularly limited, but should be such that the oil component can easily permeate to the surface of the coating layer, in other words, ensuring oil permeability to the second coating layer 12. Therefore, it is preferably 500 μm or less, and from the viewpoint of strength, it is preferably 50 μm or more.
 上塗塗料を、第1塗膜層11に塗装する際の硬化又は乾燥温度及び硬化又は乾燥時間は、本発明の塗料を、被塗物10に塗装する際の硬化又は乾燥温度及び硬化又は乾燥時間と同様である。
 なお、本発明の塗料の硬化又は乾燥と上塗塗料の硬化又は乾燥は、同時に行ってもよいし、別々に行ってもよい。
The curing or drying temperature and curing or drying time when applying the top coat to the first coating layer 11 are the curing or drying temperature and curing or drying time when applying the coating of the present invention to the object to be coated 10. It is similar to
The curing or drying of the paint of the present invention and the curing or drying of the top coat may be performed simultaneously or separately.
 以上説明したように、本願明細書には次の事項が開示されている。
<1>
 樹脂成分及び少なくとも1種のオイル成分を含有する塗膜層であって、
 前記オイル成分は親水性基を有し、
 前記塗膜層の下記の方法によって測定される表面オイル量は40μg/cm未満であり、
 前記塗膜層の下記の方法によって測定される着氷力は0.7N/cm以下である、塗膜層。
(表面オイル量の測定方法)
 前記塗膜層を-20℃で16時間放置し、前記塗膜層の表面にブリードしたオイル成分を、-20℃の環境下においてセルスクレーパーで採取する。採取したオイル成分を油取り紙によって、油取り紙の質量変化が見られなくなるまで吸い取る。
 セルスクレーパーによるオイル採取と油取り紙による吸い取りは、1分間に7回繰り返す。オイル吸い取り前後の油取り紙の質量差を表面オイル量とする。表面オイル量の測定は3回行い、その平均値を採用する。
(着氷力の測定方法)
 ステンレス平板に、前記塗膜層が表面となるように前記塗膜層を貼着し、-20℃環境に16時間静置する。重さ6g、付着面積4.9cmとした円柱状の氷塊を準備し、氷塊の底面を10℃恒温の表面に10秒間接触させ、前記塗膜層上に付着させる。
 環境温度-20℃に設定し、氷塊を付着させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセルで、速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージで測定する。測定された最大荷重を付着面積4.9cmで除算した値を着氷力とする。着氷力の測定は3回行い、その平均値を採用する。
<2>
 前記オイル成分の数平均分子量が2000以上である、<1>に記載の塗膜層。
<3>
 前記樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比が1.4以上である、<1>又は<2>に記載の塗膜層。
<4>
 前記親水性基が、カルビノール基、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、エーテル基及びエステル基からなる群から選択される少なくとも1種の基である、<1>~<3>のいずれか1つに記載の塗膜層。
<5>
 <1>~<4>のいずれか1つに記載の塗膜層を形成するための塗料。
As explained above, the following matters are disclosed in the present specification.
<1>
A coating layer containing a resin component and at least one oil component,
The oil component has a hydrophilic group,
The amount of surface oil of the coating layer measured by the following method is less than 40 μg/cm 2 ,
The coating layer has an icing force of 0.7 N/cm 2 or less as measured by the following method.
(Method for measuring surface oil amount)
The coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C. The collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute. The difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil. The amount of surface oil is measured three times and the average value is used.
(Measurement method of icing force)
The coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours. A cylindrical block of ice having a weight of 6 g and an adhesion area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
The environmental temperature was set to -20°C, and 3 hours after the ice block was attached, the ice block was pushed at a speed of 0.1 mm/sec with a load cell from a direction parallel to the floor surface in an environment of -20°C. The load applied during 40 seconds is measured with a force gauge. The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force. The icing force was measured three times and the average value was used.
<2>
The coating layer according to <1>, wherein the oil component has a number average molecular weight of 2000 or more.
<3>
The coating layer according to <1> or <2>, wherein the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more.
<4>
<1> to <3>, wherein the hydrophilic group is at least one group selected from the group consisting of a carbinol group, a hydroxy group, a carboxy group, an amino group, a sulfo group, an ether group, and an ester group. The coating layer according to any one of the above.
<5>
A paint for forming a coating layer according to any one of <1> to <4>.
 以下、実施例等を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<塗膜層の作製>
[実施例1]
 塗料成分として、樹脂成分:シリコーン樹脂「KE-1935」(信越化学工業株式会社製)、第1オイル成分(非相溶オイル):カルビノール変性シリコーンオイル「KF-6003」(信越化学工業株式会社製)、第2オイル成分(相溶オイル):ジメチルシロキサンオイル「KF-96(50cs)」(信越化学工業株式会社製)を用意した。
<Preparation of coating layer>
[Example 1]
As paint components, resin component: silicone resin "KE-1935" (manufactured by Shin-Etsu Chemical Co., Ltd.), first oil component (incompatible oil): carbinol-modified silicone oil "KF-6003" (manufactured by Shin-Etsu Chemical Co., Ltd.). (manufactured by Shin-Etsu Chemical Co., Ltd.) and second oil component (compatible oil): dimethylsiloxane oil "KF-96 (50cs)" (manufactured by Shin-Etsu Chemical Co., Ltd.).
 樹脂成分(50質量部)、第1オイル成分(25質量部)、第2オイル成分(25質量部)を、25℃、101kPaの条件下で混合した。得られた混合液をスパチュラで60秒間撹拌し、自転・公転ミキサー(シンキー社製、CONDITIONING MIXER AR-250)でさらに120秒間の撹拌と300秒間の脱泡をし、塗料を得た。 A resin component (50 parts by mass), a first oil component (25 parts by mass), and a second oil component (25 parts by mass) were mixed under conditions of 25° C. and 101 kPa. The resulting mixed solution was stirred for 60 seconds with a spatula, and further stirred for 120 seconds and defoamed for 300 seconds using a rotation/revolution mixer (CONDITIONING MIXER AR-250, manufactured by Shinky Co., Ltd.) to obtain a paint.
 得られた塗料を、PETフィルム(東レ株式会社製 ルミラー#75S10)上に塗布し、150℃環境下において10分、加熱硬化させることによって厚さ約250μmの塗膜層を形成した。 The obtained coating material was applied onto a PET film (Lumirror #75S10 manufactured by Toray Industries, Inc.) and cured by heating in a 150° C. environment for 10 minutes to form a coating layer with a thickness of about 250 μm.
[実施例2~3、比較例1~3]
 塗料成分及びその含有量を表1に記載のとおりとした以外は、実施例1に記載の方法に準じて、塗料及び塗膜層を得た。
[Examples 2-3, Comparative Examples 1-3]
A paint and a coating layer were obtained according to the method described in Example 1, except that the paint components and their contents were as shown in Table 1.
[実施例4~6、比較例4]
 塗料成分及びその含有量を表2に記載のとおりとした以外は、実施例1に記載の方法に準じて、塗料及び塗膜層を得た。
[Examples 4 to 6, Comparative Example 4]
A paint and a coating layer were obtained according to the method described in Example 1, except that the paint components and their contents were as shown in Table 2.
 表1及び2に記載の各成分の詳細は、下記のとおりである。
KE-2098-60:シリコーン樹脂、信越化学工業株式会社製
BY16-201:カルビノール変性シリコーンオイル、東レダウコーニング株式会社製
KF-6001:カルビノール変性シリコーンオイル、信越化学工業株式会社製
KE-1950-50:シリコーン樹脂、信越化学工業株式会社製
KF-9901:ハイドロジェンシリコーン、信越化学工業株式会社製
3-イソシアネートプロピルトリエトキシシラン:シランカップリング剤、信越化学工業株式会社製
Details of each component listed in Tables 1 and 2 are as follows.
KE-2098-60: Silicone resin, Shin-Etsu Chemical Co., Ltd. BY16-201: Carbinol-modified silicone oil, Dow Corning Toray Co., Ltd. KF-6001: Carbinol-modified silicone oil, Shin-Etsu Chemical Co., Ltd. KE-1950 -50: Silicone resin, Shin-Etsu Chemical Co., Ltd. KF-9901: Hydrogen silicone, Shin-Etsu Chemical Co., Ltd. 3-Isocyanatepropyltriethoxysilane: Silane coupling agent, Shin-Etsu Chemical Co., Ltd.
<測定>
(硬化剤比)
 硬化剤比とは樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比のことである。下記測定条件のNMRにて樹脂成分の組成分析を行い、樹脂成分の持つ反応性基量(モル)と、硬化剤の持つ反応性基量(モル)を定量し、硬化剤比を下記式にて算出した。結果を表1及び2に示す。
<Measurement>
(Curing agent ratio)
The curing agent ratio is the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component. The composition of the resin component was analyzed by NMR under the following measurement conditions, and the amount of reactive groups (mol) in the resin component and the amount (mol) of reactive groups in the curing agent were determined, and the curing agent ratio was calculated using the following formula. Calculated. The results are shown in Tables 1 and 2.
硬化剤比=(硬化剤におけるヒドロシリル基のモル数)/(樹脂成分におけるビニル基の炭素-炭素二重結合のモル数) Curing agent ratio = (Number of moles of hydrosilyl groups in the curing agent) / (Number of moles of carbon-carbon double bonds of vinyl groups in the resin component)
測定条件
装置:Bruker Biospin,AVANCEIII-600 with Cryo
Probe観測周波数:600MHz(1H)、79MHz(29Si)
測定溶媒:CDCl
測定温度:300K
化学シフト基準:測定溶媒[7.25ppm(1H)]
内部標準(TMS)[0.00ppm(29Si)]
Measurement conditions equipment: Bruker Biospin, AVANCEIII-600 with Cryo
Probe observation frequency: 600MHz (1H), 79MHz (29Si)
Measurement solvent: CDCl3
Measurement temperature: 300K
Chemical shift standard: Measurement solvent [7.25ppm (1H)]
Internal standard (TMS) [0.00ppm (29Si)]
(第1オイル成分の数平均分子量)
 第1オイル成分の数平均分子量を下記測定方法及び条件にて求めた。結果を表1及び2に示す。
(Number average molecular weight of first oil component)
The number average molecular weight of the first oil component was determined using the following measuring method and conditions. The results are shown in Tables 1 and 2.
測定方法
 第1オイル成分を0.2質量%に溶離液で調製して20時間放置し、0.45μmメンブランフィルターにてろ過後、ろ液について下記条件にてGPC測定を行った。
Measurement method The first oil component was prepared to 0.2% by mass with an eluent, left to stand for 20 hours, filtered through a 0.45 μm membrane filter, and the filtrate was subjected to GPC measurement under the following conditions.
測定条件
装置:Waters, ACQUITY APC
カラム:Agilent,PLgel Mixed-C + PLgel Mixed-E
カラム温度:40℃
溶離液:トルエン
流速:0.8mL/min
注入量:100μL
検出器:RI
標準試料:ポリスチレン(PS)
Measurement conditions equipment: Waters, ACQUITY APC
Column: Agilent, PLgel Mixed-C + PLgel Mixed-E
Column temperature: 40℃
Eluent: toluene Flow rate: 0.8mL/min
Injection volume: 100μL
Detector: RI
Standard sample: polystyrene (PS)
<評価>
 得られた塗膜層を用いて、下記の評価を行った。結果を表1及び2に示す。
<Evaluation>
The following evaluations were performed using the obtained coating layer. The results are shown in Tables 1 and 2.
(-20℃表面オイル量)
 測定対象は、-20℃における、塗膜層の表面にブリードしたオイル量である。表面オイル量の測定を以下の方法で行い、-20℃かきとり試験の結果とした。
(-20℃ surface oil amount)
The object of measurement is the amount of oil bled onto the surface of the coating layer at -20°C. The amount of surface oil was measured using the following method, and the result was taken as a -20°C scraping test.
 中心付近において10cm×2cmのサイズにカットした塗膜層を、-20℃で16時間放置し、塗膜層の表面にブリードしたオイルを、-20℃の温度環境下においてセルスクレーパー(ケニス社製、CSS-10)で採取した。そのオイルを油取り紙の質量(吸油量)変化が見られなくなるまで吸い取った。 The paint layer cut into a size of 10 cm x 2 cm near the center was left at -20°C for 16 hours, and the oil that had bled onto the surface of the paint layer was removed using a cell scraper (manufactured by Kennis Co., Ltd.) under a temperature environment of -20°C. , CSS-10). The oil was absorbed until no change in the mass (oil absorption amount) of the oil-absorbing paper was observed.
 セルスクレーパーによるオイル採取と油取り紙の吸い取りは、1分間に7回繰り返した。オイル吸い取り前後の油取り紙の質量差を表面オイル量とした。表面オイル量の測定は3回行い、その平均値を算出した。 Collecting oil with a cell scraper and blotting it with oil-blotting paper was repeated 7 times per minute. The difference in mass of the oil-blotting paper before and after oil-blotting was taken as the amount of surface oil. The amount of surface oil was measured three times, and the average value was calculated.
 -20℃かきとり試験の評価基準は、以下のとおりである。
○・・・40μg/cm未満
×・・・40μg/cm以上
The evaluation criteria for the -20°C scraping test are as follows.
○...Less than 40μg/ cm2 ×...40μg/cm2 or more
(着氷力)
 測定対象は、-20℃の環境下において、塗膜層に付着した氷塊を移動させるために要する力であって、便宜上、本明細書では、この力の大きさを「着氷力」と定義した。
(Icing power)
The object of measurement is the force required to move ice blocks attached to the coating layer in an environment of -20°C, and for convenience, in this specification, the magnitude of this force is defined as "icing force". did.
 着氷力の測定は、以下の方法で行った。
 まず、円柱状の氷塊を作製した。氷塊は、スチロール角型ケース16型(アズワン社製)の底面にステンレスリング(内径25mm)を置き、そこに6gの純水を注ぎ込んで-20℃で16時間以上凍結させ、凍結後にステンレスリングを除去することによって作製した。
The icing force was measured using the following method.
First, a cylindrical block of ice was created. To make ice cubes, place a stainless steel ring (inner diameter 25 mm) on the bottom of a styrene square case type 16 (manufactured by As One), pour 6 g of pure water into it, freeze it at -20°C for more than 16 hours, and then remove the stainless steel ring after freezing. It was made by removing.
 次いで、ステンレス平板に、塗膜層が表面となるように塗膜層を貼着し、-20℃環境に16時間静置した。重さ6g、付着面積4.9cmとした円柱状の氷塊を準備し、氷塊の底面を10℃恒温の表面に10秒間接触させ、塗膜層上に付着させた。 Next, the coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours. A cylindrical block of ice having a weight of 6 g and an adhering area of 4.9 cm 2 was prepared, and the bottom surface of the block of ice was brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
 環境温度-20℃に設定し、氷塊を付着させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセル(株式会社イマダ製 DPU-50、アタッチメント治具 A型A-4)で、速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージ(株式会社イマダ製 ZTS-50N)で測定した。測定された最大荷重を付着面積4.9cmで除算した値を着氷力として記録した。試験は3回行い、その平均値を求めた。 The environmental temperature was set to -20℃, and 3 hours after the ice cubes were attached, the ice cubes were placed on a load cell (DPU-50 manufactured by Imada Co., Ltd., with attachment treatment) in a -20℃ environment from a direction parallel to the floor surface. A type A-4) was pressed at a speed of 0.1 mm/sec, and the load applied during 40 seconds was measured with a force gauge (ZTS-50N manufactured by Imada Co., Ltd.). The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 was recorded as the icing force. The test was conducted three times and the average value was determined.
 尚、この測定方法は、「着雪氷防止技術に関する研究(第1報)、北海道立工業試験場報告No.292(1993)」を参考にして決定したものである。着氷力は、少なくとも-20℃においては、表面オイル量の増加に応答して略比例的に減少する。 This measurement method was determined with reference to "Research on snow and ice prevention technology (first report), Hokkaido Industrial Research Institute Report No. 292 (1993)". The icing force decreases approximately proportionally in response to an increase in the amount of surface oil, at least at -20°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び2の結果より、本発明の塗料から、低温環境下でも被塗物への汚染が少なく、優れた着氷及び/又は着雪防止機能を有する塗膜層が得られることがわかった。 From the results in Tables 1 and 2, it was found that the paint of the present invention can provide a coating layer that causes less contamination of the coated object even in low-temperature environments and has excellent anti-icing and/or snow accretion functions. .
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the claims, and these naturally fall within the technical scope of the present invention. Understood. Further, each of the constituent elements in the above embodiments may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2022年3月31日出願の日本特許出願(特願2022-059647)及び2022年9月29日出願の日本特許出願(特願2022-156752)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on the Japanese patent application filed on March 31, 2022 (Japanese patent application No. 2022-059647) and the Japanese patent application filed on September 29, 2022 (Japanese patent application No. 2022-156752). The contents are incorporated by reference into this application.
 本発明の塗膜層は、低温環境下でも被塗物への汚染が少なく、優れた着氷及び/又は着雪防止機能を有することから、太陽光パネル、航空機、鉄道、自動車、風力発電機、住宅、信号機、看板、トンネル、雪庇防止板、橋梁、道路標識等の物体表面への雪や氷の付着を防止するために利用することができる。 The coating layer of the present invention causes less contamination of the coated object even in low-temperature environments and has excellent icing and/or snow accumulation prevention functions, so it can be applied to solar panels, aircraft, railways, automobiles, and wind power generators. It can be used to prevent snow and ice from adhering to the surfaces of objects such as houses, traffic lights, signboards, tunnels, snow eaves prevention boards, bridges, and road signs.
10 被塗物
11 第1塗膜層
12 第2塗膜層
10 Object to be coated 11 First coating layer 12 Second coating layer

Claims (5)

  1.  樹脂成分及び少なくとも1種のオイル成分を含有する塗膜層であって、
     前記オイル成分は親水性基を有し、
     前記塗膜層の下記の方法によって測定される表面オイル量は40μg/cm未満であり、
     前記塗膜層の下記の方法によって測定される着氷力は0.7N/cm以下である、塗膜層。
    (表面オイル量の測定方法)
     前記塗膜層を-20℃で16時間放置し、前記塗膜層の表面にブリードしたオイル成分を、-20℃の環境下においてセルスクレーパーで採取する。採取したオイル成分を油取り紙によって、油取り紙の質量変化が見られなくなるまで吸い取る。
     セルスクレーパーによるオイル採取と油取り紙による吸い取りは、1分間に7回繰り返す。オイル吸い取り前後の油取り紙の質量差を表面オイル量とする。表面オイル量の測定は3回行い、その平均値を採用する。
    (着氷力の測定方法)
     ステンレス平板に、前記塗膜層が表面となるように前記塗膜層を貼着し、-20℃環境に16時間静置する。重さ6g、付着面積4.9cmとした円柱状の氷塊を準備し、氷塊の底面を10℃恒温の表面に10秒間接触させ、前記塗膜層上に付着させる。
     環境温度-20℃に設定し、氷塊を付着させてから3時間後に、-20℃の環境下において、床面に対して平行な方向から氷塊をロードセルで、速度0.1mm/秒で押し、40秒の間に加わった荷重をフォースゲージで測定する。測定された最大荷重を付着面積4.9cmで除算した値を着氷力とする。着氷力の測定は3回行い、その平均値を採用する。
    A coating layer containing a resin component and at least one oil component,
    The oil component has a hydrophilic group,
    The amount of surface oil of the coating layer measured by the following method is less than 40 μg/cm 2 ,
    The coating layer has an icing force of 0.7 N/cm 2 or less as measured by the following method.
    (Method of measuring surface oil amount)
    The coating layer is left at -20°C for 16 hours, and the oil component that bleeds onto the surface of the coating layer is collected using a cell scraper in an environment of -20°C. The collected oil component is absorbed using oil-absorbing paper until no change in the mass of the oil-absorbing paper is observed.
    Oil collection with a cell scraper and blotting with oil-blotting paper are repeated 7 times per minute. The difference in mass between the oil-blotting paper before and after oil-blotting is defined as the amount of surface oil. The amount of surface oil is measured three times and the average value is used.
    (Measurement method of icing force)
    The coating layer was attached to a stainless steel flat plate so that the coating layer was on the surface, and the plate was left standing in a -20°C environment for 16 hours. A cylindrical block of ice having a weight of 6 g and an adhesion area of 4.9 cm 2 is prepared, and the bottom surface of the block of ice is brought into contact with a surface kept at a constant temperature of 10° C. for 10 seconds to adhere to the coating layer.
    The environmental temperature was set to -20°C, and 3 hours after the ice block was attached, the ice block was pushed at a speed of 0.1 mm/sec with a load cell from a direction parallel to the floor surface in an environment of -20°C. The load applied during 40 seconds is measured with a force gauge. The value obtained by dividing the measured maximum load by the adhesion area of 4.9 cm 2 is defined as the icing force. The icing force was measured three times and the average value was used.
  2.  前記オイル成分の数平均分子量が2000以上である、請求項1に記載の塗膜層。 The coating layer according to claim 1, wherein the oil component has a number average molecular weight of 2000 or more.
  3.  前記樹脂成分の持つ反応性基量(モル)に対する硬化剤の反応性基量(モル)の比が1.4以上である、請求項1又は2に記載の塗膜層。 The coating layer according to claim 1 or 2, wherein the ratio of the amount (mol) of reactive groups of the curing agent to the amount (mol) of reactive groups possessed by the resin component is 1.4 or more.
  4.  前記親水性基が、カルビノール基、ヒドロキシ基、カルボキシ基、アミノ基、スルホ基、エーテル基及びエステル基からなる群から選択される少なくとも1種の基である、請求項1又は2に記載の塗膜層。 3. The hydrophilic group according to claim 1 or 2, wherein the hydrophilic group is at least one group selected from the group consisting of a carbinol group, a hydroxy group, a carboxy group, an amino group, a sulfo group, an ether group, and an ester group. Paint layer.
  5.  請求項1又は2に記載の塗膜層を形成するための塗料。 A paint for forming the coating layer according to claim 1 or 2.
PCT/JP2023/013033 2022-03-31 2023-03-29 Coating film layer WO2023190795A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-059647 2022-03-31
JP2022059647 2022-03-31
JP2022156752 2022-09-29
JP2022-156752 2022-09-29

Publications (1)

Publication Number Publication Date
WO2023190795A1 true WO2023190795A1 (en) 2023-10-05

Family

ID=88202674

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/013033 WO2023190795A1 (en) 2022-03-31 2023-03-29 Coating film layer
PCT/JP2023/013034 WO2023190796A1 (en) 2022-03-31 2023-03-29 Coating material, coating film layer, and laminate

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013034 WO2023190796A1 (en) 2022-03-31 2023-03-29 Coating material, coating film layer, and laminate

Country Status (1)

Country Link
WO (2) WO2023190795A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288381A (en) * 1991-01-23 1992-10-13 Showa Electric Wire & Cable Co Ltd Heat-resistant coating material
JP2005512796A (en) * 2001-12-21 2005-05-12 ロディア・シミ Crosslinker for crosslinkable silicone compositions based on hydrogenated silicone oils containing Si-H units in the chain ends and chains and having a low platinum content
JP2016108415A (en) * 2014-12-04 2016-06-20 日東電工株式会社 Adhesive tape for preventing deposition of aquatic organisms
WO2019235497A1 (en) * 2018-06-04 2019-12-12 東亞合成株式会社 Water repellent oil repellent film composition and use of same
WO2020096070A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Sheet body
WO2020096071A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Coating material and film
WO2021193973A1 (en) * 2020-03-27 2021-09-30 日東電工株式会社 Coating material and multilayer body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2915778B2 (en) * 1994-03-23 1999-07-05 信越化学工業株式会社 Silicone composition for release paper
DE19957276A1 (en) * 1999-11-29 2001-10-11 Abb Research Ltd Addition-curing silicone rubber compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288381A (en) * 1991-01-23 1992-10-13 Showa Electric Wire & Cable Co Ltd Heat-resistant coating material
JP2005512796A (en) * 2001-12-21 2005-05-12 ロディア・シミ Crosslinker for crosslinkable silicone compositions based on hydrogenated silicone oils containing Si-H units in the chain ends and chains and having a low platinum content
JP2016108415A (en) * 2014-12-04 2016-06-20 日東電工株式会社 Adhesive tape for preventing deposition of aquatic organisms
WO2019235497A1 (en) * 2018-06-04 2019-12-12 東亞合成株式会社 Water repellent oil repellent film composition and use of same
WO2020096070A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Sheet body
WO2020096071A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Coating material and film
WO2021193973A1 (en) * 2020-03-27 2021-09-30 日東電工株式会社 Coating material and multilayer body

Also Published As

Publication number Publication date
WO2023190796A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
CA1332662C (en) Primer compositions
CN102341472B (en) Pressure-sensitive adhesive compound
JP2024050632A (en) Coating material and film
CN1333028C (en) One-part organopolysiloxane rubber composition for use as a corrosion protection coating
WO2021193973A1 (en) Coating material and multilayer body
KR20120112233A (en) Waterproof sheet and waterproof treatment
WO2021193474A1 (en) Sheet body
WO2022202721A1 (en) Coating material
WO2023190795A1 (en) Coating film layer
WO2023190417A1 (en) Sheet body
WO2021225129A1 (en) Coating material and laminate
CN115516052B (en) Coating material and laminate
WO2021193313A1 (en) Coating, coating film layer, and laminate
WO2022202807A1 (en) Layered body and primer composition
EP3771734B1 (en) Transparent hydrophobic and icephobic compositions, coatings, and methods
WO2022196824A1 (en) Sheet body
CA2058675A1 (en) Bonding polysulphide sealant to silicone
JP3894725B2 (en) Snow-ice coating
EP2902562B1 (en) Waterproofing method for outdoor tank
KR20190050070A (en) Composition of one-component silicone release coating agent for preventing adhesion
WO2021060296A1 (en) Film, and method for producing same
JPS5865779A (en) Anti-icing material composition
WO2021256064A1 (en) Coating composition, coating film, and member having coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780803

Country of ref document: EP

Kind code of ref document: A1