JPS6241176B2 - - Google Patents

Info

Publication number
JPS6241176B2
JPS6241176B2 JP58116460A JP11646083A JPS6241176B2 JP S6241176 B2 JPS6241176 B2 JP S6241176B2 JP 58116460 A JP58116460 A JP 58116460A JP 11646083 A JP11646083 A JP 11646083A JP S6241176 B2 JPS6241176 B2 JP S6241176B2
Authority
JP
Japan
Prior art keywords
mixed
tio
powder
octotitanate
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58116460A
Other languages
Japanese (ja)
Other versions
JPS6011228A (en
Inventor
Yoshinori Fujiki
Takefumi Mihashi
Hidehiko Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP11646083A priority Critical patent/JPS6011228A/en
Publication of JPS6011228A publication Critical patent/JPS6011228A/en
Publication of JPS6241176B2 publication Critical patent/JPS6241176B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規な耐熱性断熱材料に関する。更に
詳しくはホーランダイト型構造を有するオクトチ
タン酸塩からなる耐熱性断熱材料に関する。 従来技術 従来、最も広く利用されている耐熱性断熱材料
としてアスベストがある。しかし、アスベストは
微細化し易く公害を起こす欠点があり、その代替
材料の開発が要望されている。 その代替材料として、本発明者の一人がさき
に、チタン酸カリウムからなる繊維を開発した
(特公昭55―25157号公報参照)。しかし、該チタ
ン酸カリウム繊維はセラミツクスの中で断熱性が
抜群に優れているが、融点が1370℃であるため、
使用温度が1200℃程度までである欠点があつた。 発明の目的 本発明はその欠点を解消し、1500℃以上にも耐
え、しかもそれより熱伝導率の小さい優れた断熱
材料を提供するにある。 発明の構成 本発明者らはチタン酸カリウムについて永年に
亘る研究の結果、その断熱特性の原因は一次元的
なトンネル構造に関係することを明らかにした。
更にチタン酸カリウムよりも大きいトンネル構造
を持ち、かつ融点の高い物質を得んと鋭意研究の
結果、特定のオクトチタン酸塩の結晶物は高融点
で且つ熱伝導率がチタン酸カリウムよりも小さい
特性を有することが分つた。この知見に基いて本
発明を完成した。 本発明の要旨は、一般式、Ax(ByTiz)O16
(ただし、式中Aはアルカリ金属,Ba,Cuおよび
Niから選ばれた金属、BはMg,二価遷移金属,
Al,Fe,CrおよびGaから選ばれた金属、xは0.5
〜3、yは0.5〜3、zは5〜8を表わす)で示
されるホーランダイト型構造を有するオクトチタ
ン酸塩の結晶物からなる耐熱性断熱材料にある。 本発明における一般式に示されるA成分である
Li,Na,K,Rb,Csのアルカリ金属をはじめ、
Ba,Cu,Niはいずれもトンネル構造中に配位す
ることができる金属である。特にKとBaは配位
し易く、試料が作り易く、かつ熱伝導率が小さく
〓〓〓〓
なる点で好ましい。またA成分は前記に示した2
元素以上の固溶成分であつても差支えない。 また、前記一般式で示されるB成分である
Mg,Cu,Zn,Ni,Coの二価遷移金属、Al,
Fe,Cr,Gaはいずれもトンネルの枠組を作る
TiO6の八面体中のTiの席を置換して占有するこ
とができる金属である。特にMgとAlはTiを置換
し易く、試料が作り易く、かつ融点が高くなる点
で好ましい。またB成分は前記に示した2元素以
上の固溶成分であつても差し支えない。 前記一般式で示されるx,yは、いずれも0.5
〜3の範囲であることが必要であり、好ましくは
1.0〜2.4の範囲である。この範囲外では目的のオ
クトチタン酸塩以外の相が生成して混合相とな
り、熱伝導率を大きくしたり、機械的強度の低下
をきたす。 またzは5〜8であることが必要である。この
範囲外ではトンネル構造のTiO6の八面体が得難
くなる。 本発明のオクトチタン酸塩の結晶質物からなる
耐熱断熱材料の製造法としては、焼成法,溶融
法,水熱法,フラツクス法のいずれの方法でも製
造し得られるが、塗料や焼結体製品を作るには粉
末物が好ましいので焼成法が適し、繊維状の形状
のものを作るには、モリブデン酸塩やタングステ
ン酸塩をフラツクスとして用いるフラツクス法で
製造する方法が好ましい。それは装置が大型化で
き、連続製造が容易であり、かつ比較的低温で結
晶を成長させることができる上に、高圧力を必要
としないため危険がなく、またフラツクスが低揮
発生のため揮発による公害の心配もなく、水に易
溶性のため生成した繊維の分離が簡単で回収が容
易であるからである。 本発明におけるホーランダイト型構造のオクト
チタン酸塩のフラツクス法による製造法を示すと
次の通りである。 一般式で示されるA成分の金属酸化物または加
熱により該金属酸化物を生成する化合物と、B成
分の金属酸化物または加熱により該金属酸化物
と、酸化チタンまたは加熱により酸化チタンを生
成するチタン化合物を原料として使用する。 加熱によりAOを生成する化合物としては、例
えばA(OH)2,ACO3,A(NO32,AF2
ACl2,AB4O7,ASO4などが挙げられる。また加
熱によりBOを生成する化合物としては、
MgCO3,二価遷移金属の炭酸化物、Mg
(OH)2,二価遷移金属の水酸化物,MgH2
(CO32,二価遷移金属の重水素炭酸化物,Al
(OH)3,Fe(OH)3,Cr(OH)3,Ga(OH)3
Al2(CO33,Fe2(CO33,Cr2(CO33,Ga2
(CO33などが挙げられる。 加熱にTiO2を生成する化合物は前記と同様な
Ti化合物が挙げられる。 これらの原料の内、B成分を一般式B〓O(た
だし、B〓はMgまたは二価遷移金属を表わす)
と一般式B〓O(ただし、B〓はAl,Feまたは
Gaを表わす)とし、各原料をモル比で、 AO:B〓O:TiO2=2:1:3〜5:2:3 または AO:B〓O:TiO2=2:1:3〜4:3:3 の割合の混合物または固溶体を作る。 これに、一般式 A2MoO4・nMoO3(ただしAは前記金属を示
し、nは0〜3を表わす)で示されるモリブデン
酸塩を混合する。 この混合割合はモル%で、10:90〜50:50の割
合であることが好ましい。これらの混合物を例え
ば800〜1500℃で溶融して溶融体を作り、その溶
融体から結晶育成することによつて得られる。そ
の具体例は実施例に示す。 実施例 1 Kx(AlyTiz)O16(ただし、x=y=2.0〜
2.4、z=8−y)の結晶質粉体の製造 炭酸カリウム、酸化アルミニウムおよび酸化チ
タンの各粉末をK2CO3:Al2O3:TiO2=1.0:
1.0:6〜1.2:1.2:5.6のモル比割合に混合し、
この混合物をさらによく摩砕混合して出発原料と
した。この出発原料約30gを50mlの白金るつぼに
充填し、炭化珪素発熱体電気炉で1200℃で3時間
仮焼し、これを取出して摩砕混合した後、再び
1200℃で約20時間焼成した。 得られた粉状結晶体はX線粉末回折で同定し
た。その組成はK2.0Al2.0Ti6O16〜K2.4
Al2.4Ti5.6O16であつた。 この場合、xとyが2.0より小さく、zが6.0よ
り大きいモル比割合ではカリウム―アルミニウム
―オクタチタン酸塩のほかにルチン相が生成し、
またxとyが2.4より大きく、zが5.6より小さい
〓〓〓〓
モル割合では未知相が生成した。 また、Al2O3の代りにFe2O3,Cr2O3,Ta2O3
使用した場合も同様にオクトチタン酸塩結晶質粉
体が得られた。 実施例 2 Kx(MgyTiz)O16(ただし、x=2.0〜2.4,y
=x/2,z=8−x/2)の結晶質粉体の製
造 炭酸カリウム,炭酸マグネシウムおよび酸化チ
タンの各粉末を、K2CO3:MgCO3:TiO2=1.0:
1.0:7.0〜1.2:1.2:6.8のモル比割合に混合し、
この混合物をさらによく摩砕混合して出発原料と
した。この出発原料約30gを50ml白金るつぼに充
填し、実施例1と同様に焼成した。得られた結晶
体はX線粉末回折で同定した。その組成はK2.0
MgTi7O16〜K2.4Mg1.2Ti6.8O16であつた。 この場合、xが2より小さく、yが1より小さ
く、zが7より大きいモル割合ではオクトチタン
酸塩のほかにルチル相が生成し、xが2.4より大
きく、yが1.2より大きく、zが6.8より小さいモ
ル比混合物では未知相が生成した。 実施例 3 Bax(AlyTiz)O16(ただし、x=1.0〜1.4、y
=2x、z=8−y)結晶質粉体の製造 炭酸バリウム,酸化アルミニウムおよび酸化チ
タンの各粉末を、BaCO3:Al2O3:TiO2=1.0:
2.0:6〜1.4:2.8:5.2のモル比割合の混合物を
出発原料として使用し、実施例1と同様にして焼
成体を作つた。その組成はBaAl2Ti6O16
Ba1.4Al2.8Ti5.2O16であつた。 なお、Al2O3の代りにFe2O3,Cr2O3,Ta2O3
使用した場合も同様にオクトチタン酸塩結晶質粉
体が得られた。 実施例 4 Bax(MgyTiz)O16(ただし、x=1.0〜1.4、
y=1.0〜1.4、z=8−y)結晶質粉体の製造 炭酸バリウム,炭酸マグネシウムおよび酸化チ
タンの各粉末を、BaCO3:MgCO3:TiO2=1.0:
1.0:7.0〜1.4:1.4:6.6のモル比割合の混合物を
出発原料とし、実施例1と同様にして焼成した。
得られた結晶体の組成はBaMgTi7O16
Ba1.4Mg1.4Ti6.6O16であつた。 実施例 5 Kx(AlyTiz)O16(ただし、x=y=1.5〜
2.0、z=8−y)繊維状結晶体の製造 炭酸カリウム,酸化アルミニウムおよび酸化チ
タンの各粉末をK2CO3:Al2O3:TiO2=2:2:
3のモル比割合の混合物に、フラツクスとしてモ
リブデン酸カリウムと酸化モリブデンの各粉末を
1:0.5のモル割合の混合物を、20:80〜30:70
のモル%割合で混合した。得られた混合物約120
gを100ml白金るつぼに充填し、炭化珪素発熱体
電気炉で1300℃に加熱し、約1〜20時間保持し
た。その後、950℃付近まで4〜8℃/hの速度
で徐冷した。徐冷後炉から取出し、室温まで放冷
した後、温水でフラツクスを溶解して結晶を分離
した。得られた結晶は、軸方向へ伸長した繊維状
で、長さ1.0〜10.0mmであつた。その結晶組成は
1.6Al1.6Ti6.4O16であつた。 実施例 6 Kx(MgyTiz)O16(ただし、x=1.5〜2.0、y
=x/2、z=8−y)繊維状結晶体の製造 炭酸カリウム,炭酸マグネシウムおよび酸化チ
タンの各粉体を、K2CO3:MgCO3:TiO2=3:
1:3のモル比割合の混合物を出発原料とし、実
施例5と同様にして繊維状結晶体を製造した。得
られた結晶体はC軸方向へ伸長した繊維長1.0〜
10.0mmのものであつた。その組成はK1.6
Mg0.8Ti7.2O16であつた。 実施例 7 Bax(AlyTiz)O16(ただし、x=0.6〜1.0、y
=2x、z=8−y)繊維丈結晶体の製造 炭酸バリウム,酸化アルミニウムおよび二酸化
チタンの各粉末を、BaCO3:Al2O3:TiO2=2:
2:3のモル比割合の混合物を出発原料とした。
フラツクスとしてモリブデン酸カリウムと酸化モ
リブデンの各粉末を1:0.5のモル比割合の混合
物を使用した。出発原料:フラツクス=20:80〜
30:70のモル%の割合で混合し、これを実施例1
と同様にして結晶を得た。得られた結晶はC軸方
向へ伸長した繊維状物で、長さは1.0〜10.0mmで
あり、その組成はBa0.8Al1.6Ti6.4O16であつた。
なお、Al2O3の代りにMgCO3を用いた場合も同様
にオクトチタン酸塩の繊維状結晶体が得られた。 実施例 8 実施例7と同様にしてBa1.4Al2.8Ti5.2O16の組
成の繊維状結晶体(以下本発明の結晶体と言う)
を作つて熱伝導率を測定した。熱伝導率Kは比熱
〓〓〓〓
容量C、熱拡散率αおよび密度ρの積として求め
られる。 K=ρ・C・α ここで、ρは試料の外形寸法と重量より算出
し、また、Cとαはレーサーフラツヒユ法によつ
て測定した。 本発明の結晶体は厚さ1.964mm、外径8.10mmの
円板状物で、密度425g・cm-3のものを使用し
た。 なお、比較としてK2.0Al2.0TiO16の厚さ1.921
mm、外径7.80mmの円板状物で、密度3.42g・cm-3
のものを使用した。これらの円板状試料の一方の
面にクロメル―コンスタン熱電対を接着し、他の
レーザー照射面には黒鉛微粒子を塗布した。比熱
容量を測定する際にはアルミナ単結晶を基準試料
とした。 それぞれの試料の室温および1000Kにおける比
熱容量C、熱拡散率α、および熱伝導率Kを測定
した結果は次の通りであつた。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a novel heat-resistant heat insulating material. More specifically, the present invention relates to a heat-resistant heat insulating material made of octotitanate having a hollandite structure. Prior Art Conventionally, asbestos is the most widely used heat-resistant insulation material. However, asbestos has the disadvantage that it easily becomes fine and causes pollution, and there is a demand for the development of alternative materials. As an alternative material, one of the present inventors previously developed a fiber made of potassium titanate (see Japanese Patent Publication No. 55-25157). However, although the potassium titanate fiber has outstanding heat insulation properties among ceramics, its melting point is 1370°C, so
The drawback was that the operating temperature was up to about 1200℃. OBJECTS OF THE INVENTION The object of the present invention is to overcome these drawbacks and provide an excellent heat insulating material that can withstand temperatures above 1500°C and has a lower thermal conductivity. Structure of the Invention As a result of many years of research into potassium titanate, the present inventors have revealed that the cause of its heat insulating properties is related to its one-dimensional tunnel structure.
Furthermore, as a result of intensive research to obtain a substance with a larger tunnel structure and a higher melting point than potassium titanate, we found that a specific octotitanate crystal has a high melting point and a lower thermal conductivity than potassium titanate. It was found that it has certain characteristics. The present invention was completed based on this knowledge. The gist of the present invention is the general formula, A x (B y Ti z ) O 16
(However, in the formula, A is an alkali metal, Ba, Cu and
Metal selected from Ni, B is Mg, divalent transition metal,
Metal selected from Al, Fe, Cr and Ga, x is 0.5
~3, y represents 0.5 to 3, and z represents 5 to 8). The A component shown in the general formula in the present invention is
Including alkali metals such as Li, Na, K, Rb, and Cs,
Ba, Cu, and Ni are all metals that can coordinate in tunnel structures. In particular, K and Ba are easy to coordinate, easy to prepare samples, and have low thermal conductivity〓〓〓〓
This is preferable. In addition, the A component is the 2 shown above.
There is no problem even if it is a solid solution component that is more than an element. In addition, the B component represented by the above general formula is
Divalent transition metals such as Mg, Cu, Zn, Ni, Co, Al,
Fe, Cr, and Ga all form the framework of the tunnel.
TiO is a metal that can replace and occupy the Ti seat in the octahedron of 6 . In particular, Mg and Al are preferable because they can easily replace Ti, facilitate sample preparation, and have a high melting point. In addition, the B component may be a solid solution component containing two or more of the above-mentioned elements. Both x and y shown in the above general formula are 0.5
It is necessary to be in the range of ~3, preferably
It ranges from 1.0 to 2.4. Outside this range, phases other than the target octotitanate are formed, resulting in a mixed phase, which increases thermal conductivity and reduces mechanical strength. Moreover, z needs to be 5-8. Outside this range, it becomes difficult to obtain a tunnel-structured TiO 6 octahedron. The heat-resistant heat insulating material made of crystalline octotitanate of the present invention can be produced by any of the firing method, melting method, hydrothermal method, and flux method. To make a powder, a calcination method is suitable because a powder is preferable, and a flux method using molybdate or tungstate as a flux is preferable to make a fibrous material. This is because the equipment can be enlarged, continuous production is easy, crystals can be grown at relatively low temperatures, and high pressure is not required, so there is no danger, and the flux has low volatilization. This is because there is no concern about pollution, and because it is easily soluble in water, the produced fibers can be easily separated and recovered. The method for producing octotitanate having a hollandite structure according to the present invention by the flux method is as follows. A metal oxide represented by the general formula or a compound that produces the metal oxide when heated, a metal oxide of the B component or the metal oxide when heated, and titanium oxide or a titanium oxide that produces titanium oxide when heated. Compounds are used as raw materials. Examples of compounds that generate AO upon heating include A(OH) 2 , ACO 3 , A(NO 3 ) 2 , AF 2 ,
Examples include ACl 2 , AB 4 O 7 , ASO 4 and the like. Compounds that generate BO when heated include:
MgCO 3 , carbonates of divalent transition metals, Mg
(OH) 2 , divalent transition metal hydroxide, MgH 2
(CO 3 ) 2 , deuterium carbonates of divalent transition metals, Al
(OH) 3 , Fe(OH) 3 , Cr(OH) 3 , Ga(OH) 3 ,
Al 2 (CO 3 ) 3 , Fe 2 (CO 3 ) 3 , Cr 2 (CO 3 ) 3 , Ga 2
(CO 3 ) 3 , etc. Compounds that generate TiO 2 upon heating are similar to those mentioned above.
Examples include Ti compounds. Among these raw materials, the B component is represented by the general formula B〓O (however, B〓 represents Mg or a divalent transition metal).
and the general formula B〓O (where B〓 is Al, Fe or
), and the molar ratio of each raw material is AO:B〓O:TiO 2 =2:1:3~5:2:3 or AO:B〓O: TiO2 =2:1:3~4 :Create a mixture or solid solution in the ratio of 3:3. A molybdate represented by the general formula A 2 MoO 4 ·nMoO 3 (where A represents the metal and n represents 0 to 3) is mixed therein. This mixing ratio is preferably 10:90 to 50:50 in mol%. It can be obtained by melting a mixture of these at, for example, 800 to 1500°C to form a melt, and growing crystals from the melt. Specific examples thereof are shown in Examples. Example 1 K x (Al y Ti z ) O 16 (where x=y=2.0~
2.4, production of crystalline powder of z=8-y) Potassium carbonate, aluminum oxide, and titanium oxide powders were mixed into K 2 CO 3 :Al 2 O 3 :TiO 2 =1.0:
Mixed in a molar ratio of 1.0:6 to 1.2:1.2:5.6,
This mixture was further thoroughly ground and mixed to be used as a starting material. Approximately 30 g of this starting material was filled into a 50 ml platinum crucible, calcined in a silicon carbide heating element electric furnace at 1200°C for 3 hours, taken out, ground and mixed, and then reused.
It was baked at 1200℃ for about 20 hours. The obtained powdery crystalline material was identified by X-ray powder diffraction. Its composition is K2.0 Al2.0 Ti6O16 ~ K2.4
It was Al2.4Ti5.6O16 . _ In this case, when x and y are smaller than 2.0 and z is larger than 6.0, a rutin phase is formed in addition to potassium-aluminum-octatitanate,
Also, x and y are larger than 2.4 and z is smaller than 5.6〓〓〓〓
An unknown phase was formed at a molar ratio. Furthermore, octotitanate crystalline powder was similarly obtained when Fe 2 O 3 , Cr 2 O 3 , Ta 2 O 3 was used instead of Al 2 O 3 . Example 2 K x (Mg y Ti z ) O 16 (x=2.0 to 2.4, y
= x/2, z = 8-x/2) Each powder of potassium carbonate, magnesium carbonate, and titanium oxide was converted into K 2 CO 3 :MgCO 3 :TiO 2 =1.0:
Mixed in a molar ratio ratio of 1.0:7.0~1.2:1.2:6.8,
This mixture was further thoroughly ground and mixed to be used as a starting material. Approximately 30 g of this starting material was filled into a 50 ml platinum crucible and fired in the same manner as in Example 1. The obtained crystalline material was identified by X-ray powder diffraction. Its composition is K 2.0
They were MgTi7O16 to K2.4Mg1.2Ti6.8O16 . _ _ _ In this case, when x is smaller than 2, y is smaller than 1, and z is larger than 7, a rutile phase is formed in addition to octotitanate, while x is larger than 2.4, y is larger than 1.2, and z is larger than 7. Unknown phases were formed in molar ratio mixtures smaller than 6.8. Example 3 Ba x (Al y Ti z ) O 16 (x=1.0 to 1.4, y
= 2x, z = 8-y) Production of crystalline powder Each powder of barium carbonate, aluminum oxide, and titanium oxide was mixed into BaCO 3 :Al 2 O 3 :TiO 2 =1.0:
A fired body was produced in the same manner as in Example 1 using a mixture having a molar ratio of 2.0:6 to 1.4:2.8:5.2 as a starting material. Its composition is BaAl 2 Ti 6 O 16 ~
It was Ba 1.4 Al 2.8 Ti 5.2 O 16 . Note that octotitanate crystalline powder was similarly obtained when Fe 2 O 3 , Cr 2 O 3 , Ta 2 O 3 was used instead of Al 2 O 3 . Example 4 Ba x (Mg y Ti z ) O 16 (x=1.0 to 1.4,
y = 1.0 to 1.4, z = 8 - y) Production of crystalline powder Each powder of barium carbonate, magnesium carbonate and titanium oxide was mixed into BaCO 3 :MgCO 3 :TiO 2 =1.0:
A mixture having a molar ratio of 1.0:7.0 to 1.4:1.4:6.6 was used as a starting material and fired in the same manner as in Example 1.
The composition of the obtained crystal is BaMgTi 7 O 16 ~
It was Ba 1.4 Mg 1.4 Ti 6.6 O 16 . Example 5 K x (Al y Ti z ) O 16 (where x=y=1.5~
2.0, z=8-y) Production of fibrous crystals Potassium carbonate, aluminum oxide, and titanium oxide powders were mixed into K 2 CO 3 :Al 2 O 3 :TiO 2 =2:2:
Add potassium molybdate powder and molybdenum oxide powder as flux to the mixture with a molar ratio of 1:0.5 to the mixture with a molar ratio of 20:80 to 30:70.
They were mixed in a molar percentage of . The resulting mixture approx. 120
g was filled into a 100 ml platinum crucible, heated to 1300°C in a silicon carbide heating element electric furnace, and held for about 1 to 20 hours. Thereafter, it was gradually cooled to around 950°C at a rate of 4 to 8°C/h. After slow cooling, it was taken out of the furnace and left to cool to room temperature, and then the flux was dissolved with warm water to separate the crystals. The obtained crystals were in the form of fibers extending in the axial direction and had a length of 1.0 to 10.0 mm. Its crystal composition was K 1.6 Al 1.6 Ti 6.4 O 16 . Example 6 K x (Mg y Ti z )O 16 (x=1.5-2.0, y
=x/2, z=8-y) Production of fibrous crystals Potassium carbonate, magnesium carbonate, and titanium oxide powders were mixed into K 2 CO 3 :MgCO 3 :TiO 2 =3:
A fibrous crystalline material was produced in the same manner as in Example 5 using a mixture having a molar ratio of 1:3 as a starting material. The obtained crystal has a fiber length extending in the C-axis direction of 1.0~
It was 10.0mm. Its composition is K 1.6
It was Mg 0.8 Ti 7.2 O 16 . Example 7 Ba x (Al y Ti z ) O 16 (x=0.6 to 1.0, y
= 2x, z = 8 - y) Production of fiber length crystals Each powder of barium carbonate, aluminum oxide and titanium dioxide was mixed into BaCO 3 : Al 2 O 3 : TiO 2 = 2:
A mixture with a molar ratio of 2:3 was used as the starting material.
A mixture of potassium molybdate and molybdenum oxide powders in a molar ratio of 1:0.5 was used as a flux. Starting material: Flux = 20:80~
Example 1
Crystals were obtained in the same manner. The obtained crystals were fibrous substances extending in the C-axis direction, had a length of 1.0 to 10.0 mm, and had a composition of Ba 0.8 Al 1.6 Ti 6.4 O 16 .
Note that fibrous crystals of octotitanate were similarly obtained when MgCO 3 was used instead of Al 2 O 3 . Example 8 A fibrous crystal with a composition of Ba 1 . 4 Al 2 . 8 Ti 5 . 2 O 16 was prepared in the same manner as in Example 7 (hereinafter referred to as the crystal of the present invention).
were made and their thermal conductivity was measured. Thermal conductivity K is specific heat〓〓〓〓
It is determined as the product of capacitance C, thermal diffusivity α, and density ρ. K=ρ・C・α Here, ρ was calculated from the external dimensions and weight of the sample, and C and α were measured by the racer flatch method. The crystal used in the present invention was a disc-shaped crystal with a thickness of 1.964 mm, an outer diameter of 8.10 mm, and a density of 425 g·cm -3 . For comparison, the thickness of K 2.0 Al 2.0 TiO 16 is 1.921.
mm, a disc-shaped object with an outer diameter of 7.80 mm, and a density of 3.42 g cm -3
I used the one from A chromel-constane thermocouple was glued to one side of these disk-shaped samples, and graphite fine particles were applied to the other laser-irradiated surface. When measuring the specific heat capacity, an alumina single crystal was used as a reference sample. The specific heat capacity C, thermal diffusivity α, and thermal conductivity K of each sample at room temperature and 1000 K were measured, and the results were as follows.

【表】 この結果から、本発明の結晶体は六チタン酸カ
リウムよりも低い熱伝導率を示し、約30%以上低
い値を有することが明らかである。また室温より
も1000Kの方が低熱伝導率を示し、高温下で断熱
性に優れた特性を示すものである。 発明の効果 本発明のオクトチタン酸塩からなる断熱材料の
融点はセラミツクス中で最も断熱性に優れている
と言われている六チタン酸カリウムの融点(1370
℃)よりも大幅に高くなり、1500℃以上で耐熱性
を著しく向上させると共に、熱伝導率は六チタン
酸カリウムよりも小さく、断熱性も極めて優れた
ものである。 〓〓〓〓
[Table] From the results, it is clear that the crystalline material of the present invention exhibits a lower thermal conductivity than potassium hexatitanate, and has a value lower by about 30% or more. It also exhibits lower thermal conductivity at 1000K than at room temperature, and exhibits excellent heat insulation properties at high temperatures. Effects of the Invention The melting point of the heat insulating material made of octotitanate of the present invention is the melting point of potassium hexatitanate (1370
It has significantly higher heat resistance than potassium hexatitanate (1500°C) and has significantly improved heat resistance at temperatures above 1500°C, and its thermal conductivity is lower than that of potassium hexatitanate, making it extremely excellent in heat insulation. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 一般式Ax(ByTiz)O16 (ただし、式中Aはアルカリ金属,Ba,Cuお
よびNiから選ばれた金属、BはMg,二価遷移金
属,Al,Fe,CrおよびGaから選ばれた金属,x
は0.5〜3、yは0.5〜3、zは5〜8を表わす)
で示されるホーランダイト型構造を有するオクト
チタン酸塩からなる耐熱性断熱材料。
[Claims] 1 General formula A x (B y Ti z ) O 16 (wherein A is an alkali metal, a metal selected from Ba, Cu and Ni, B is Mg, a divalent transition metal, Al , metal selected from Fe, Cr and Ga, x
represents 0.5 to 3, y represents 0.5 to 3, z represents 5 to 8)
A heat-resistant heat insulating material made of octotitanate having a hollandite-type structure.
JP11646083A 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate Granted JPS6011228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11646083A JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11646083A JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Publications (2)

Publication Number Publication Date
JPS6011228A JPS6011228A (en) 1985-01-21
JPS6241176B2 true JPS6241176B2 (en) 1987-09-01

Family

ID=14687659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11646083A Granted JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Country Status (1)

Country Link
JP (1) JPS6011228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011581A1 (en) * 2004-07-27 2006-02-02 Sumitomo Chemical Company, Limited Thermoelectric conversion material and process for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210026A (en) * 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Fibrous compound having orthorhombic tunnel structure expressed by a1-xti2+xm5-xo12 and its production
JPH02150695U (en) * 1989-05-24 1990-12-27
JPH0333219A (en) * 1989-06-27 1991-02-13 Natl Inst For Res In Inorg Mater Production of fiber or film of barium titanogallate
FR2683373B1 (en) * 1991-10-31 1994-03-04 Pechiney Uranium NUCLEAR FUEL ELEMENTS COMPRISING AN OXIDE-BASED FISSION PRODUCTS TRAP.
US8966926B2 (en) 2008-05-08 2015-03-03 Whirlpool Corporation Refrigerator with easy access drawer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164015A (en) * 1980-05-16 1981-12-16 Natl Inst For Res In Inorg Mater Cation solid electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164015A (en) * 1980-05-16 1981-12-16 Natl Inst For Res In Inorg Mater Cation solid electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011581A1 (en) * 2004-07-27 2006-02-02 Sumitomo Chemical Company, Limited Thermoelectric conversion material and process for producing the same

Also Published As

Publication number Publication date
JPS6011228A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
Surendran et al. The effect of glass additives on the microwave dielectric properties of Ba (Mg1/3Ta2/3) O3 ceramics
Roth et al. Phase equilibrium relations in the systems titania-niobia and zirconia-niobia
US4142879A (en) Method for producing low expansion ceramics
JP3062497B1 (en) Method for producing flaky titanate
Bergeron et al. Nucleation and growth of lead titanate from a glass
Roth et al. Phase equilibria and crystal chemistry of the binary and ternary barium polytitanates and crystallography of the barium zinc polytitanates
JP2018527274A (en) Ceramics and glass ceramics exhibiting low or negative thermal expansion
Millet et al. Phase equilibria and crystal chemistry in the ternary system BaO TiO2 Nb2O5, I
JPS6241176B2 (en)
Guha Synthesis and characterization of barium lanthanum titanates
Watanabe et al. The dependence of polymorphism on the ionic radius of Ln3+ (Ln La Er, Y) in the oxide ion conductors Bi0. 775Ln0. 225O1. 5
JPH04943B2 (en)
JP3867136B2 (en) Sodium cobalt oxide single crystal and method for producing the same
JP2004210601A (en) Dielectric material having high dielectric constant, and its manufacturing method
JPH0346432B2 (en)
JPH0527571B2 (en)
JPS62278124A (en) Heat-resistant heat-insulation material
Zaykoski et al. Gallium and germanium substitutions in celsian
JPS6255243B2 (en)
Doman et al. Solid solution studies in the MgO-LiAlO 2 system
Roy et al. Role of Cr2O3 on the mullittization of di-phasic Al2O3-SiO2 gel
JPH0242772B2 (en)
SU398526A1 (en) HVA &
JPH0242769B2 (en)
JPS6121915A (en) Manufacture of titanium compound fiber