JPH02122037A - Oxygen free copper of cryogenic use and super conducting wire rod by using it - Google Patents

Oxygen free copper of cryogenic use and super conducting wire rod by using it

Info

Publication number
JPH02122037A
JPH02122037A JP63275820A JP27582088A JPH02122037A JP H02122037 A JPH02122037 A JP H02122037A JP 63275820 A JP63275820 A JP 63275820A JP 27582088 A JP27582088 A JP 27582088A JP H02122037 A JPH02122037 A JP H02122037A
Authority
JP
Japan
Prior art keywords
oxygen
copper
free copper
conducting wire
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63275820A
Other languages
Japanese (ja)
Inventor
Shuji Sakai
修二 酒井
Akio Sugino
杉野 昭雄
Kazuo Kimijima
君嶋 一雄
Kazuo Sugaya
菅谷 和雄
Yasumutsu Nagai
康睦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63275820A priority Critical patent/JPH02122037A/en
Publication of JPH02122037A publication Critical patent/JPH02122037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the electric resistance of the title wire in the range of very low temp. by subjecting high purity copper contg. trace amounts of oxygen to specific heat history as an ingot and using it as a stabilizing material. CONSTITUTION:High purity copper contg. electrolytic copper as a starting material, having 0.0001 to 0.005wt.% oxygen content with total <=0.005% inevitable impurities is cast. Before subjected to thermal working, the copper is subjected to heat history at 800 to 1000 deg.C for >=1hr as an ingot. The outer circumference of a super conducting wire is provided with the oxygen free copper as a stabilizing material. In this way, the electric resistance and thermal conducting characteristics of the super conducting wire rod used at a very low temp. can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極低温下において顕著に低減された電気抵抗
を示現する極低温用無酸素銅およびそれを用いた超電導
線材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to cryogenic oxygen-free copper that exhibits significantly reduced electrical resistance at cryogenic temperatures and superconducting wire using the same.

[従来の技術1 今日実用化されている超電導線には、超電導体が使用中
何らかの原因で超電導から常電導に転位した際にその電
流によって焼損事故などが発生ずるのを防止するために
、超電導体の外周に電気抵抗の低い銅やアルミニウムよ
りなる安定化材が設けられている。
[Conventional technology 1] Superconducting wires that are in practical use today are equipped with superconducting wires to prevent burnout accidents caused by the current when the superconductor changes from superconducting to normal conducting for some reason during use. A stabilizing material made of copper or aluminum with low electrical resistance is provided around the outer circumference of the body.

この安定化材は、超電導体よりあふれ出た電流を導通さ
せ大きな発熱に発展させることなく再び超電導状態に復
帰させるものであるから、工業的に実用化されている超
電導体の動作温度である20に以下の極低温域において
出来る限り電気抵抗が小さな材料であることが要求され
る。
This stabilizing material conducts the current overflowing from the superconductor and restores it to the superconducting state without causing large heat generation, so it is at the operating temperature of 20°C, which is the operating temperature of superconductors in industrial use. Therefore, materials are required to have as low electrical resistance as possible in the following extremely low temperature range.

上記のような要求特性に適合する材料として、従来より
無酸素銅が広く使用されてきた。
Oxygen-free copper has been widely used as a material meeting the above-mentioned required properties.

このような目的に使用される無酸素銅を工業的に製造す
る一般的方法としては、電気銅を連続鋳造装置により溶
解gJ造し、得られた鋳塊を誘導加熱により約800℃
に数分間加熱した後熱間鍛造あるいは熱間押出しにより
いったん棒状または管状に加工し、れを更に冷間加工お
よび中間焼鈍工程の組合せにより所要形状例えば超電導
押出用ビレットにおける銅材料に成形加工するのが通常
である。
A general method for industrially manufacturing oxygen-free copper used for such purposes is to melt electrolytic copper using a continuous casting machine and heat the resulting ingot to approximately 800°C by induction heating.
After heating for several minutes, it is first processed into a bar or tube shape by hot forging or hot extrusion, and then further formed into a desired shape, such as a copper material in a billet for superconducting extrusion, by a combination of cold working and intermediate annealing steps. is normal.

[発明が解決しようとする課題」 無酸素銅は、これを高純度化し焼鈍することで例えば3
00以上といった大きな残留抵抗比(293にでの比抵
抗/4.2にでの比抵抗)を示すようになる。
[Problem to be solved by the invention] Oxygen-free copper can be purified and annealed to
It shows a large residual resistance ratio of 00 or more (specific resistance at 293/specific resistance at 4.2).

一方、近年超電導線材の利用分野が、核融合実験装置や
高エネルギ物理実験用加速装置、磁気源り列車といった
いわば研究開発段階の技術分野から医療用MHIといっ
た恒常的民生品へと拡大されるようになり、超電導線材
への要求特性もそれなりにきびしさか付加され、とくに
熱的及び電気的安定性に対する要求が一段と高まって、
極低温下においてより一1電気抵抗の小さい安定化材が
求められるようになった。
On the other hand, in recent years, the field of use of superconducting wires has expanded from technical fields at the research and development stage, such as nuclear fusion experimental devices, accelerators for high-energy physics experiments, and magnetic source trains, to permanent consumer products such as medical MHI. As a result, the characteristics required for superconducting wires have become somewhat stricter, and in particular, the requirements for thermal and electrical stability have further increased.
Stabilizing materials with lower electrical resistance at extremely low temperatures are now required.

本発明の目的は、上記したような実情にがんがみてなさ
れたものであり、従来よりも極低温域における電気抵抗
を大巾に低減せしめた!!酸素銅およびそれを安定化材
としてなる超電導線材を提供しようとするものである。
The purpose of the present invention was made in consideration of the above-mentioned actual situation, and it is to significantly reduce the electrical resistance in the extremely low temperature range than before! ! The present invention aims to provide oxygenated copper and a superconducting wire material using it as a stabilizing material.

[課題を解決するための手段] 本発明は、無酸素銅において酸素含有量を0.0001
〜0.005重量%、不可避なる不純物の合計を0.0
05重量%以下とすると共に鋳塊状態で800〜100
0°Cにおける1時間以上の熱履歴をもたせたものであ
り、そのような無酸素銅を超電導線材における安定化材
として使用したものである。
[Means for Solving the Problems] The present invention provides oxygen content of 0.0001 in oxygen-free copper.
~0.005% by weight, total of unavoidable impurities 0.0%
05% by weight or less and 800 to 100 in the ingot state
It has a thermal history of 1 hour or more at 0°C, and such oxygen-free copper is used as a stabilizing material in a superconducting wire.

酸素含有量をo、oooi〜0.005重量%の範囲に
[根室したのは、0.0001%以下では本発明の熱履
歴を与えても極低温下での電気抵抗は小さくならず、一
方、0.005重量%以上では加工性が劣化するなめで
ある。
Nemuro set the oxygen content in the range of o, oooi to 0.005% by weight, because if it is less than 0.0001%, the electrical resistance at extremely low temperatures will not decrease even if the thermal history of the present invention is given; If the content exceeds 0.005% by weight, processability deteriorates.

また、不可避的不純物の合計を0.005重量%以下と
したのは、これ以上では極低温下での電気抵抗を増大さ
せるためである。当然乍ら、不純物の量は極力少ないこ
とが望ましく、特に極低温下での電気抵抗を著しく増大
させるFe、P。
Further, the reason why the total amount of unavoidable impurities is set to 0.005% by weight or less is that if it exceeds this value, the electrical resistance will increase at extremely low temperatures. Of course, it is desirable that the amount of impurities be as small as possible, especially Fe and P, which significantly increase electrical resistance at extremely low temperatures.

Sl、As等の不純物を抑えることが望ましい。It is desirable to suppress impurities such as Sl and As.

さらに、熱間加工前における熱履歴を800℃〜100
0℃にて1時間以上としたのは、この条件外では電気抵
抗の著しい低減が見られないためである。
Furthermore, the thermal history before hot working is 800℃~100℃.
The reason why the temperature was set at 0° C. for 1 hour or more is because a significant reduction in electrical resistance is not observed outside of this condition.

[作用] 本発明に係る無酸素銅が如何なる理由により極低温下に
おいて電気抵抗の低下か顕著となるのがという点につい
ては、必ずしも定かではない、想うに、電気抵抗に悪影
響を及ぼずFe 、P、Si 。
[Function] It is not necessarily clear why the oxygen-free copper according to the present invention exhibits a significant decrease in electrical resistance at extremely low temperatures. P, Si.

AS等の不純物か鋳塊段階では固溶状態にあり、これに
高温長時間の熱履歴が与えられることにより残留してい
る酸素と化合物を形成し析出するためではなかろうかと
解される。i量の酸素の残留が必要であるということが
、そのことを具体的に示唆しているということができる
It is thought that this is because impurities such as AS are in a solid solution state at the ingot stage, and when they are given a high temperature and long-term thermal history, they form a compound with residual oxygen and precipitate. The fact that i amount of oxygen is required to remain can be said to specifically indicate this.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] The present invention will be described below with reference to Examples.

実施例1 電気銅を原材料とし、全連続溶解鋳造設備により酸素濃
度を0〜0.02重量%の範囲に調整させながらビレッ
トに鋳造した。得られたビレットの酸素以外の不純物は
A<1 ;0.0008重量%、Sho、0006%、
pH;o、0005%等であり、合計で0.003%で
あった。
Example 1 Electrolytic copper was used as a raw material and was cast into a billet using fully continuous melting and casting equipment while adjusting the oxygen concentration within the range of 0 to 0.02% by weight. Impurities other than oxygen in the obtained billet were A<1; 0.0008% by weight, Sho, 0006%,
pH: o, 0005%, etc., and the total was 0.003%.

これらのビレットを700℃〜1050℃で0.1〜2
4時間加熱した後、熱間押出機にて、外径的100N、
肉厚約20市の大径管に押出加工した。この大径管より
切断、面前によって外径15市の試料を採取し、これに
中間焼鈍、引抜伸線等の加工を加えて1.0市径の線材
としな、これを更に500’CX 1時間非酸化性雰囲
気中で加熱した後、4,2にの液体ヘリウム中で4@子
法により電気抵抗を測定した。
These billets were heated at 700℃ to 1050℃ to 0.1 to 2
After heating for 4 hours, the outer diameter was 100N using a hot extruder.
It was extruded into a large diameter pipe with a wall thickness of approximately 20 mm. Samples with an outer diameter of 15 mm were taken from this large-diameter tube by cutting and facing, and processed by intermediate annealing, drawing wire drawing, etc. to make wire rods with a diameter of 1.0 mm, which were then further processed into 500'CX 1. After heating in a non-oxidizing atmosphere for an hour, the electrical resistance was measured in liquid helium using the 4@son method.

第1表にその結果を示す。Table 1 shows the results.

第 表 第1表より明らかなように、加熱温度としては800°
C〜1000℃、加熱時間として1時間以上、酸素濃度
としては0.0001重量%以上において良好な極低温
下での電気抵抗値が得られることがわかる。酸素は加工
性に大きな影響を及ばずので好まQくは0.0002〜
0.0005重量%程度にとどめるのがよい、No、1
2.13は電気抵抗は良好であるが加工性が著しく悪く
なるため本発明の範囲外となるのである。
As is clear from Table 1, the heating temperature is 800°.
It can be seen that a good electrical resistance value at extremely low temperatures can be obtained at a temperature of C to 1000°C, a heating time of 1 hour or more, and an oxygen concentration of 0.0001% by weight or more. Oxygen does not have a large effect on processability, so preferably Q is 0.0002~
It is best to keep it at about 0.0005% by weight, No. 1
2.13 has good electrical resistance, but the workability is significantly poor, and is therefore outside the scope of the present invention.

実線例2 超電導線材へ適用した場合の効果を確認するため、前記
第1表中における本発明の範囲外のNO31と本発明に
係るNo、3のそれぞれの押出太径管を冷間拡管引抜加
工、焼鈍を繰り返して外径140市、肉厚10市の大径
管とし、この鋼管に外径118市のNb−46,5重量
%1゛i合金よりなる超電導材を挿入して静水圧押出用
ビレットとし、これを静水圧押出後、冷間引抜によって
Cu/Nb−Ti複合シングル線とした。
Solid line example 2 In order to confirm the effect when applied to superconducting wire, cold expansion drawing was performed on extruded large diameter tubes of No. 31 outside the scope of the present invention and No. 3 according to the present invention in Table 1 above. A large-diameter tube with an outer diameter of 140 mm and a wall thickness of 10 mm was obtained by repeated annealing, and a superconducting material made of Nb-46, 5% by weight 1゛i alloy with an outer diameter of 118 mm was inserted into this steel tube and hydrostatically extruded. This was made into a Cu/Nb-Ti composite single wire by isostatic pressure extrusion and cold drawing.

このシングル線の多数本を上記と同様にして作製した大
径鋼管内に挿入してマルチ超電導線押出用ビレットとし
、このビレッ1−を押出、冷間引抜時効熱処理加工する
ことにより外径1.2市、銅比2.0、Nb −’T’
i フィラメントの径が20μm、フィラメント数が1
200本の超電導線としな。
A large number of these single wires are inserted into a large-diameter steel pipe prepared in the same manner as described above to form a billet for extruding multi-superconducting wires, and this billet is extruded, cold drawn, and subjected to aging heat treatment to obtain an outer diameter of 1. 2 cities, copper ratio 2.0, Nb-'T'
i The diameter of the filament is 20 μm, the number of filaments is 1
200 superconducting wires.

この超電導線を、超電導特性を劣化させずに安定化銅部
か軟化する条件である250″CX3時間加熱した後、
その超電導線について極低温下での電気抵抗を測定した
。その結果第1表のNO61の!!酸素銅を使用した超
電導線の比抵抗(atlOKは8.6 X 10−9Ω
・■、N083の無酸素銅を使用したそれは5.9X1
0−9Ω・lであり、本発明の有効性が確認された。
After heating this superconducting wire for 3 hours at 250"C, which is a condition that softens the stabilized copper part without deteriorating the superconducting properties,
The electrical resistance of the superconducting wire was measured at extremely low temperatures. As a result, No. 61 in Table 1! ! Specific resistance of superconducting wire using oxygen copper (atlOK is 8.6 x 10-9Ω
・■, using N083 oxygen-free copper, it is 5.9X1
It was 0-9Ω·l, confirming the effectiveness of the present invention.

上記は合金系超電導線に適用したものであるが本発明に
係る無酸素銅は、所謂ブロンズ法で作製した化合物系の
NbaSn超電導線材に対する安定化材としても同様の
効果を期待できるものであることはいうまでもない。
Although the above is applied to alloy-based superconducting wire, the oxygen-free copper according to the present invention can be expected to have the same effect as a stabilizing material for compound-based NbaSn superconducting wire produced by the so-called bronze method. Needless to say.

本発明に係る!−酸素別をCu/Nb−’ri複合多芯
線に適用する場合、特にフィシメン1〜径が10μm以
下になると時効熱処理時にCuとNb−Ti間の反応か
激しくなり、Nb −Ti中の特にTiがCLl側に拡
散してCuを汚染し、本発明の効果が薄れる可能性があ
る。これを防止するためには、シングル線の断面#I逍
をCu /Nb /Nb −T+ 、Cu /V/Nb
 −T又はCu /Ta /Nb−Ti等の構造となし
、N111.V又はTaをCuとT1間の反応抑制拡散
バリヤとすることが望ましい。
Pertaining to the present invention! - When applying oxygen separation to Cu/Nb-'ri composite multifilamentary wire, the reaction between Cu and Nb-Ti becomes intense during aging heat treatment, especially when the ficimen diameter is less than 10 μm. may diffuse to the CL1 side and contaminate the Cu, reducing the effectiveness of the present invention. In order to prevent this, the cross section #I of the single wire should be changed to Cu /Nb /Nb -T+, Cu /V/Nb
-T or a structure such as Cu/Ta/Nb-Ti, N111. It is desirable to use V or Ta as a reaction inhibiting diffusion barrier between Cu and T1.

以上は、本発明に係る無酸素銅を安定化材として使用す
る場合について説明したが、その応用範囲はそれにのみ
限定されるものではない。
Although the case where the oxygen-free copper according to the present invention is used as a stabilizing material has been described above, the scope of its application is not limited thereto.

本発明に係る無酸素銅は、極低温下での熱伝導度も大き
いのであり、極低温用伝熱材料としても非常に有効であ
る。
The oxygen-free copper according to the present invention has high thermal conductivity at extremely low temperatures, and is therefore very effective as a heat transfer material for extremely low temperatures.

なお、本発明に係る熱履歴を与えるに際し、加熱後その
まま連続して熱間加工に入る必要はない。
In addition, when providing the thermal history according to the present invention, it is not necessary to continue hot working immediately after heating.

すなわち、800〜1000℃に1時間以上加熱し、そ
れをいったん室温にまで冷却し、その後再加熱して熱間
加工を行なっても、−度与えた熱履歴の効果は変らない
のである。その際の再加熱は、本発明が規定する800
℃以下でかつ1時間以下であっても差支えはないのであ
る。
In other words, even if the material is heated to 800 to 1000° C. for more than one hour, cooled down to room temperature, and then reheated for hot working, the effect of the thermal history given by -degrees does not change. The reheating at that time is 800 yen as specified by the present invention.
There is no problem even if the temperature is below ℃ and for one hour or less.

[発明の効果1 以上の通り、本発明によれば、高純度無酸素銅中に微量
の酸素を残留させかつ鋳塊段階で高温、長時]mの熱履
歴を与えるだけで、極低温下での電気抵抗および熱伝導
特性が顕著に改善されかつ加工性において潰れた無酸素
銅を提供し得るものであり、超電導線用安定化材をはじ
め極低温下で用いられる材料の特性改良に寄与するとこ
ろが非常に大きい6
[Effect of the invention 1] As described above, according to the present invention, high-purity oxygen-free copper can be heated at extremely low temperatures by simply leaving a small amount of oxygen in it and giving it a thermal history of m at high temperature and for a long time in the ingot stage. It can provide oxygen-free copper with markedly improved electrical resistance and thermal conductivity properties and improved workability, contributing to improving the properties of materials used at extremely low temperatures, including stabilizing materials for superconducting wires. There are a lot of things to do6

Claims (1)

【特許請求の範囲】 (1)酸素含有量が0.0001〜0.005重量%で
あってその他不可避なる不純物の合計が0.005重量
%以下の高純度を有し、かつ鋳塊状態で800〜100
0℃の温度における1時間以上の熱履歴を有してなる極
低温用無酸素銅。 (2)超電導体の外周に酸素含有量が 0.0001〜0.005重量%であってその他不可避
なる不純物の合計が0.005重量%以下であり、かつ
鋳塊状態で800〜 1000℃の温度における1時間以上の熱履歴を有して
なる無酸素銅よりなる安定化材を設けてなる超電導線材
Scope of Claims: (1) High purity with an oxygen content of 0.0001 to 0.005% by weight and a total of other unavoidable impurities of 0.005% by weight or less, and in an ingot state. 800-100
Oxygen-free copper for cryogenic use having a thermal history of 1 hour or more at a temperature of 0°C. (2) The oxygen content in the outer periphery of the superconductor is 0.0001 to 0.005% by weight, the total amount of other unavoidable impurities is 0.005% by weight or less, and the temperature in the ingot state is 800 to 1000°C. A superconducting wire provided with a stabilizing material made of oxygen-free copper having a thermal history of 1 hour or more at a temperature.
JP63275820A 1988-10-31 1988-10-31 Oxygen free copper of cryogenic use and super conducting wire rod by using it Pending JPH02122037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275820A JPH02122037A (en) 1988-10-31 1988-10-31 Oxygen free copper of cryogenic use and super conducting wire rod by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275820A JPH02122037A (en) 1988-10-31 1988-10-31 Oxygen free copper of cryogenic use and super conducting wire rod by using it

Publications (1)

Publication Number Publication Date
JPH02122037A true JPH02122037A (en) 1990-05-09

Family

ID=17560879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275820A Pending JPH02122037A (en) 1988-10-31 1988-10-31 Oxygen free copper of cryogenic use and super conducting wire rod by using it

Country Status (1)

Country Link
JP (1) JPH02122037A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPS56139643A (en) * 1980-04-02 1981-10-31 Sumitomo Electric Ind Ltd Copper conductor for use at ultralow temperature and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497528A (en) * 1978-01-20 1979-08-01 Sumitomo Electric Ind Ltd Copperr alloy soft conductor and method of making same
JPS56139643A (en) * 1980-04-02 1981-10-31 Sumitomo Electric Ind Ltd Copper conductor for use at ultralow temperature and its manufacture

Similar Documents

Publication Publication Date Title
Verhoeven et al. Strength and conductivity of in situ Cu-Fe alloys
Tachikawa et al. High‐field superconducting properties of the composite‐processed Nb3Sn with Nb‐Ti alloy cores
DE3855912T2 (en) Superconducting wire and process for its manufacture
US3918998A (en) Method for producing superconducting wire and products of the same
US4378330A (en) Ductile alloy and process for preparing composite superconducting wire
JP2016225288A (en) PRECURSOR WIRE MATERIAL FOR Nb3Al SUPERCONDUCTING WIRE MATERIAL AND Nb3Al SUPERCONDUCTING WIRE MATERIAL
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JPH02122037A (en) Oxygen free copper of cryogenic use and super conducting wire rod by using it
US3465429A (en) Superconductors
JP3433937B2 (en) Method of manufacturing superconducting alloy
CN117107093A (en) High-purity aluminum rod material for superconducting cable aluminum stabilizer and preparation method thereof
KR940006616B1 (en) Super conductive wire
Hong et al. Development of A‐15 (V3Ga) superconducting material through controlled precipitation
JP4754158B2 (en) Superconducting conductors containing a low temperature stabilizer based on aluminum
JPH06283059A (en) Manufacture of nb3al very fine multicore superconductive wire
CN114990376B (en) Ternary high-strength high-conductivity copper alloy and preparation method thereof
JP3509432B2 (en) Heat treatment method of oxygen-free copper
RU2666752C1 (en) High-strength wire and method of its production
JPS63225413A (en) Manufacture of compound superconductive wire
JP2574390B2 (en) High-purity oxygen-free copper and its uses
Howe et al. Superconducting properties of V 3 Ga composite wires
JPH03271351A (en) Heat treatment for corson alloy
Ekin et al. Electromechanical and metallurgical properties of liquid‐infiltration Nb‐Ta/Sn multifilamentary superconductor
Kumakura et al. Studies on Cu-V3Ga filamentary superconductors processed in situ
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod