JPS5972178A - Measuring method for gaas field effect transistor - Google Patents
Measuring method for gaas field effect transistorInfo
- Publication number
- JPS5972178A JPS5972178A JP18232082A JP18232082A JPS5972178A JP S5972178 A JPS5972178 A JP S5972178A JP 18232082 A JP18232082 A JP 18232082A JP 18232082 A JP18232082 A JP 18232082A JP S5972178 A JPS5972178 A JP S5972178A
- Authority
- JP
- Japan
- Prior art keywords
- field effect
- correlation
- gate
- breakdown voltage
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 230000005669 field effect Effects 0.000 title claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 13
- 230000015556 catabolic process Effects 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はG a A s電界効果トランジスタの測定方
法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring GaAs field effect transistors.
従来、GaAsシ目ットキ接合形電界効果トランジスタ
は、その基本材料であるGaAsが高いキャリア移動度
をもつことから極めて高い周波数での電子装置として用
いられている。また、高周波でよ少優れた電気的特性を
得るために、そのゲート長が極めて微細でおることが必
須であシ、現在では0.5〜1.0μmが多く採用され
ている。さらK。2. Description of the Related Art Conventionally, GaAs square junction field effect transistors have been used as electronic devices at extremely high frequencies because GaAs, the basic material thereof, has high carrier mobility. Furthermore, in order to obtain somewhat superior electrical characteristics at high frequencies, it is essential that the gate length be extremely fine, and at present, 0.5 to 1.0 μm is often used. Sara K.
動作時のチャネル内でのゲートから伸びた空乏層のチャ
ネル方向の長さく実効ゲート長)はこれよりも長くなる
ことから、よシ薄いチャネル厚さの構造も必要とされる
。このチャネル厚さは1000〜aoooXという数値
でおる。加えて、GBAsという材料性から、その完全
な表面保護膜が得られていないため1表面状態が1例え
ばS i 02やSi3N4等の優れた被膜を形成でき
る8iのデバイス類に比べ、一般には不安定である。During operation, the length of the depletion layer extending from the gate in the channel in the channel direction (effective gate length) is longer than this, so a structure with a thinner channel thickness is also required. The channel thickness has a value of 1000 to aoooX. In addition, due to the material properties of GBAs, a complete surface protection film cannot be obtained, so the 1 surface state is generally inferior to 8i devices, which can form excellent films such as Si02 and Si3N4. It is stable.
以上に述べたチャネル厚の薄さと表面の不安定さが実際
の使用状態で不具合を起す例としては、過大な入力信号
を受けた場合、又は過大な出力を発生した場合に、小信
号での動作特性が変化してしまうことにある。例えば、
あるG a A s電界効果トランジスタでは、初期値
として、30dBm(1W)出力時の電力利得が、1Q
dBあったとき(入力信号は20 dBm )この入力
信号を3dB増加させ、出力電力を約33 dBmとし
て1次に入力電圧を20 dBmに戻したとき、出力電
圧は29 dBm。An example of a malfunction caused by the thin channel thickness and surface instability mentioned above in actual use is when an excessive input signal is received or an excessive output is generated. The problem is that the operating characteristics change. for example,
In a certain GaAs field effect transistor, the power gain when outputting 30dBm (1W) is 1Q as an initial value.
dB (the input signal is 20 dBm), when this input signal is increased by 3 dB, the output power is about 33 dBm, and the primary input voltage is returned to 20 dBm, the output voltage is 29 dBm.
電力利得がl dB減少するというような状態である。This is a situation in which the power gain decreases by 1 dB.
この現象の詳細な原因は明らかでないが、最大の2Wと
いう電力は50Ωの負荷系ではIOVの電圧であシ、は
t丁この電圧が直流バイアスのゲート・ドレイン間電圧
に加わ#)、ゲート・ドレイン間は降伏状態に近づき、
このとき発生する高エネルギーの電荷が表面近傍にドラ
ッグされてチャネルの状態、例えば、有効チャネル厚を
変えてしまうことによるものと推定される。The detailed cause of this phenomenon is not clear, but the maximum power of 2W is the voltage of IOV in a 50Ω load system, and this voltage is added to the gate-drain voltage of the DC bias. The voltage between the drains approaches the breakdown state,
It is presumed that this is because the high-energy charges generated at this time are dragged near the surface and change the state of the channel, for example, the effective channel thickness.
G a A S電界効果トランジスタの不安定性の測定
については、従来は高周波における過入力時の前後にお
ける特性変動の有無を調べる方法で行われていた。しか
しながら、高周波を用いる測定は多大の労力を要すると
いう欠点があった。The instability of a G a AS field effect transistor has conventionally been measured by examining the presence or absence of characteristic fluctuations before and after an excessive input at high frequencies. However, measurements using high frequencies have the disadvantage of requiring a great deal of effort.
本発明は上記欠点を除き、高周波における過大入力前後
の特性の変動測定をゲート・ドレイン間降伏電圧の測定
に置換えることによりGaAs電界効果トランジスタの
不安定性を容易に、かつ少ない工数で測定することので
きるG a A s電界効果トランジスタの測定方法を
提供するものである。The present invention eliminates the above-mentioned drawbacks and makes it possible to easily measure the instability of a GaAs field effect transistor with less man-hours by replacing the measurement of characteristic fluctuations before and after an excessive input at high frequencies with the measurement of the gate-drain breakdown voltage. The present invention provides a method for measuring GaAs field effect transistors that can be used.
本発明のGaAs電界効果トランジスタの測定方法は、
GaAs電界効果トランジスタの高周波過入力信号印加
または高周波過出力前後での低電力動作特性の変化量と
、ゲート・ドレイン間降伏電圧との相関関係を予め求め
ておき、ゲート□ドレイン間降伏電圧の測定値から高周
波過入力信号印加または高周波過出力前後での低電力動
作特性の変化量を前記相関関係から計算で求めることを
特徴とする。The method for measuring a GaAs field effect transistor of the present invention is as follows:
The correlation between the amount of change in the low power operating characteristics of the GaAs field effect transistor before and after applying a high-frequency overinput signal or high-frequency overoutput and the gate-drain breakdown voltage is determined in advance, and the gate-drain breakdown voltage is measured. The present invention is characterized in that the amount of change in the low power operating characteristic before and after the application of a high frequency over-input signal or the high-frequency over-output is calculated from the above-mentioned correlation.
本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.
第1図はGaASt界効果トランジスタのゲート・ドレ
イン間降伏電圧と高周波過出力前後における低電力利得
の変化量との相関関係の一例を示す分布図である。FIG. 1 is a distribution diagram showing an example of the correlation between the gate-drain breakdown voltage of a GaASt field effect transistor and the amount of change in low power gain before and after high frequency overpower.
同じ構造のG a A s電界効果トランジスタを複数
個用意し、高周波過出力前後における低電力利得の変化
量(dB)とゲートΦドレイン間の降伏電圧V(BR)
GDO(Vlとの相関関係を求めたものが第2図である
。この相関関係から降込電圧V(皿) GDOを測定す
れば高周波過出力前後における低電力利得の変化量を計
算から求めることができる。相関関係には多少のばらつ
きがあるので計算から求めた変化量は厳密には正確では
ないが正確な値に近い値は得られる。実用的にはこれで
充分である。前述のように高周波を使用する測定は多大
の労力を要するが、ゲート・ソース間降伏電圧の測定は
直流で測定できるから、その測定労力は極めて小さく、
かつ容易である。A plurality of G a As field effect transistors with the same structure are prepared, and the amount of change in low power gain (dB) before and after high frequency overoutput and the breakdown voltage V (BR) between gate Φ and drain are calculated.
Figure 2 shows the correlation with GDO (Vl). From this correlation, if we measure the drop voltage V (dish) GDO, we can calculate the amount of change in low power gain before and after high frequency over-output. Since there is some variation in the correlation, the amount of change obtained from the calculation is not strictly accurate, but a value close to the exact value can be obtained.Practically speaking, this is sufficient.As mentioned above, Measurements using high frequencies require a great deal of effort, but since gate-source breakdown voltage can be measured using direct current, the measurement effort is extremely small.
And easy.
上記実施例は高周波退出力の場合であったが、高周波過
入力の場合でも同様の相関関係を得ることができる。Although the above embodiment deals with the case of high frequency withdrawal output, a similar correlation can be obtained even in the case of high frequency excessive input.
以上詳細に説明したように1本発明によれば。According to one aspect of the present invention, as described in detail above.
多くの労力を要する高周波での測定を労力が少なくてす
む直流での測定に置換えることができるので、その効果
は大きい。The effect is significant because high-frequency measurements, which require a lot of labor, can be replaced with direct current measurements, which require less labor.
第1図はGaAs電界効果トランジスタのゲート・ドレ
イン間降伏と高周波過出力前後における低電力利得の変
化量との相関関係の一例を示す分布図である。FIG. 1 is a distribution diagram showing an example of the correlation between the gate-drain breakdown of a GaAs field effect transistor and the amount of change in low power gain before and after high frequency overpower.
Claims (1)
または高周波過出力前後での低電力動作特性の変化量と
、グー)−ドレイン間降伏電圧との相関関係を予め求め
ておき、ゲート・ドレイン間降伏電圧の測定値から高周
波過入力信号印加または高周波過出力前後での低電力動
作特性の変化量を前記相関関係から計算で求めることを
特徴とするG a A s電界効果トランジスタの測定
方法。The correlation between the amount of change in the low power operating characteristics of a GaAs field effect transistor before and after the application of a high-frequency overinput signal or high-frequency overoutput and the breakdown voltage between the gate and drain is determined in advance, and the breakdown voltage between the gate and drain is determined in advance. A method for measuring a GaAs field effect transistor, characterized in that the amount of change in low power operating characteristics before and after application of a high frequency overinput signal or high frequency overoutput is calculated from the measured value from the correlation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18232082A JPS5972178A (en) | 1982-10-18 | 1982-10-18 | Measuring method for gaas field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18232082A JPS5972178A (en) | 1982-10-18 | 1982-10-18 | Measuring method for gaas field effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5972178A true JPS5972178A (en) | 1984-04-24 |
JPS6245713B2 JPS6245713B2 (en) | 1987-09-28 |
Family
ID=16116241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18232082A Granted JPS5972178A (en) | 1982-10-18 | 1982-10-18 | Measuring method for gaas field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5972178A (en) |
-
1982
- 1982-10-18 JP JP18232082A patent/JPS5972178A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6245713B2 (en) | 1987-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kasu et al. | High RF output power for H-terminated diamond FETs | |
US4763028A (en) | Circuit and method for semiconductor leakage current compensation | |
Duh et al. | Hooge parameters for various FET structures | |
Hofstein | Minority carrier lifetime determination from inversion layer transient response | |
JPS62228172A (en) | Voltage comparing circuit | |
Aggarwal et al. | QFGMOS and FGMOS based low-voltage high performance MI-OTA | |
JPS5972178A (en) | Measuring method for gaas field effect transistor | |
JPH09130164A (en) | Voltage/current converter with mos/reference resistor | |
JPS59138111A (en) | Device for compensating temperature drift of gain of ultrahigh frequency electric signal amplifier | |
US3662187A (en) | Fast analog multiplier | |
JPS5972179A (en) | Measuring method for gaas field effect transistor | |
US3516004A (en) | Signal translating circuit comprising a plurality of igfet amplifiers cascaded in direct coupled fashion | |
US4197511A (en) | Linear load MOS transistor circuit | |
Fadlallah et al. | Static and low frequency noise characterization of surface-and buried-mode 0.1 μm P and N MOSFETs | |
JPH04349708A (en) | Mos resistance circuit | |
Bandali et al. | On modeling of the self-aligned field implanted MOS devices with narrow widths | |
Jerdonek et al. | Velocity saturation effects in n-channel deep-depletion SOS/MOSFET's | |
Tseng et al. | Local floating body effect in body-grounded SOI nMOSFETs | |
JPS60167513A (en) | Equivalent resistance circuit | |
Aggarwal et al. | A new high output resistance accurate CMOS current mirror | |
US9298952B2 (en) | CMOS logarithmic current generator and method for generating a logarithmic current | |
Chen et al. | Temperature effects on MOSFET driving capability and voltage gain | |
CN112087205B (en) | Compensator device for MMIC HEMT amplifier | |
KR790001060B1 (en) | Output transmission device | |
Edward | Comment on" Voltage-controlled linear resistor by two MOS transistors and its application to active RC filter MOS integration" |