JPH0242769B2 - - Google Patents

Info

Publication number
JPH0242769B2
JPH0242769B2 JP3052486A JP3052486A JPH0242769B2 JP H0242769 B2 JPH0242769 B2 JP H0242769B2 JP 3052486 A JP3052486 A JP 3052486A JP 3052486 A JP3052486 A JP 3052486A JP H0242769 B2 JPH0242769 B2 JP H0242769B2
Authority
JP
Japan
Prior art keywords
compound
heating
oxide
alkali metal
decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3052486A
Other languages
Japanese (ja)
Other versions
JPS62191424A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3052486A priority Critical patent/JPS62191424A/en
Priority to US07/013,433 priority patent/US4818735A/en
Publication of JPS62191424A publication Critical patent/JPS62191424A/en
Publication of JPH0242769B2 publication Critical patent/JPH0242769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規化合物である一般式MXTi16-X
Ga16+XO56(ただし、MはK、RbおよびCsから選
ばれたアルカリ金属の1種または2種以上、x=
0.1〜2.0を表わす。以下同様)で示される正方晶
系のトンネル構造を有する化合物およびその製造
法に関する。該新規化合物は陽イオン伝導体、イ
オン交換体、触媒、耐熱材および断熱材として有
用なものである。 発明の目的 本発明の目的は前記のような有用な新規化合物
およびその製造法を提供するにある。 発明の構成 本発明の新規化合物は一般式MXTi16-XGa16+X
O56で示される化合物で、Ti4+はTiO6八面体配位
をとるが、Ga3+はCaO6八面体とGaO4四面体の
両配位をとり、それら連鎖が八面体4個と四面体
4個の頂点共有で作る大きなトンネル構造を有す
ることを特徴とする化合物であり、さらにTiO6
八面体のX個を3価のGaO6八面体で置換するこ
とにより陽イオン電荷調整のためX個のM原子
(前記と同じものを表わす)がトンネル中に配位
したものである。 これを図面に基づいて説明すると、第1図aに
示すように正方晶系に属し、大口径のトンネル構
造を持つている。四面体はすべてGaO4であるが、
八面体の中で大口径トンネルの枠組を形成する八
面体はTiO6とGaO6からなり、その割合はそれぞ
れ30%と70%の割合でランダムに分布している。
第1図bで示すようなルチル構造単位を形成する
八面体はすべてTiO6配位であり、第1図cに示
すようなβ−ガリア構造単位を形成する八面体は
すべてGaO6配位である。 この結晶(K0.8Ti5.2Ga16.8O56の組成)の面指数
(hk1)面間隔(d(Å))(dpbsは実測、dcalcは計
算値を示す)、X線に対する相対反射強度I(%)
を示すと、第1表の通りである。
Industrial Application Field The present invention is a novel compound having the general formula M X Ti 16-X
Ga 16+X O 56 (M is one or more alkali metals selected from K, Rb and Cs, x=
Represents 0.1 to 2.0. The present invention relates to a compound having a tetragonal tunnel structure represented by (the same applies hereinafter) and a method for producing the same. The new compounds are useful as cation conductors, ion exchangers, catalysts, heat resistant materials, and heat insulating materials. OBJECT OF THE INVENTION An object of the present invention is to provide a useful new compound as described above and a method for producing the same. Structure of the invention The novel compound of the present invention has the general formula M X Ti 16-X Ga 16+X
In the compound represented by O 56 , Ti 4+ has TiO 6 octahedral coordination, but Ga 3+ has both CaO 6 octahedral and GaO 4 tetrahedral coordination, and these chains form 4 octahedrons. It is a compound characterized by having a large tunnel structure formed by sharing four vertices of a tetrahedron .
By replacing X octahedrons with trivalent GaO 6 octahedrons, X M atoms (representing the same as above) are coordinated in the tunnel in order to adjust the cation charge. To explain this based on the drawings, as shown in Fig. 1a, it belongs to the tetragonal crystal system and has a tunnel structure with a large diameter. All tetrahedra are GaO 4 ,
The octahedrons that form the framework of the large-diameter tunnel are composed of TiO 6 and GaO 6 , which are randomly distributed at a ratio of 30% and 70%, respectively.
The octahedrons forming the rutile structural unit as shown in Figure 1b are all TiO6- coordinated, and the octahedra forming the β-gallium structural unit as shown in Figure 1c are all GaO6- coordinated. be. Planar index (hk1), interplanar spacing (d (Å)) of this crystal (composition of K 0.8 Ti 5.2 Ga 16.8 O 56 ) (d pbs is actual measurement, d calc is calculated value), relative reflection intensity for X-rays I (%)
is shown in Table 1.

【表】【table】

【表】 空間群はI4/mで正方晶系に属する。格子定数
は組成により異なるが、K0.8Ti15.2Ga16.8O56の場
合a=18.135(Å)、C=2.9966(Å)、単位容積は
V=985.5(Å3)、単位格子中に1分子数が含ま
れ、密度は測定値で4.69g/cm3である。また結晶
の晶癖は針状〜繊維状である。 本発明の化合物の製造法としてはフラツクス法
と焼成法とがある。フラツクス法では針状結晶
が、焼成法では粉末結晶体が得られる。 (1) フラツクス法による製法を示すと、 K2O、Rb2OおよびCs2Oから選ばれたアルカ
リ金属酸化物あるいは加熱により該アルカリ金
属酸化物に分解される化合物と、酸化チタンあ
るいは加熱により酸化チタンに分解される化合
物と、酸化ガリウムあるいは加熱により酸化ガ
リウムに分解される化合物とを、 一般式(M2O)X(TiO2Y(Ga2O3Z(ただし
MはK、RbおよびCsから選ばれたアルカリ金
属の1種または2種以上、X、Yは0.1〜2.0、
Zは0.1〜1.0を表わす)で示される組成割合に
混合したものを結晶原料とし、一方酸化モリブ
デンあるいは加熱により酸化モリブデンに分解
される化合物と、K、Rb、Csから選ばれたア
ルカリ金属酸化物あるいは加熱により該アルカ
リ金属酸化物に分解される化合物とを、 一般式M2O・n(MoO3)ただし、MはK、
Rb、またはCs、n=1〜2を表わす)で示さ
れる組成割合に混合したものをフラツクス原料
とし、結晶原料とフラツクス原料をモル百分率
が30対70〜10対90の割合になるように混合し、
該混合物を1200〜1400℃に加熱溶融し、該溶融
体を900〜1000℃まで徐冷して単結晶を育成す
る方法である。前記徐冷温度は1℃/h〜100
℃/hでよいが、良質で長い針状結晶を得るた
めには2℃/h〜10℃/hであることが適当で
ある。この方法によると針状結晶のものが得ら
れ、これはイオン伝導体および耐熱・断熱材に
適する。 (2) 焼成法による製造法を示すと、 K2O、Rb2O及びCs2Oから選ばれたアルカリ
金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物と、酸化チタンある
いは加熱により酸化チタンに分解される化合物
と、酸化ガリウムあるいは加熱により酸化ガリ
ウムに分解される化合物とを、 一般式MXTi16-XGa16+XO56(ただしMはK、
RbまたはCsを表わし、x=0.1〜2.0を表わす)
で示される組成割合に混合し、該混合物を1000
℃以上の温度で焼成する方法である。 この方法によると粉末状結晶体が得られ、これ
はイオン交換体、触媒および焼結体状の耐熱・断
熱材に適する。この方法による場合は化学反応を
促進するため、原料粉末は微粒子を使用すること
が望ましい。 なお、加熱により各原料金属酸化物を生成する
化合物としては、例えば各原料金属の炭酸塩、重
炭酸塩、水酸化物、硝酸塩、ハロゲン化物、オキ
シハロゲン化物が挙げられる。 実施例 1 99.9%以上の炭酸カリウム粉末、酸化チタン粉
末、酸化ガリウム粉末を、(K2O)0.7(TiO21.0
(Ga2O30.5の組成割合に混合した結晶原料20mol
%と、炭酸カリウム粉末、モリブデン粉末を、
(K2O)(MoO31.5の組成割合に混合したフラツ
クス原料80mol%とを混合した。この混合物123
gを100ml白金るつぼに入れて1300℃で溶解し、
10時間保持した後、1000℃まで4℃/hの速度で
徐冷した。徐冷後は空気中にるつぼを放冷して室
温まで冷却した。 るつぼごと沸とう水中に浸漬してフラツクスを
溶解し結晶を分離した。得られた結晶は10mm長さ
の針状結晶の集合体であつた。X線回折法で同定
したところ前記第1表の結晶学的性質を示した。 実施例 2、3 実施例1におけるK2CO3の代りに、それぞれ
Rb2CO3及びCsCO3を用いた。いずれも実施例1
におけると同じ結晶構造の針状結晶が得られた。 実施例 4 実施例1で使用した結晶原料を用いて(K2O)1
/2(TiO615.0(Ga2O317/2の組成になるように調
合し、良く混合した混合物約10gを30mlの白金る
つぼで1200℃で1時間焼成し、摩砕混合した後再
び1200℃で15時間焼成した。 得られた粉末をX線回折した結果、前記第1表
の結晶学的性質を示した。 実施例 5、6 実施例4におけるK2Oに代えてRb2O、Cs2Oを
使用した場合も、実施例4と同じ結果が得られ
た。 発明の効果 本発明は陽イオン伝導体、イオン交換体、触
媒、耐熱断熱材として有用な新規化合物を提供し
た優れた効果を有する。
[Table] The space group is I4/m and belongs to the tetragonal system. The lattice constants differ depending on the composition, but in the case of K 0.8 Ti 15.2 Ga 16.8 O 56 , a = 18.135 (Å), C = 2.9966 (Å), the unit volume is V = 985.5 (Å 3 ), and the number of molecules is 1 in the unit cell. The measured density is 4.69 g/cm 3 . The crystal habit is acicular to fibrous. Methods for producing the compound of the present invention include a flux method and a calcination method. The flux method yields needle-shaped crystals, while the sintering method yields powder crystals. (1) In the flux method, an alkali metal oxide selected from K 2 O, Rb 2 O, and Cs 2 O or a compound decomposed into the alkali metal oxide by heating, and titanium oxide or a compound that is decomposed into the alkali metal oxide by heating. A compound that decomposes into titanium oxide and a compound that decomposes into gallium oxide by heating are expressed by the general formula (M 2 O) X (TiO 2 ) Y (Ga 2 O 3 ) Z (where M is K, One or more alkali metals selected from Rb and Cs, X and Y are 0.1 to 2.0,
A mixture of molybdenum oxide or a compound decomposed into molybdenum oxide by heating, and an alkali metal oxide selected from K, Rb, and Cs are used as crystal raw materials. Alternatively, a compound that is decomposed into the alkali metal oxide by heating has the general formula M 2 O・n (MoO 3 ), where M is K,
Rb or Cs (n = 1 to 2) is used as a flux raw material, and the crystal raw material and flux raw material are mixed in a molar percentage of 30:70 to 10:90. death,
This is a method of growing a single crystal by heating and melting the mixture at 1200 to 1400°C and slowly cooling the melt to 900 to 1000°C. The slow cooling temperature is 1℃/h ~ 100℃
C/h may be sufficient, but in order to obtain long needle-like crystals of good quality, a rate of 2° C./h to 10° C./h is appropriate. This method yields acicular crystals, which are suitable for ionic conductors and heat-resistant/insulating materials. (2) In the production method using the calcination method, an alkali metal oxide selected from K 2 O, Rb 2 O, and Cs 2 O or a compound decomposed into the alkali metal oxide by heating, and titanium oxide or heating A compound decomposed into titanium oxide by gallium oxide or a compound decomposed into gallium oxide by heating is expressed by the general formula M X Ti 16-X Ga 16+X O 56 (where M is K,
(Represents Rb or Cs, x = 0.1 to 2.0)
Mix the mixture to the composition ratio shown in 1000
This method involves firing at a temperature of ℃ or higher. According to this method, a powdery crystalline material is obtained, which is suitable for ion exchangers, catalysts, and heat-resistant and heat-insulating materials in the form of sintered bodies. When using this method, it is desirable to use fine particles as the raw material powder in order to promote the chemical reaction. In addition, examples of compounds that generate each raw material metal oxide upon heating include carbonates, bicarbonates, hydroxides, nitrates, halides, and oxyhalides of each raw material metal. Example 1 Potassium carbonate powder, titanium oxide powder, and gallium oxide powder of 99.9% or more were mixed into (K 2 O) 0.7 (TiO 2 ) 1.0
(Ga 2 O 3 ) 20 mol of crystal raw material mixed at a composition ratio of 0.5
%, potassium carbonate powder, molybdenum powder,
(K 2 O) (MoO 3 ) 80 mol% of the flux raw material mixed at a composition ratio of 1.5 was mixed. This mixture 123
Put g into a 100ml platinum crucible and melt at 1300℃,
After holding for 10 hours, it was slowly cooled to 1000°C at a rate of 4°C/h. After slow cooling, the crucible was left to cool in the air to cool to room temperature. The crucible was immersed in boiling water to dissolve the flux and separate the crystals. The obtained crystals were an aggregate of needle-like crystals with a length of 10 mm. Identification by X-ray diffraction showed the crystallographic properties shown in Table 1 above. Examples 2 and 3 In place of K 2 CO 3 in Example 1, each
Rb 2 CO 3 and CsCO 3 were used. All Example 1
Acicular crystals with the same crystal structure as in were obtained. Example 4 Using the crystal raw material used in Example 1, (K 2 O) 1
/2 (TiO 6 ) 15.0 (Ga 2 O 3 ) 17/2 . Approximately 10 g of the well-mixed mixture was calcined at 1200°C for 1 hour in a 30 ml platinum crucible, and then ground and mixed. It was fired again at 1200°C for 15 hours. The result of X-ray diffraction of the obtained powder showed the crystallographic properties shown in Table 1 above. Examples 5 and 6 The same results as in Example 4 were obtained when Rb 2 O and Cs 2 O were used in place of K 2 O in Example 4. Effects of the Invention The present invention has the excellent effect of providing a new compound useful as a cation conductor, ion exchanger, catalyst, and heat-resistant heat insulating material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化合物の結晶構造図で、aは
結晶構造図、bはTiO6の配位、cはGaO6の配位
を示す。
FIG. 1 is a diagram of the crystal structure of the compound of the present invention, in which a shows the crystal structure, b shows the coordination of TiO 6 , and c shows the coordination of GaO 6 .

Claims (1)

【特許請求の範囲】 1 一般式MXTi16-XGa16+XO56(ただし、MはK、
RbおよびCsから選ばれた1種または2種以上の
アルカリ金属、x=0.1〜2.0を表わす)で示され
る正方晶系のトンネル構造を有する化合物。 2 K2O、Rb2OおよびCs2Oから選ばれたアルカ
リ金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物と、酸化チタンあるい
は加熱により酸化チタンに分解される化合物と、
酸化ガリウムあるいは加熱により酸化ガリウムに
分解される化合物とを、一般式(M2O)Y(TiO2
Z(Ga2O3Z/2(ただしMはK、RbおよびCsから
選ばれたアルカリ金属の1種または2種以上、
Y、Zは0.1〜2.0を表わす)で示される組成割合
に混合したものを結晶原料とし、一方酸化モリブ
デンあるいは加熱により酸化モリブデンに分解さ
れる化合物と、K、Rb、Csから選ばれたアルカ
リ金属酸化物あるいは加熱により該アルカリ金属
酸化物に分解される化合物とを、 一般式M2O・n(MoO3)(ただし、MはK、
Rb、またはCs、n=1〜2を表わす)で示され
る組成割合に混合したものをフラツクス原料と
し、結晶原料とフラツクス原料をモル百分率が30
対70〜10対90の割合になるように混合し、該混合
物を1200〜1400℃に加熱溶融し、該溶融体を900
〜1000℃まで徐冷して単結晶を育成することを特
徴とするMXTi16-XGa16+XO56(ただし、M、Xは
前記と同じものを表わす)で示される正方晶系の
トンネル構造を有する化合物の製造法。 3 K2O、Rb2O及びCs2Oから選ばれたアルカリ
金属酸化物あるいは加熱により該アルカリ金属酸
化物に分解される化合物と、酸化チタンあるいは
加熱により酸化チタンに分解される化合物と、酸
化ガリウムあるいは加熱により酸化ガリウムに分
解される化合物とを、一般式MXTi16-XGa16+XO56
(ただしMはK、RbまたはCsを表わし、X=0.1
〜2.0を表わす)で示される組成割合に混合し、
該混合物を1000℃以上の温度で焼成することを特
徴とする 一般式MXTi16-XGa16+XO56(ただし、M、Xは
前記と同じ)で示される正方晶系のトンネル構造
を有する化合物の製造法。
[Claims] 1. General formula M X Ti 16-X Ga 16+X O 56 (where M is K,
A compound having a tetragonal tunnel structure represented by one or more alkali metals selected from Rb and Cs, x = 0.1 to 2.0. 2. An alkali metal oxide selected from K 2 O, Rb 2 O and Cs 2 O or a compound decomposed into the alkali metal oxide by heating, and titanium oxide or a compound decomposed into titanium oxide by heating,
Gallium oxide or a compound that is decomposed into gallium oxide by heating is expressed by the general formula (M 2 O) Y (TiO 2 ).
Z (Ga 2 O 3 ) Z/2 (M is one or more alkali metals selected from K, Rb and Cs,
A mixture of molybdenum oxide or a compound decomposed into molybdenum oxide by heating and an alkali metal selected from K, Rb, and Cs is used as the crystal raw material. The oxide or the compound decomposed into the alkali metal oxide by heating has the general formula M 2 O・n (MoO 3 ) (where M is K,
Rb, or Cs, n = 1 to 2) is used as a flux raw material, and the crystal raw material and flux raw material are mixed at a molar percentage of 30.
The mixture was heated and melted at 1200 to 1400°C, and the melt was heated to 900°C.
A tetragonal crystal system represented by M A method for producing a compound having a tunnel structure. 3 An alkali metal oxide selected from K 2 O, Rb 2 O and Cs 2 O or a compound decomposed into the alkali metal oxide by heating, titanium oxide or a compound decomposed into titanium oxide by heating, Gallium or a compound that decomposes into gallium oxide by heating is expressed by the general formula M X Ti 16-X Ga 16+X O 56
(However, M represents K, Rb or Cs, and X=0.1
~2.0) is mixed to the composition ratio indicated by
A tetragonal tunnel structure represented by the general formula M X Ti 16-X Ga 16+X O 56 (where M and A method for producing a compound having
JP3052486A 1986-02-14 1986-02-14 A compound of mxti16-xga16+xo56 with tetragonal tunnel structure and its production Granted JPS62191424A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3052486A JPS62191424A (en) 1986-02-14 1986-02-14 A compound of mxti16-xga16+xo56 with tetragonal tunnel structure and its production
US07/013,433 US4818735A (en) 1986-02-14 1987-02-11 Tetragonal system tunnel-structured compound AX(GA8MYGA(8+X)-YTI16-X0 56), and cation conductor and heat insulating material composed thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3052486A JPS62191424A (en) 1986-02-14 1986-02-14 A compound of mxti16-xga16+xo56 with tetragonal tunnel structure and its production

Publications (2)

Publication Number Publication Date
JPS62191424A JPS62191424A (en) 1987-08-21
JPH0242769B2 true JPH0242769B2 (en) 1990-09-26

Family

ID=12306199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3052486A Granted JPS62191424A (en) 1986-02-14 1986-02-14 A compound of mxti16-xga16+xo56 with tetragonal tunnel structure and its production

Country Status (1)

Country Link
JP (1) JPS62191424A (en)

Also Published As

Publication number Publication date
JPS62191424A (en) 1987-08-21

Similar Documents

Publication Publication Date Title
JP3062497B1 (en) Method for producing flaky titanate
Hauck Uranates (VI) and tungstates (VI) within the system Li2O UO3 WO3
JPH0242769B2 (en)
US3952090A (en) Method of making fibrous alkali titanates
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
JPS6221799A (en) Production of metallic titanate fiber
Endo et al. Crystal growth of potassium titanates in the system K2O-Fe2O3-TiO2
JPH0242772B2 (en)
JPH0346432B2 (en)
JPH0321485B2 (en)
JPH08208238A (en) Cobalt monoxide
JPH0242771B2 (en)
JPH0637297B2 (en) Na [bottom x] Ga [bottom x] Ti [bottom 6]-[bottom x] O [bottom 1] [bottom 2] Compound having a tunnel-clinic tunnel structure and method for producing the same
JPH0432768B2 (en)
SU1155630A1 (en) Bismuth stannate-vanadate and method of obtaining same
JPH0427169B2 (en)
JPH01167232A (en) Compound having cubic spinel-type structure expressed by incrmn2o5 and production thereof
JPH085668B2 (en) Compound having tunnel type structure represented by NaxTi2-xGa4 + xO10 (0 ≦ x ≦ 1.0) and method for producing the same
JPS62148397A (en) Method for synthesizing cubic zirconia single crystal by fz method
JPH0435406B2 (en)
JPS5943418B2 (en) Compound having hexagonal layered structure represented by YbFeCuO↓4 and method for producing the same
JPH0513093B2 (en)
JPH03137019A (en) Heat resistant and heat insulating material
JPS5943415B2 (en) Compound belonging to the monoclinic system represented by 4MnO・6Fe↓2O↓3・9GeO↓2 (Mn↓4Fe↓1↓2Ge↓9O↓4↓0) and its production method
JPH021091B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term