JPS6245008Y2 - - Google Patents

Info

Publication number
JPS6245008Y2
JPS6245008Y2 JP1984017293U JP1729384U JPS6245008Y2 JP S6245008 Y2 JPS6245008 Y2 JP S6245008Y2 JP 1984017293 U JP1984017293 U JP 1984017293U JP 1729384 U JP1729384 U JP 1729384U JP S6245008 Y2 JPS6245008 Y2 JP S6245008Y2
Authority
JP
Japan
Prior art keywords
filament
yarn
fibers
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984017293U
Other languages
Japanese (ja)
Other versions
JPS60132472U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1729384U priority Critical patent/JPS60132472U/en
Publication of JPS60132472U publication Critical patent/JPS60132472U/en
Application granted granted Critical
Publication of JPS6245008Y2 publication Critical patent/JPS6245008Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔本考案の技術分野〕 本考案はフイラメント繊維とステープル繊維と
からなる衣料用の複合紡績糸に関する。更に詳し
くはフイラメントに超高速紡糸された高配向、低
沸水収縮率のポリエステルフイラメントを用い、
しかもこれを芯にした特定の複合紡績糸に関す
る。 〔従来技術とその問題点〕 従来、編織物に供される糸として、紡績糸ある
いは連続長繊維からなる糸条がある。前者はソフ
トで腰、張りのある糸や、被覆性の優れた2層構
造糸が提案されているが完全なものでない。さら
に後者はケン縮加工等により、合成繊維の持つ特
有のヌメリ改善や伸縮性等の付加価値を付与して
いるが、布帛での欠点としては透ける、抗スナグ
性が悪い、グリツタが発生する、さらには風合が
今一歩不十分であるという欠点を有する。これら
欠点を互いに補完させる手段として連続長繊維
(フイラメント)と紡績糸もしくは短繊維とを組
合せたいわゆる複合糸が数多く提案されている。
その代表例としてコアヤーンがあるが、複合によ
り強力面や均斉性の点で改善できるものの該2成
分が交互に配列した糸構造であるために、布帛と
して紡績糸風合をその表面で表わし、連続長繊維
の性能をその内部で顕在化せしめることは困難で
ある。 またフイラメント繊維とステープル繊維とから
なる複合糸において、フイラメント繊維に通常の
延伸糸を用い、ステープル繊維に木綿を用いた場
合には、木綿繊維に比較して、沸水収縮率あるい
は熱収縮応力が高すぎて、両者が分離しやすい点
と、特にポリエステルフイラメントを使用した場
合、該フイラメントのヤング率が高すぎて、木綿
繊維のすぐれた柔軟さが失われてしまうことが欠
点であつた。この欠点を解決するため、特開昭50
−69340号公報に、合成繊維の通常延伸糸と木綿
繊維を合撚したのち、ボビンに巻いたまま緊張状
態で熱処理し、合成繊維の残留収縮を無くするこ
とが提案されている。しかし、この場合にも、合
撚工程と熱処理工程が不可欠であり、かつポリエ
ステルの高ヤング率の問題はいぜん解決されてい
ない。 本考案に最も近似する公知技術としては、本考
案者らが既に提案した特開昭58−109648号公報が
あるが、かかる方法では複合糸の柔らかさ、糸外
観の均整性、抗ピル性、形態安定性等において未
だ満足されず、更に改善をすることが要望されて
いた。 〔本考案の目的〕 本考案はかかる上記欠点を解決せんとするもの
であつて、目的とするとこは短繊維の特長を糸表
面で表現し、糸内部には該短繊維となじみの良い
連続長繊維を複合せしめソフトな紡績糸でありな
がら、張り、腰に富んだ複合糸を提供せんとする
ものである。 〔本考案の構成〕 本考案は次の構成からなる。 すなわち、本考案の芯鞘構造複合紡績糸は、フ
イラメント繊維とステープル繊維とからなる実撚
芯鞘構造複合紡績糸において、前記フイラメント
繊維は90モル%以上がエチレンテレフタレートユ
ニツトで構成されるポリエステルフイラメントで
あつて、ヤング率40〜105(g/d)、該フイラメ
ント糸密度ρ=1.365g/cm3以上、複屈折△n=
0.08以上、沸水収縮率△S=8%以下のマルチフ
イラメントを構成していて、かつ該フイラメント
繊維は芯部に配され、前記ステープル繊維は鞘部
に配されてなることを特徴とする衣料用の芯鞘構
造複合紡績糸である。 本考案の芯鞘構造複合紡績糸を第1図、第2図
に示す。第1図は側面図、第2図は横断面図であ
る。第1図、第2図において、13はポリエステ
ルフイラメントであり、14はステープル繊維を
示していて、該ステープル繊維は鞘部に配されて
いるものである。しかしてフイラメント13は複
合糸の芯部に配置され、複合糸全体として実撚が
施されている。すなわち、ステープル繊維14は
もちろん、フイラメント繊維13にも実撚が施さ
れている。しかしてフイラメント繊維13の実質
的な最外層の部分と、ステープル繊維14の実質
的な最内層の部分、すなわち両繊維層の境界部分
の撚角は、両繊維とも実質的に等しいことが好ま
しい。この理由は撚角が等しいと、両繊維層の剥
離が防止されるからである。フイラメント繊維は
生糸であつても、仮撚糸や他の捲縮糸、さらには
交絡やループを有するものであつてもよい。 次に本考案においては、ポリエステルフイラメ
ントは主成分が90モル%以上エチレンテレフタレ
ートユニツトからなることが必要である。強度、
風合、張り、腰、染色性、防シワ性等の総合的品
質特性からである。また該ポリエステルフイラメ
ントはヤング率40〜105g/dであることが必要
である。複合糸の風合を柔軟にするためである。
ヤング率が105(g/d)を越える範囲である
と、複合糸が硬くなるばかりでなく、精紡時のヨ
リ込み性が悪くなつて好ましくない。またヤング
率が40(g/d)未満のものは腰がなく、複合糸
の強度も低下して好ましくない。また、該フイラ
メント繊維は、フイラメント糸密度ρ=1.365
g/cm3以上、複屈折△n=0.08以上、沸水収縮率
△S=8%以下のマルチフイラメントを構成して
いるものである。 本考案のフイラメント繊維を得るには、溶融紡
糸時の引き取り速度を4500m/分以上、好ましく
は5000m/分以上とすることが好ましい。また紡
糸速度が3500m/分以上であるときは、紡糸工程
中にて乾熱または湿熱による熱処理を行なうこと
によつても得られる。 一方、ステープル繊維としては通常の紡績工程
に供されるものであれば何ら限定されない。例え
ばポリエステル、ポリアミド等の化合成繊維、天
然繊維等何でもよい。特に本考案においては前記
ステープル短繊維の全部もしくは一部に木綿を有
するものであれば吸水能を複合糸に付与できるの
で好ましい。 本考案の複合糸を得るには、通常のリング精紡
機上でフイラメントとステープル繊維を合体させ
る際にV(B)>V(A)(V(A):連続長繊維の供給速
度、V(B):短繊維の供給速度)の速度関係で供給
することにより容易に達成できる。該速度差は
1.01〜1.20V(A)=V(B)とすることが良く、好まし
くは1.03〜1.10V(A)=V(B)である。糸集束手段は
実ヨリによるものであり、ヨリ係数としては通常
の紡績糸並みが良いが、被覆性を良くするには高
目のヨリ係数を採用することが望まれる。 製造方法の一例を図面によりさらに詳述するな
らば、第1図は本考案の複合糸を得るための一実
施態様を示すものであつて、まず、短繊維粗糸1
はバツクローラ2に供されエプロンローラ3を経
てフロントローラ4からフリース5として送り出
される。一方、フイラメント繊維6は張力調整装
置7を経て供給ローラ8に供給され、次いで前記
フロントローラ4に供される。この際該フロント
ローラ4のトツプローラ4′は段付加工された小
径部の周面側から供される。かくすることにより
2成分の合体距離が近接化でき合体、集束がスム
ースに行なわれる。撚合時における2成分の合体
距離は概ね2〜10mm程度が好ましい。集束手段は
実ヨリによるものでスネールガイド10、トラベ
ラ11を経て、本考案の複合糸9を巻取ボビン1
2に巻取る。本考案において糸構造を決定するの
はフロントローラ4から送り出されるフリース5
の速度とフイラメント繊維6の供給ローラ8の速
度により決まるもので、フリース5の速度V(B)、
フイラメント繊維の速度V(A)とするならばV(B)>
V(A)とするものである。なおフロントローラ4の
回転と供給ローラ8の回転は互に同期せしめる構
造にすることが好ましい。 〔本考案の効果〕 本考案の複合糸は、フイラメント繊維とステー
プル繊維との境界距離がなく、強固に一体化した
ものとなり、抗ピリング性にも優れたものとな
る。その理由は両成分の境界付近の撚角がほぼ等
しく、またフイラメント繊維のヤング率が低いの
で撚込み性に優れているからである。またフイラ
メント繊維の収縮率は小さいので、染色やアイロ
ンがけ等によつても両成分は分離せず、形態安定
効果が大である。また糸全体として柔らかく風合
の優れたものとなる。 以下実施例にてさらに詳述する。 実施例 1 フイラメント繊維にポリエチレンテレフタレー
トからなる糸密度1.371g/cm3、複屈折Δn=
0.105、ヤング率80g/d、沸水収縮率3.0%(98
℃×20分処理後)の50D−24fi1を用い、一方、ス
テープル繊維に米綿SJVを主体とする木綿を用
い、第3図に示す方法により複合糸を得た。該2
成分の合体特の供給速度関係はV(B)=1.06V(A)
(ただしV(B)はステープル繊維束の供給速度、V
(A)はフイラメントの供給速度)とし、ヨリ係数K
=3.5(ただしT=K√:Tは1インチ当り
のヨリ数、Kはヨリ係数、Necは英国式番手)に
てNec=36sを紡出した。得られた複合糸は第1
図、第2図に示すとおりの優れた被覆性を有する
ものとなつた。該複合糸を28Gの丸編機に供し天
竺編地を得た。次いで染色仕上加工したところ、
得られた編地の表面は綿100%の品位、風合を呈
し、しかも、綿の特性がそのまま生かせ、そのう
え寸法安定性の良好な布帛を得た。布帛の実用性
能は次のとおりである。なお更に、上記において
ポリエステルマルチフイラメント糸として、東レ
(株)製の通常タイプ(ヤング率110g/d)の50D
−24fil糸を用いた他は全く同様にして布帛を製造
し、布帛実用性能の比較を行なつた(比較品)。
[Technical Field of the Present Invention] The present invention relates to a composite spun yarn for clothing made of filament fibers and staple fibers. More specifically, the filament is made of highly oriented polyester filament that has been spun at ultra-high speed and has a low boiling water shrinkage rate.
Moreover, it relates to a specific composite spun yarn using this as a core. [Prior art and its problems] Conventionally, yarns used for knitting and fabrics include spun yarns or yarns made of continuous filaments. For the former, yarns that are soft, elastic, and taut, and yarns with a two-layer structure that have excellent covering properties have been proposed, but they are not perfect. Furthermore, the latter has been given added value such as improved sliminess and elasticity, which are unique to synthetic fibers, through shrinkage processing, etc. However, the disadvantages of fabrics are that they are transparent, have poor snag resistance, and cause grittiness. Furthermore, it has the disadvantage that the texture is still inadequate. Many so-called composite yarns, which are a combination of continuous filaments and spun yarns or short fibers, have been proposed as a means to compensate for these drawbacks.
A typical example is core yarn, which can be improved in terms of strength and uniformity by compounding, but because it has a yarn structure in which these two components are arranged alternately, it is possible to express the texture of spun yarn on the surface of the fabric, making it continuous. It is difficult to realize the performance of long fibers internally. In addition, in a composite yarn consisting of filament fibers and staple fibers, when ordinary drawn yarn is used for the filament fibers and cotton is used for the staple fibers, the boiling water shrinkage rate or heat shrinkage stress is higher than that of cotton fibers. The disadvantages are that the two tend to separate easily, and especially when polyester filaments are used, the Young's modulus of the filaments is too high and the excellent flexibility of cotton fibers is lost. In order to solve this drawback,
Japanese Patent Application No. 69340 proposes that a normally drawn synthetic fiber and a cotton fiber are combined and twisted and then heat treated under tension while being wound around a bobbin to eliminate residual shrinkage of the synthetic fiber. However, even in this case, a twisting process and a heat treatment process are essential, and the problem of the high Young's modulus of polyester has not been solved at all. The known technique closest to the present invention is JP-A-58-109648, which was proposed by the inventors of the present invention. The morphological stability and other aspects were still unsatisfied, and further improvements were desired. [Purpose of the present invention] The present invention is intended to solve the above-mentioned drawbacks, and the purpose is to express the characteristics of short fibers on the yarn surface, and to create a continuous layer inside the yarn that is compatible with the short fibers. The objective is to provide a composite yarn that is made of long fibers and is soft, yet has plenty of tension and stiffness. [Structure of the present invention] The present invention consists of the following structure. That is, the core-sheath composite spun yarn of the present invention is a real twisted core-sheath composite spun yarn consisting of filament fibers and staple fibers, in which the filament fibers are polyester filaments in which 90 mol% or more is composed of ethylene terephthalate units. Young's modulus 40 to 105 (g/d), filament yarn density ρ = 1.365 g/cm 3 or more, birefringence △n =
0.08 or more, and a boiling water shrinkage rate ΔS of 8% or less constitutes a multifilament, and the filament fibers are arranged in a core part, and the staple fibers are arranged in a sheath part. It is a composite spun yarn with a core-sheath structure. The core-sheath structure composite spun yarn of the present invention is shown in FIGS. 1 and 2. FIG. 1 is a side view, and FIG. 2 is a cross-sectional view. In FIGS. 1 and 2, 13 is a polyester filament, and 14 is a staple fiber, which is arranged in the sheath. The filament 13 is placed in the core of the composite yarn, and the entire composite yarn is actually twisted. That is, not only the staple fibers 14 but also the filament fibers 13 are actually twisted. Therefore, it is preferable that the twist angles of the substantially outermost layer portion of the filament fiber 13 and the substantially innermost layer portion of the staple fiber 14, that is, the boundary portion between both fiber layers, are substantially equal for both fibers. The reason for this is that when the twist angles are equal, separation of both fiber layers is prevented. The filament fibers may be raw silk, false twisted yarns, other crimped yarns, or even those having entanglements or loops. Next, in the present invention, it is necessary that the main component of the polyester filament is 90 mol% or more of ethylene terephthalate units. Strength,
This is based on overall quality characteristics such as texture, tension, elasticity, dyeability, and wrinkle resistance. Further, the polyester filament needs to have a Young's modulus of 40 to 105 g/d. This is to make the texture of the composite yarn soft.
If the Young's modulus exceeds 105 (g/d), the composite yarn will not only become hard, but also have poor twisting properties during spinning, which is not preferable. Further, a yarn having a Young's modulus of less than 40 (g/d) is not preferable because it lacks stiffness and the strength of the composite yarn decreases. In addition, the filament fiber has a filament yarn density ρ=1.365
g/cm 3 or more, birefringence Δn=0.08 or more, and boiling water shrinkage rate ΔS=8% or less. In order to obtain the filament fiber of the present invention, the take-up speed during melt spinning is preferably 4500 m/min or more, preferably 5000 m/min or more. Further, when the spinning speed is 3500 m/min or more, it can also be obtained by heat treatment using dry heat or wet heat during the spinning process. On the other hand, the staple fiber is not limited in any way as long as it can be subjected to a normal spinning process. For example, any synthetic fiber such as polyester or polyamide, natural fiber, etc. may be used. Particularly in the present invention, it is preferable that all or part of the staple short fibers contain cotton, since water absorption ability can be imparted to the composite yarn. To obtain the composite yarn of the present invention, V(B)>V(A) (V(A): feed rate of continuous filaments, V( B): Feeding speed of short fibers) This can be easily achieved by feeding the short fibers at the following speed relationship. The speed difference is
It is good to set it as 1.01-1.20V(A)=V(B), preferably 1.03-1.10V(A)=V(B). The yarn convergence means is based on actual twist, and the twist coefficient is as good as that of ordinary spun yarn, but it is desirable to adopt a higher twist coefficient in order to improve coverage. To explain an example of the manufacturing method in more detail with reference to the drawings, FIG. 1 shows an embodiment for obtaining the composite yarn of the present invention.
is provided to the bag crawler 2, passes through the apron roller 3, and is sent out as a fleece 5 from the front roller 4. On the other hand, the filament fiber 6 is supplied to a supply roller 8 via a tension adjustment device 7, and then provided to the front roller 4. At this time, the top roller 4' of the front roller 4 is provided from the circumference side of the stepped small diameter portion. By doing so, the distance between the two components can be shortened, and the combination and focusing can be performed smoothly. The distance between the two components during twisting is preferably about 2 to 10 mm. The convergence means is based on a real twist, and the composite yarn 9 of the present invention is wound onto the winding bobbin 1 through a snail guide 10 and a traveler 11.
Wind it up to 2. In this invention, the yarn structure is determined by the fleece 5 fed out from the front roller 4.
and the speed of the supply roller 8 of the filament fiber 6, and the speed of the fleece 5 V(B),
If the velocity of filament fiber is V(A), then V(B)>
V(A). Preferably, the rotation of the front roller 4 and the rotation of the supply roller 8 are synchronized with each other. [Effects of the present invention] The composite yarn of the present invention has no boundary distance between filament fibers and staple fibers, is strongly integrated, and has excellent pilling resistance. The reason for this is that the twist angles near the boundary between the two components are approximately equal, and the filament fiber has a low Young's modulus, so it has excellent twistability. Furthermore, since the shrinkage rate of the filament fiber is small, the two components do not separate even when dyed, ironed, etc., and the shape stabilization effect is large. In addition, the yarn as a whole is soft and has an excellent texture. This will be explained in further detail in Examples below. Example 1 Filament fiber made of polyethylene terephthalate, yarn density 1.371 g/cm 3 , birefringence Δn=
0.105, Young's modulus 80g/d, boiling water shrinkage rate 3.0% (98
A composite yarn was obtained by the method shown in FIG. 3 using 50D-24fi1 (after processing for 20 minutes at C) and using cotton mainly composed of rice cotton SJV as the staple fiber. Part 2
The feed rate relationship for the combination of components is V(B) = 1.06V(A)
(However, V(B) is the supply speed of the staple fiber bundle, V
(A) is the filament feeding speed), and the twist coefficient K
= 3.5 (T = K√: T is the number of twists per inch, K is the twist coefficient, and Nec is the English count), and Nec = 36s was spun. The obtained composite yarn is the first
As shown in Figures 2 and 2, it had excellent covering properties. The composite yarn was subjected to a 28G circular knitting machine to obtain a jersey knitted fabric. Next, after dyeing and finishing,
The surface of the resulting knitted fabric exhibits the quality and feel of 100% cotton, the characteristics of cotton can be utilized as is, and the fabric has good dimensional stability. The practical performance of the fabric is as follows. Furthermore, in the above, as the polyester multifilament yarn, Toray
Regular type (Young's modulus 110g/d) 50D manufactured by Co., Ltd.
A fabric was produced in exactly the same manner except that −24fil yarn was used, and the practical performance of the fabric was compared (comparison product).

【表】 上記のとおり、残留収縮と防シワ性においてき
わめて優れた性能を有している。さらに比較品対
比本考案の方がドレープ性の優れた製品となつ
た。 実施例 2 フイラメント繊維にポリエチレンテレフタレー
トのヤング率79g/d、沸水収縮率28%、糸密度
1.380g/cm3、複屈折Δn=0.110の75D−24filの
仮ヨリ加工糸を用い、一方ステープル繊維に常圧
カチオン可染型ポリエステル1.5d×3850%とエジ
プト綿50%からなる粗糸とし、複合糸のトータル
番手Nec=30s(ただしNec:英国式綿番手)を紡
出した。該2成分の合体時の供給速度関係はV(B)
=1.05とし、ヨリ係数K=3.4(ただしT=K√
において、Tは1インチ当りのヨリ数、Kは
ヨリ係数、Necは英国式綿番手をそれぞれ示
す。) なお、本実施例に用いたフイラメント成分の仮
ヨリ加工条件は従来の伸縮糸設計より若干甘目の
加工を施した。条件は次のとおりであつた。 仮ヨリ数T(T/m)=3390 仮ヨリ温度=200℃ フイード率=−2% 本実施例で得られた糸を26ゲージの編機にて天
竺を得た。製品品位、風合は従来のスパンの味を
維持し、かつボリユーム、伸縮性に富んだ布帛と
なつた。布帛の実用機能は次のとおりである。
[Table] As mentioned above, it has extremely excellent performance in terms of residual shrinkage and wrinkle resistance. Furthermore, compared to the comparative product, the product of the present invention had better drapability. Example 2 Young's modulus of polyethylene terephthalate for filament fiber: 79 g/d, boiling water shrinkage rate: 28%, yarn density
A 75D-24fil temporarily twisted yarn with a weight of 1.380g/cm 3 and a birefringence Δn=0.110 was used, while the staple fiber was a roving made of 1.5d x 3850% atmospheric cation dyeable polyester and 50% Egyptian cotton. A composite yarn with a total count of Nec = 30s (Nec: English cotton count) was spun. The supply speed relationship when the two components are combined is V(B)
= 1.05, twist coefficient K = 3.4 (T = K√
, T is the number of twists per inch, K is the twist coefficient, and Nec is the English cotton count. Note that the temporary twisting processing conditions for the filament component used in this example were slightly milder than those for conventional elastic yarn designs. The conditions were as follows. Temporary twist number T (T/m) = 3390 Temporary twist temperature = 200°C Feed ratio = -2% A jersey was obtained from the yarn obtained in this example using a 26 gauge knitting machine. The product maintains the quality and texture of traditional spandex fabrics, and the fabric has plenty of volume and elasticity. The practical functions of the fabric are as follows.

【表】 また、本考案の糸を双糸加工し織物に供した。
組織は2/2ツイルとした。得られた製品は張り、
腰、反発性に優れ、かつタテおよびヨコ方向に伸
縮性を有するいわゆる2way織物を得た。
[Table] In addition, the yarn of the present invention was subjected to double yarn processing and used for fabrication.
The tissue was 2/2 twill. The obtained product is stretched,
A so-called 2-way fabric has been obtained that has excellent elasticity and resilience, and is stretchable in both the vertical and horizontal directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案の複合糸を示す。
第3図は本考案の複合糸を得る好ましいプロセス
の一実施態様を示す。 1:短繊維粗糸、6:連続長繊維、4:段付ロ
ーラ、8:供給ローラ、9:複合糸、13:フイ
ラメント繊維、14:ステープル繊維。
1 and 2 show the composite yarn of the present invention.
FIG. 3 shows one embodiment of a preferred process for obtaining the composite yarn of the present invention. 1: short fiber roving, 6: continuous long fiber, 4: stepped roller, 8: supply roller, 9: composite yarn, 13: filament fiber, 14: staple fiber.

Claims (1)

【実用新案登録請求の範囲】 (1) フイラメント繊維とステープル繊維とからな
る実撚芯鞘構造複合紡績糸において、前記フイ
ラメント繊維は90モル%以上がエチレンテレフ
タレートユニツトで構成されるポリエステルフ
イラメントであつて、ヤング率40〜105(g/
d)、該フイラメント糸密度ρ=1.365g/cm3
上、複屈折△n=0.08以上、沸水収縮率△S=
8%以下のマルチフイラメントを構成してい
て、かつ該フイラメント繊維は芯部に配され、
前記ステープル繊維は鞘部に配されてなること
を特徴とする衣料用の芯鞘構造複合紡績糸。 (2) ステープル繊維が木綿又は木綿を一部含む混
紡品であることを特徴とする実用新案登録請求
の範囲第(1)項記載の衣料用の芯鞘状複合紡績
糸。
[Claims for Utility Model Registration] (1) In a real twisted core-sheath composite spun yarn consisting of filament fibers and staple fibers, the filament fibers are polyester filaments in which 90 mol% or more of ethylene terephthalate units are used. , Young's modulus 40-105 (g/
d), the filament yarn density ρ = 1.365 g/cm 3 or more, birefringence △n = 0.08 or more, boiling water shrinkage rate △S =
8% or less of multifilament, and the filament fiber is arranged in the core,
A core-sheath structure composite spun yarn for clothing, characterized in that the staple fibers are arranged in a sheath part. (2) The core-sheath composite spun yarn for clothing according to claim (1) of the utility model registration, characterized in that the staple fiber is cotton or a blended product partially containing cotton.
JP1729384U 1984-02-09 1984-02-09 Core-sheath structure composite spun yarn Granted JPS60132472U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1729384U JPS60132472U (en) 1984-02-09 1984-02-09 Core-sheath structure composite spun yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1729384U JPS60132472U (en) 1984-02-09 1984-02-09 Core-sheath structure composite spun yarn

Publications (2)

Publication Number Publication Date
JPS60132472U JPS60132472U (en) 1985-09-04
JPS6245008Y2 true JPS6245008Y2 (en) 1987-11-30

Family

ID=30504863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1729384U Granted JPS60132472U (en) 1984-02-09 1984-02-09 Core-sheath structure composite spun yarn

Country Status (1)

Country Link
JP (1) JPS60132472U (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134882A (en) * 1976-06-11 1979-01-16 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate)filaments
JPS5464133A (en) * 1977-09-12 1979-05-23 Du Pont Flat yarn and tow
JPS5512843A (en) * 1978-07-08 1980-01-29 Gunze Kk Coreyarn sewing machine yarn
JPS568140A (en) * 1979-07-02 1981-01-27 Dainippon Screen Mfg Co Ltd Emphasizing method of sharpness in image scanning and recording apparatus
JPS5837418A (en) * 1981-08-31 1983-03-04 Kunihiko Odaka Soot and dust-free combustion and furnace therefore
JPS5919274A (en) * 1982-07-22 1984-01-31 Fujitsu Ltd Floppy disk device
JPS6223818U (en) * 1985-07-29 1987-02-13

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134882A (en) * 1976-06-11 1979-01-16 E. I. Du Pont De Nemours And Company Poly(ethylene terephthalate)filaments
JPS5464133A (en) * 1977-09-12 1979-05-23 Du Pont Flat yarn and tow
JPS5512843A (en) * 1978-07-08 1980-01-29 Gunze Kk Coreyarn sewing machine yarn
JPS568140A (en) * 1979-07-02 1981-01-27 Dainippon Screen Mfg Co Ltd Emphasizing method of sharpness in image scanning and recording apparatus
JPS5837418A (en) * 1981-08-31 1983-03-04 Kunihiko Odaka Soot and dust-free combustion and furnace therefore
JPS5919274A (en) * 1982-07-22 1984-01-31 Fujitsu Ltd Floppy disk device
JPS6223818U (en) * 1985-07-29 1987-02-13

Also Published As

Publication number Publication date
JPS60132472U (en) 1985-09-04

Similar Documents

Publication Publication Date Title
CN102851830B (en) Fine-coarse combined light elastic wool and production technology thereof
WO2021073551A1 (en) Composite yarn and fabric prepared therefrom
CN115125641B (en) Different-core wrap yarn and manufacturing method thereof
JPS6245008Y2 (en)
CN110241498A (en) A kind of underlinen fabric and its processing technology of the one-way wet-guide of use in winter
JP3780235B2 (en) Stretch loop yarn and knitting using this
KR20230068014A (en) Dual composite spun yarn improved abrasion strength and physical properties, and method for manufacturing thereof
JPS6245009Y2 (en)
CN210974990U (en) Jet vortex blended yarn of mulberry silk
JPH1161581A (en) Core-sheath conjugate spun yarn and cloth
CN110295431A (en) A kind of underlinen fabric and its weaving process of the one-way wet-guide that summer uses
JPH0197229A (en) Extensible schenile yarn
JPS6331568B2 (en)
JPH06272140A (en) Knitted fabric
JPH03185138A (en) Production of conjugate yarn for knitting and weaving
JPS5920774B2 (en) Special yarn manufacturing method
JP2002054045A (en) Spun yarn, method for producing the same and fine spinning frame
JPS5855260Y2 (en) Bulky processed yarn
CN117265738A (en) Integrated production process of core spun yarn and fabric
JPS6346174B2 (en)
JP3606431B2 (en) Composite yarn and woven / knitted fabric using the same
JP2000096401A (en) Stretchable warp knit
JPS6220292B2 (en)
JP2002138341A (en) Method for producing long short composite woven fabric containing animal hair fiber
CN114645358A (en) High-elasticity textile yarn and preparation method thereof