JPS6241303B2 - - Google Patents

Info

Publication number
JPS6241303B2
JPS6241303B2 JP4295480A JP4295480A JPS6241303B2 JP S6241303 B2 JPS6241303 B2 JP S6241303B2 JP 4295480 A JP4295480 A JP 4295480A JP 4295480 A JP4295480 A JP 4295480A JP S6241303 B2 JPS6241303 B2 JP S6241303B2
Authority
JP
Japan
Prior art keywords
copper
cryogenic
copper conductor
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4295480A
Other languages
Japanese (ja)
Other versions
JPS56139643A (en
Inventor
Koji Moriai
Kazuo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4295480A priority Critical patent/JPS56139643A/en
Publication of JPS56139643A publication Critical patent/JPS56139643A/en
Publication of JPS6241303B2 publication Critical patent/JPS6241303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は極低温における導電性にすぐれた極低
温用銅導体およびその製造法に関するものであ
る。 尚ここでいう極低温とは液体ヘリウム温度や液
体窒素温度などのほぼ−150℃以下の温度をさす
ものである。 近年、超電導材料の安定化材などのように極低
温において導電性にすぐれた導体がしばしば要求
されるようになつてきている。 一般に金属中に不純物が固溶していると、純金
属に比べて電気抵抗が高く、導電性は害される。
また不純物の量が少なく常温においては導電性に
殆んど影響をおよぼさない程度であつても、極低
温においては熱振動による電気抵抗への寄与が極
めて小さくなるため不純物による導電性への影響
の度合は非常に大きいものとなりやすい。 また特に銅導体が無酸素である場合には、含有
されている不純物が酸化物として析出されること
がないためにより一層不純物によつて極低温にお
ける導電性が害されやすいという問題点を有して
いるのである。 このようなことから通常の導電用銅材料は、電
解精製を行なつた不純物量がかなり少ない原材料
を使用しているのであるが、それでもなお微量の
不純物は混入もしくは残留し、低温における導電
性を害するという結果を招くことがしばしばであ
つた。 低温における導電性を改善する手段として、通
常の電気銅よりさらに不純物量を減少させる方法
としては、通常の電気銅を再度電解精錬すると
か、いわゆるゾーンメルテイングなどの方法によ
り精製しなければならないため、これらの精製法
で得られる原材料は高価格を免れず、従つて工業
的には困難である。 またもしもこのような特別に高純度の原材料を
用いたとしても溶解、鋳造などの製造工程中で混
入するSやFeなどの不純物のため所期の効果は
得られないのである。 これに対して本発明は工業的に得られる通常の
方法で電解精錬された、微量の不純物を含む原材
料を用いて、銅導体の極低温における導電性の改
良を種々検討した結果なされたものであり、これ
によつて極低温用導体を容易に提供せんとするも
のである。 即ち、本発明の極低温用銅導体はPb5〜40ppm
を含有し、酸素を殆んど含有しないもしくは含有
するとしても500ppm以下であり、残部が本質的
にCuよりなることを特徴とするものである。 そしてこの銅導体中の不純物としてのS含有量
は30ppm以下が好ましい。 またSを含む不純物の総含有量は100ppm以下
であることが望ましい。 さらに本発明は上記のような銅導体、を得るに
当つてその製造工程において、素材の熱間処理後
所望形状に加工する前におよび/もしくは加工後
に少なくとも一度は450〜750℃にて30分以上加熱
保持することを特徴とするものである。 本発明においてPbを5〜40ppmと規定するの
は、5ppm未満では極低温における導電性の改良
に効果が少なく、また40ppm以上を添加しても
よりすぐれた改良とはならないばかりか、却つて
銅材料の熱間加工性を害する恐れがあるためであ
る。 また本発明で不純物としてのSの含有量を
30ppm以下とし、さらにPb、Ag、O2を除く不純
物の総含有量を100ppm以下とするのは、本発明
が工業的に容易に得られる純度の原材料を使用す
ることを目的としているためであり、この時にS
が30ppmをこえて含有していたり、Pb、Ag、O2
を除く不純物の総含有量が100ppmを越えていた
りすると、原材料に上記した範囲内のPbを添加
しても、もはや極低温におけるすぐれた導電性は
期待しがたいからである。 なおここで本発明において不純物の総含有量か
らO2およびAgの量を除いたのは両元素とも含有
することによつて低温における導電性に殆んど影
響をおよぼさないからである。 従つて本発明で極低温用銅導体を得るに当つて
原材料としては無酸素銅のほか200〜500ppmの
O2を含有するタフピツチ銅も使用可能である。 次に上記の如き範囲内のPbや不純物を含有し
たCu素材を用いて通常の熱処理後に所要形状に
加工するのであるが、この加工前および/または
加工後に施こす加熱処理条件として450〜750℃の
範囲を規定するのは、450℃未満では極低温にお
ける導電性の改善に極めて長い時間を要し、また
750℃をこえる温度では添加したPbの固溶量が増
大するために逆に極低温における導電性を害する
おそれが生ずるためである。そしてこの加熱温度
を保持する時間としては30分以上であればよい。 以下実施例により本発明を詳細に説明する。 実施例 1 主たる不純物としてFe6ppm、Ni3ppm、
Ag16ppm、S5ppm、その他の元素は各1ppm以
下からなる電気銅を保護雰囲気下で溶解し、該溶
解液にPbを最終製品中に5〜40ppmの範囲内で
含有する適量を添加したのち、120mm口に連続的
に鋳造して無酸素銅塊を得た。 この鋳塊を熱間圧延によつて8mmφの荒引線と
し、さらに冷間伸線を行なつて2.6mmφの銅導体
を得た。 次にこの銅導体を真空中にて600℃で10時間加
熱保持することによつて極低温用銅導体を得た。 かくして得られたPb含有量の異なる極低温用
銅導体についてそれぞれ室温および液体ヘリウム
温度(−269℃)における電気抵抗を測定してそ
の電気抵抗比(R293/R4.2)をみたところ第1表
の結果を得た。 なお電気抵抗比(R293/R4.2)とは、室温にお
ける電気抵抗値/液体ヘリウム温度における電気
抵抗値で表わすものであつて極低温における導電
性の尺度としてしばしば用いられ、電気抵抗比の
高い方が極低温における導電性にすぐれているこ
とを示すのである。
The present invention relates to a cryogenic copper conductor with excellent conductivity at cryogenic temperatures and a method for manufacturing the same. Note that the extremely low temperature referred to here refers to a temperature of approximately -150° C. or lower, such as the temperature of liquid helium or liquid nitrogen. In recent years, conductors with excellent electrical conductivity at extremely low temperatures, such as stabilizers for superconducting materials, are often required. Generally, when impurities are dissolved in a metal, the electrical resistance is higher than that of a pure metal, and the conductivity is impaired.
In addition, even if the amount of impurities is small and has almost no effect on conductivity at room temperature, the contribution of thermal vibration to electrical resistance becomes extremely small at extremely low temperatures, so impurities affect conductivity. The degree of influence is likely to be very large. In addition, especially when the copper conductor is oxygen-free, the impurities contained therein are not precipitated as oxides, so there is a problem that the impurities are more likely to impair conductivity at extremely low temperatures. -ing For this reason, ordinary conductive copper materials use raw materials that have undergone electrolytic refining and have a fairly low amount of impurities, but even then, trace amounts of impurities may still be mixed in or remain, resulting in poor conductivity at low temperatures. This often resulted in harm. As a means to improve conductivity at low temperatures and to further reduce the amount of impurities than ordinary electrolytic copper, ordinary electrolytic copper must be refined by electrolytic refining or so-called zone melting. However, the raw materials obtained by these purification methods are expensive and therefore industrially difficult. Furthermore, even if such particularly high-purity raw materials were used, the desired effect would not be obtained due to impurities such as S and Fe mixed in during manufacturing processes such as melting and casting. In contrast, the present invention was developed as a result of various studies on improving the conductivity of copper conductors at extremely low temperatures using raw materials containing trace amounts of impurities that were electrolytically refined using industrially available ordinary methods. With this, it is intended to easily provide conductors for cryogenic temperatures. That is, the cryogenic copper conductor of the present invention contains Pb5 to 40ppm.
It is characterized in that it contains almost no oxygen, or if it does contain it, it is less than 500 ppm, and the remainder consists essentially of Cu. The S content as an impurity in this copper conductor is preferably 30 ppm or less. Further, it is desirable that the total content of impurities including S is 100 ppm or less. Furthermore, the present invention provides that in the manufacturing process for obtaining the copper conductor as described above, after hot treatment of the material, before processing into a desired shape and/or after processing, at least once at 450 to 750°C for 30 minutes. It is characterized in that it is heated and maintained for the above period. The reason why Pb is defined as 5 to 40 ppm in the present invention is that less than 5 ppm has little effect on improving conductivity at extremely low temperatures, and adding 40 ppm or more does not result in any better improvement, and on the contrary, Pb This is because there is a risk of impairing the hot workability of the material. In addition, in the present invention, the content of S as an impurity is
The reason why the total content of impurities excluding Pb, Ag, and O 2 is set to be 30 ppm or less and 100 ppm or less is that the present invention aims to use raw materials with purity that can be easily obtained industrially. , at this time S
contains more than 30ppm, Pb, Ag, O 2
This is because if the total content of impurities excluding Pb exceeds 100 ppm, excellent conductivity at extremely low temperatures can no longer be expected even if Pb is added within the above range to the raw material. In the present invention, the amount of O 2 and Ag is excluded from the total content of impurities because the presence of both elements hardly affects the conductivity at low temperatures. Therefore, in order to obtain the cryogenic copper conductor according to the present invention, in addition to oxygen-free copper, 200 to 500 ppm of copper is used as raw material.
Toughpitch copper containing O 2 can also be used. Next, using a Cu material containing Pb and impurities within the above range, it is processed into the desired shape after normal heat treatment. The reason for specifying the range is that it takes an extremely long time to improve conductivity at extremely low temperatures below 450℃, and
This is because at temperatures exceeding 750°C, the amount of solid solution of added Pb increases, which may conversely impair conductivity at extremely low temperatures. The time for maintaining this heating temperature may be 30 minutes or more. The present invention will be explained in detail below with reference to Examples. Example 1 Fe6ppm, Ni3ppm, as main impurities
Electrolytic copper containing less than 1 ppm of Ag16ppm, S5ppm, and other elements is dissolved in a protective atmosphere, and an appropriate amount of Pb is added to the solution so that the final product contains Pb in the range of 5 to 40 ppm. An oxygen-free copper ingot was obtained by continuous casting. This ingot was hot rolled into a rough drawn wire of 8 mm diameter, and further cold wire drawn to obtain a copper conductor of 2.6 mm diameter. Next, this copper conductor was heated and held in a vacuum at 600°C for 10 hours to obtain a copper conductor for cryogenic use. The electrical resistance of the thus obtained cryogenic copper conductors with different Pb contents at room temperature and liquid helium temperature (-269°C) was measured, and the electrical resistance ratio (R 293 /R 4.2 ) was found. The results shown in Table 1 were obtained. The electrical resistance ratio (R 293 / R 4.2 ) is expressed as the electrical resistance value at room temperature/the electrical resistance value at liquid helium temperature, and is often used as a measure of conductivity at extremely low temperatures. The higher the value, the better the conductivity at extremely low temperatures.

【表】【table】

【表】 上記第1表より本発明の銅導体は比較例(No.
6、およびNo.7)に示す従来の銅導体に比べて極
低温における電気抵抗が小さく(R293/R4.2が大
きく)なり、また比較例9の高純度銅を用いた銅
導体の電気抵抗比の値近くまで低温における導電
性が改善されることがわかつた。さらに銅導体中
のPb含有量についてはそれが5ppm未満ではPb含
有の効果が不十分であり(比較例6、7)また比
較例8のように40ppm以上を用いても低温にお
ける電気抵抗においてそれ以上の改善効果は見ら
れず、却つて熱間加工性が悪くなるのである。 実施例 2 第2表に示すような不純物含有量の異なる電気
銅を大気中にて溶解し、これにPbを添加したの
ち鋳造して酸素含有量が約200〜300ppmの銅鋳
塊を得た。これを実施例1と同様にして伸線し、
1.8mmφの銅導体を得た。次いでこの銅鋳体を650
℃にて8時間加熱保持して極低温用銅導体を得
た。 得られた銅導体について実施1と同じ方法で測
定した電気抵抗比は第2表の通りであつた。
[Table] From Table 1 above, the copper conductor of the present invention is the comparative example (No.
Compared to the conventional copper conductor shown in No. 6 and No. 7), the electrical resistance at cryogenic temperatures is smaller (R 293 /R 4.2 is larger ), and the copper conductor using high-purity copper in Comparative Example 9 It was found that the conductivity at low temperatures was improved to near the value of the electrical resistance ratio. Furthermore, when the Pb content in the copper conductor is less than 5 ppm, the effect of Pb inclusion is insufficient (Comparative Examples 6 and 7), and even when using 40 ppm or more as in Comparative Example 8, there is no effect on electrical resistance at low temperatures. The above improvement effect was not observed, and on the contrary, hot workability worsened. Example 2 Electrolytic copper with different impurity contents as shown in Table 2 was melted in the atmosphere, Pb was added thereto, and then cast to obtain a copper ingot with an oxygen content of approximately 200 to 300 ppm. . This was drawn in the same manner as in Example 1,
A copper conductor with a diameter of 1.8 mm was obtained. Next, this copper casting was 650
A cryogenic copper conductor was obtained by heating and holding at ℃ for 8 hours. The electrical resistance ratios of the obtained copper conductors were measured in the same manner as in Example 1 and were as shown in Table 2.

【表】【table】

【表】 上表から本発明の銅導体は、先にのべた不純物
量の範囲内で低温における導電性の改善に極めて
有効なことが実証された。 これに対して比較例No.6、7のように不純物量
が一定量をこえて多量に含まれると、Pbの添加
によつてしても極低温における導電性の改善の効
果は殆んどみられなかつた。 実施例 3 不純物としてFe4ppm、Sn6ppm、Ni2ppm、
Ag11ppm、S5ppmおよびその他の元素は夫々
1ppm以下からなる電気銅を保護雰囲気中で溶解
し、これにPbを所要量添加したのち、実施例1
と同様にして2.6mmφの銅導体とした。 次いでこの銅導体を真空中にて第3表に示すよ
うな400〜800℃の各温度で10時間加熱保持して極
低温用銅導体を得た。 これらについて測定した電気抵抗比は第3表に
示した。
[Table] From the above table, it was demonstrated that the copper conductor of the present invention is extremely effective in improving conductivity at low temperatures within the range of impurity amounts mentioned above. On the other hand, when the amount of impurities exceeds a certain amount and is contained in a large amount as in Comparative Examples No. 6 and 7, even the addition of Pb has little effect on improving conductivity at extremely low temperatures. I couldn't see it. Example 3 Impurities: Fe4ppm, Sn6ppm, Ni2ppm,
Ag11ppm, S5ppm and other elements are respectively
Example 1 After melting electrolytic copper containing 1 ppm or less in a protective atmosphere and adding the required amount of Pb,
A 2.6 mmφ copper conductor was prepared in the same manner as above. Next, this copper conductor was heated and held in vacuum at various temperatures of 400 to 800°C as shown in Table 3 for 10 hours to obtain cryogenic copper conductors. The electrical resistance ratios measured for these are shown in Table 3.

【表】【table】

【表】 上表より本発明の銅導体は450〜750℃の範囲内
で加熱保持することによつて低温における導電性
を著しく改善できることが実証された。 実施例 4 不純物としてFe7ppm、Sn5ppm、Ni7ppm、
Ag8ppm、S6ppmその他の元素はほぼ1ppm以下
からなる電気銅を保護雰囲気中で溶解し、Pbを
20ppm添加したのち、実施例1と同様にして2.6
mmφの銅導体を得た。この銅導体中のPb含有量
は14ppmであつた。 次にこの銅導体を真空中にて550℃と700℃の温
度でそれぞれ第4表に示す時間加熱保持して極低
温用銅導体を得た。 得られた銅導体の電気抵抗比は第4表に示し
た。
[Table] The above table demonstrates that the conductivity of the copper conductor of the present invention at low temperatures can be significantly improved by heating and maintaining it within the range of 450 to 750°C. Example 4 Impurities: Fe7ppm, Sn5ppm, Ni7ppm,
Ag8ppm, S6ppm and other elements are dissolved by melting electrolytic copper consisting of approximately 1ppm or less in a protective atmosphere to remove Pb.
After adding 20 ppm, 2.6 was added in the same manner as in Example 1.
A copper conductor of mmφ was obtained. The Pb content in this copper conductor was 14 ppm. Next, this copper conductor was heated and held in a vacuum at temperatures of 550° C. and 700° C. for the times shown in Table 4, respectively, to obtain cryogenic copper conductors. The electrical resistance ratio of the obtained copper conductor is shown in Table 4.

【表】【table】

【表】 上記第4表およびさきの第3表の結果から本発
明の極低温用銅導体を得るに当つての加熱保持条
件は極低温における導電性の効果を一層発揮させ
るうえから450〜750℃で30分以上が好ましいこと
が確認された。 なお上記した本発明の各実施例において添加す
るPb量は最終製品としての銅導体中に含有する
Pb量の約2〜5割多量であればよい。 以上詳述したように本発明の極低温用銅導体は
不純物としてのS含有量が30ppm以下であり、
O2、AgおよびPbを除く不純物の総含有量が
100ppm以下であつて、Pbを5〜40ppm含有した
銅導体であるから、無酸素銅を用いてもまたタフ
ピツチ銅を用いても同じように極低温において導
電性にすぐれた銅導体を工業的に容易に提供する
ことができるものである。 また特に、本発明の極低温用銅導体は上記の素
材を用いることに加えて加工工程にあつては熱間
処理後所望形状に加工する以前におよび/または
加工後に少なくとも一度は450〜750℃で30分以上
加熱保持することによつて一層の効果を得るもの
である。 そして得られた銅導体は超電導導体の安定化材
など広い用途に使用して多大の効果を与えるもの
である。
[Table] From the results in Table 4 and Table 3 above, the heating and holding conditions for obtaining the cryogenic copper conductor of the present invention are 450 to 750 in order to further exhibit the conductivity effect at cryogenic temperatures. It was confirmed that 30 minutes or more at ℃ is preferable. In addition, the amount of Pb added in each example of the present invention described above is the amount contained in the copper conductor as a final product.
It is sufficient that the amount is about 20 to 50% higher than the amount of Pb. As detailed above, the cryogenic copper conductor of the present invention has an S content as an impurity of 30 ppm or less,
The total content of impurities excluding O 2 , Ag and Pb is
Since it is a copper conductor containing 5 to 40 ppm of Pb and less than 100 ppm, it is possible to industrially produce a copper conductor that has excellent conductivity at extremely low temperatures whether using oxygen-free copper or tough pitch copper. It can be easily provided. In particular, in addition to using the above-mentioned materials, the cryogenic copper conductor of the present invention is heated at 450 to 750°C at least once before and/or after processing into the desired shape after hot treatment. Further effects can be obtained by heating and holding for 30 minutes or more. The obtained copper conductor can be used in a wide range of applications, such as as a stabilizing material for superconducting conductors, and has great effects.

Claims (1)

【特許請求の範囲】 1 Pb5〜40ppmを含有し、残部が本質的に銅よ
りなることを特徴とする極低温用銅導体。 2 銅が無酸素銅である特許請求の範囲第1項記
載の極低温用銅導体。 3 銅がタフピツチ銅である特許請求の範囲第1
項記載の極低温用銅導体。 4 不純物として30ppm以下のSを含有する特
許請求の範囲第2項記載の極低温用銅導体。 5 不純物として30ppm以下のSを含有する特
許請求の範囲第3項記載の極低温用銅導体。 6 Pb、Agを除く不純物の総含有量が100ppm
以下である特許請求の範囲第2項または第4項記
載の極低温用銅導体。 7 Pb、AgおよびO2を除く不純物の総含有量が
100ppm以下である特許請求の範囲第3項または
第5項記載の極低温用銅導体。 8 Pb5〜40ppmを含有し、残部が本質的に銅よ
りなる素材を熱間処理後、所望形状に加工する以
前におよび/または加工後に少なくとも一度は
450〜750℃で30分以上加熱保持することを特徴と
する極低温用銅導体の製造法。 9 銅が無酸素銅である特許請求の範囲第8項記
載の極低温用銅導体の製造法。 10 銅がタフピツチ銅である特許請求の範囲第
8項記載の極低温用銅導体の製造法。 11 不純物として30ppm以下のSを含有する
特許請求の範囲第9項記載の極低温用銅導体の製
造法。 12 不純物として30ppm以下のSを含有する
特許請求の範囲第10項記載の極低温用銅導体の
製造法。 13 Pb、Agを除く不純物の総含有量が
100ppm以下である特許請求の範囲第9項または
第11項記載の極低温用銅導体の製造法。 14 Pb、AgおよびO2を除く不純物の総含有量
が100ppm以下である特許請求の範囲第10項ま
たは第12項記載の極低温用銅導体の製造法。
[Claims] 1. A copper conductor for cryogenic use, characterized in that it contains 5 to 40 ppm of Pb, and the remainder consists essentially of copper. 2. The cryogenic copper conductor according to claim 1, wherein the copper is oxygen-free copper. 3 Claim 1 in which the copper is tough pitch copper
Copper conductor for cryogenic temperatures as described in section. 4. The cryogenic copper conductor according to claim 2, which contains 30 ppm or less of S as an impurity. 5. The cryogenic copper conductor according to claim 3, which contains 30 ppm or less of S as an impurity. 6 Total content of impurities excluding Pb and Ag is 100ppm
A cryogenic copper conductor according to claim 2 or 4 as follows. 7 The total content of impurities excluding Pb, Ag and O2 is
The cryogenic copper conductor according to claim 3 or 5, which has a content of 100 ppm or less. 8 At least once before and/or after processing a material containing 5 to 40 ppm of Pb, the remainder of which is essentially copper, after hot treatment and processing into the desired shape.
A method for producing a copper conductor for cryogenic use, characterized by heating and holding at 450 to 750°C for 30 minutes or more. 9. The method for producing a cryogenic copper conductor according to claim 8, wherein the copper is oxygen-free copper. 10. The method for producing a cryogenic copper conductor according to claim 8, wherein the copper is tough pitch copper. 11. The method for producing a cryogenic copper conductor according to claim 9, which contains 30 ppm or less of S as an impurity. 12. The method for producing a cryogenic copper conductor according to claim 10, which contains 30 ppm or less of S as an impurity. 13 The total content of impurities excluding Pb and Ag is
A method for producing a copper conductor for cryogenic use according to claim 9 or 11, wherein the content is 100 ppm or less. 14. The method for producing a cryogenic copper conductor according to claim 10 or 12, wherein the total content of impurities excluding Pb, Ag and O2 is 100 ppm or less.
JP4295480A 1980-04-02 1980-04-02 Copper conductor for use at ultralow temperature and its manufacture Granted JPS56139643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295480A JPS56139643A (en) 1980-04-02 1980-04-02 Copper conductor for use at ultralow temperature and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295480A JPS56139643A (en) 1980-04-02 1980-04-02 Copper conductor for use at ultralow temperature and its manufacture

Publications (2)

Publication Number Publication Date
JPS56139643A JPS56139643A (en) 1981-10-31
JPS6241303B2 true JPS6241303B2 (en) 1987-09-02

Family

ID=12650406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295480A Granted JPS56139643A (en) 1980-04-02 1980-04-02 Copper conductor for use at ultralow temperature and its manufacture

Country Status (1)

Country Link
JP (1) JPS56139643A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062009A (en) * 1983-09-14 1985-04-10 日立電線株式会社 Composite superconductor stabilized by ag-filled oxygenless copper
JPH07107181B2 (en) * 1987-08-27 1995-11-15 日鉱金属株式会社 Copper material for superconductivity
JP2574390B2 (en) * 1988-05-16 1997-01-22 日鉱金属株式会社 High-purity oxygen-free copper and its uses
JPH02122037A (en) * 1988-10-31 1990-05-09 Hitachi Cable Ltd Oxygen free copper of cryogenic use and super conducting wire rod by using it
JP2726939B2 (en) * 1989-03-06 1998-03-11 日鉱金属 株式会社 Highly conductive copper alloy with excellent workability and heat resistance
JP4827760B2 (en) * 2007-02-06 2011-11-30 東海興業株式会社 Clip mounting structure of molded product assembly, molded product, and method of manufacturing molded product
JP2014208886A (en) * 2013-03-27 2014-11-06 三菱電線工業株式会社 Linear conductor and method for producing the same
CN103911572B (en) * 2014-04-04 2016-07-06 江苏藤仓亨通光电有限公司 A kind of production technology of copper alloy with high strength and high conductivity contact net lines

Also Published As

Publication number Publication date
JPS56139643A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
JP2726939B2 (en) Highly conductive copper alloy with excellent workability and heat resistance
CA1172473A (en) Copper alloys with small amounts of manganese and selenium
JPS6241303B2 (en)
JPH0154420B2 (en)
US4059437A (en) Oxygen-free copper product and process
JPS6216269B2 (en)
CN111979445B (en) Rare earth microalloyed copper alloy and preparation method thereof
JPS6017040A (en) Copper alloy for high electric conduction having low softening temperature
JPS6247936B2 (en)
JPH0437524B2 (en)
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
JP3325641B2 (en) Method for producing high-strength high-conductivity copper alloy
JPS6158535B2 (en)
JPS6212295B2 (en)
JPS6345339A (en) Copper alloy for high electrical conduction having low softening temperature
JPS6043905B2 (en) Manufacturing method of highly conductive heat-resistant copper alloy material
CN113737050B (en) Copper alloy and preparation method and application thereof
JPH0559503A (en) Manufacture of cryogenic oxygen free copper
JPS5952941B2 (en) Highly conductive heat-resistant Cu alloy
JPS6017039A (en) Copper alloy with superior heat resistance, mechanical characteristic, workability and electric conductivity
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH0694578B2 (en) Copper-iron-cobalt-titanium alloy having high mechanical and electrical properties, and method for producing the same
JPH0253502B2 (en)
JP3325638B2 (en) Method for producing high-strength high-conductivity copper alloy
JPS5828339B2 (en) Conductive aluminum alloy