JPH0432768B2 - - Google Patents
Info
- Publication number
- JPH0432768B2 JPH0432768B2 JP61073161A JP7316186A JPH0432768B2 JP H0432768 B2 JPH0432768 B2 JP H0432768B2 JP 61073161 A JP61073161 A JP 61073161A JP 7316186 A JP7316186 A JP 7316186A JP H0432768 B2 JPH0432768 B2 JP H0432768B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- compound
- mol
- bismuth
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001875 compounds Chemical class 0.000 claims description 33
- 239000011734 sodium Substances 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 16
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 14
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 14
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 7
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- NEXOOFMJTMWOMU-UHFFFAOYSA-N bismuth;oxotungsten;sodium;titanium Chemical compound [Na].[Ti].[Bi].[W]=O NEXOOFMJTMWOMU-UHFFFAOYSA-N 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 230000004907 flux Effects 0.000 claims description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 5
- FSAJRXGMUISOIW-UHFFFAOYSA-N bismuth sodium Chemical compound [Na].[Bi] FSAJRXGMUISOIW-UHFFFAOYSA-N 0.000 claims 1
- 150000002500 ions Chemical class 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 230000007547 defect Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- -1 oxygen ions Chemical class 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000255969 Pieris brassicae Species 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/185—Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Fuel Cell (AREA)
Description
産業上の利用分野
本発明は、新規化合物である一般式
Na2xBi2yTizWuOx+3y+2z+3u
(x=0.037〜0.047、y=0.247〜0.260、z=
0.632〜0.653、u=0.055〜0.070、x+y+z+
u=1を表わす)で示される立方晶系の不定比パ
イロクロア型構造を有する化合物およびその製造
法に関する。更に詳しくはイオン伝導体として燃
料電池等への応用が期待される新規化合物および
その製造法に関する。
従来技術
従来、立方晶系のパイロクロア型構造を有する
酸化物として、一般式A2B2O7で表わされる化合
物が知られている。AイオンはBイオンより大き
く、またAイオンは八個の酸素イオンに囲まれて
おり、一方Bイオンは八面体を構成する六個の酸
素イオンに囲まれている。該酸化物は立方晶系に
属する空間群Fd3mの対称性を有しており、その
結晶構造を第1図に示す。大きな黒丸はAイオン
を、小さな黒丸はBイオンを、大きな白丸は酸素
を示している。当該図よりBイオンを囲む酸素八
面体が偶共有で近似的に<110>方向にジグザグ
に並んでいることが知られている。また当該図で
は省略されているが、八面体を構成する酸素以外
に他の等価点を占める酸素(O′)がある。即ち
O′で示される当該酸素はAイオンのまわりに存
在する八個の酸素のうちの二個であることから、
該パイロクロア型酸化物の一般式はA2B2O6O′の
ようにも表現できる。
該酸化物の如く定比のパイロクロア型構造を有
する化合物以外に、不定比のパイクロア型構造を
有する化合物も知られている。それらはAイオン
の一部とO′で示される酸素の一部が同時に欠陥
となる場合であり、一般式は
A2-xB2O6O′1-yまたはA2-xB2O7-y
で表わされる。これらAイオンと酸素の一部が同
時に欠陥となる公知の不定比パイロクロア型酸化
物のうち、代表例とみなされる
Sn2+ 2-x(M2-ySn4+ y)O7-x-y/2
(MはNb5+またはTa5+である。)の格子定数を
第1表に、また粉末X線回折の結果をSn2+ 1.76
Ta1.56Sn4+ 0.44O6.54の場合についていて第2表に示
す。
Industrial Application Field The present invention is a novel compound having the general formula Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037-0.047, y=0.247-0.260, z=
0.632~0.653, u=0.055~0.070, x+y+z+
The present invention relates to a compound having a cubic non-stoichiometric pyrochlore structure represented by u=1) and a method for producing the same. More specifically, the present invention relates to a new compound expected to be applied as an ion conductor to fuel cells, etc., and a method for producing the same. Prior Art Conventionally, a compound represented by the general formula A 2 B 2 O 7 is known as an oxide having a cubic pyrochlore structure. The A ion is larger than the B ion, and the A ion is surrounded by eight oxygen ions, while the B ion is surrounded by six oxygen ions forming an octahedron. The oxide has symmetry of the space group Fd3m belonging to the cubic system, and its crystal structure is shown in FIG. Large black circles indicate A ions, small black circles indicate B ions, and large white circles indicate oxygen. From the figure, it is known that the oxygen octahedra surrounding the B ion are evenly covalent and approximately arranged in a zigzag pattern in the <110> direction. Although omitted in the figure, in addition to the oxygen constituting the octahedron, there is oxygen (O') occupying another equivalent point. That is,
Since the oxygen indicated by O′ is two of the eight oxygens existing around the A ion,
The general formula of the pyrochlore type oxide can also be expressed as A 2 B 2 O 6 O'. In addition to compounds having a stoichiometric pyrochlore type structure such as the oxide, compounds having a non-stoichiometric pyrochlore type structure are also known. These are cases where part of the A ion and part of the oxygen represented by O' become defects at the same time, and the general formula is A 2-x B 2 O 6 O' 1-y or A 2-x B 2 O Represented by 7-y . Among the known non-stoichiometric pyrochlore oxides in which part of these A ions and oxygen become defects at the same time, Sn 2+ 2-x (M 2-y Sn 4+ y ) O 7-xy/ is considered to be a representative example. 2 (M is Nb 5+ or Ta 5+ ) is shown in Table 1, and the powder X-ray diffraction results are shown for Sn 2+ 1.76.
Table 2 shows the case of Ta 1.56 Sn 4+ 0.44 O 6.54 .
【表】【table】
【表】
発明の目的
本発明の目的は、イオン伝導体材料として期待
できる新規化合物ナトリウム・ビスマス・チタ
ン・タングステン酸化物およびその製造法を提供
するにある。
発明の構成
本発明のナトリウム・ビスマス・チタン・タン
グステン酸化物は、一般式
Na2xBi2yTizWuOx+3y+2z+3u
(x=0.037〜0.047、y=0.247〜0.260、z=
0.632〜0.653、u=0.055〜0.070、x+y+z+
u=1を表わす)で示される固溶体である。この
固溶領域内の組成がx=0.041、y=0.253、z=
0.646、u=0.060の場合について、粉末X線回折
の結果から得られた格子定数はa=10.323〓であ
つた。また、当該組成の粉末X線回折パターンを
面指数(hk1)、実測面間隔および相対強度の順
に第3表に示す。[Table] Purpose of the Invention The purpose of the present invention is to provide a novel compound sodium bismuth titanium tungsten oxide which is expected to be used as an ion conductor material and a method for producing the same. Structure of the Invention The sodium bismuth titanium tungsten oxide of the present invention has the general formula Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037-0.047, y=0.247-0.260, z=
0.632~0.653, u=0.055~0.070, x+y+z+
It is a solid solution represented by u=1). The composition within this solid solution region is x=0.041, y=0.253, z=
0.646, u=0.060, the lattice constant obtained from the powder X-ray diffraction results was a=10.323〓. Further, the powder X-ray diffraction pattern of the composition is shown in Table 3 in the order of surface index (hk1), measured surface spacing, and relative intensity.
【表】
第2表ならびに第3表を比較対照することから
明らかなように、本発明における新規な化合物
Na2xBi2yTizWuOx+3y+2z+3u(x=0.037〜0.047、
y=0.247〜0.260、z=0.632〜0.653、u=0.055
〜0.070、x+y+z+u=1)は、公知の化合
物
Sn2+ 2-x(M2-ySn4+ y)O7-x-y/2と同様、立方晶系の不
定比パイロクロア型結晶構造であることが判明し
た。即ち、本発明における新規な化合物一般式
Na2xBi2yTizWuOx+3y+2z+3u(x=0.037〜0.047、y
=0.247〜0.260、z=0.632〜0.653、u=0.055〜
0.070、x+y+z+u=1を表わす)はまた
(Na、Bi)2-x(Ti、W)2O7-yのようにも表現
することができる。したがつて、本発明における
新規な化合物
Na2xBi2yTizWuOx+3y+2z+3u(x=0.037〜0.047、
y=0.247〜0.260、z=0.632〜0.653、u=0.055
〜0.070、x+y+z+u=1)は、公知の化合
物
Sn2+ 2-x(M2-ySn4+ y)O7-x-y/2の中のSn2+と欠陥と
が占めるパイロクロア構造のAイオン位置を
Na+、Bi3+および欠陥とが無秩序に占有し、M
(即ちNb5+またはTa5+)とSn4+とが完全に占め
るBイオン位置をTi4+とW6+とが無秩序に占有す
ることは明らかである。さらに、酸素に関しては
新規な化合物と公知の化合物の両者ともに第1図
では省略されているO′位置に相当する酸素が欠
陥となつている。
本発明の立方晶系の不定比パイクロア構造を有
するナトリウム・ビスマス・チタン・タングステ
ン酸化物
Na2xBi2yTizWuOx+3y+2z+3u(x=0.037〜0.047、
y=0.247〜0.260、z=0.632〜0.653、u=0.055
〜0.070、x+y+z+u=1)は、次の方法に
よつて製造し得られる。
炭酸ナトリウム(Na2CO3)もしくは、加熱に
より酸化ナトリウム(Na2O)に分解される化合
物と、酸化ビスマス(Bi2O3)もしくは、加熱に
より酸化ビスマス(Bi2O3)に分解される化合物
と、酸化チタン(TiO2)もしくは、加熱により
分解されて酸化チタン(TiO2)を生ずる化合物
ならびに酸化タングステン(WO3)もしくは、
加熱により、酸化タングステン(WO3)に分解
される化合物とを、炭酸ナトリウム(Na2CO3)
が、3.7〜4.7モル%、酸化ビスマス(Bi2O3)が
24.7〜26.0モル%、酸化チタン(TiO2)が63.2〜
65.3モル%、酸化タングステン(WO3)が5.5〜
7.0モル%の割合となるように混合して、約900℃
の温度で大気中で加熱することによつて製造する
ことができる。
本発明の立方晶系の不定比パイロクロア構造を
有するナトリウム・ビスマス・チタン・タングス
テン酸化物
Na2xBi2yTizWuOx+3y+2z+3u(x=0.037〜0.047、
y=0.247〜0.260、z=0.632〜0.653、u=0.055
〜0.070、x+y+z+u=1)の単結晶は、次
のようにタングステン酸ナトリウム(Na2WO4)
を融剤とする融液法によつて、他の不純物を混入
することなく育成し得られる。
酸化ビスマス(Bi2O3)もしくは、加熱により
酸化ビスマス(Bi2O3)に分解される化合物と、
酸化チタン(Ti O2)もしくは、加熱により分解
されて酸化チタン(TiO2)を生ずる化合物と、
酸化タングステン(WO3)もしくは、加熱によ
り酸化タングステン(WO3)に分解される化合
物ならびにタングステン酸ナトリウム
(Na2WO4)もしくは、加熱によつてタングステ
ン酸ナトリウム(Na2WO4)に分解される化合物
とを酸化ビスマス(Bi2O3)が18.75モル%、酸化
チタン(TiO2)が18.75モル%、酸化タングステ
ン(WO3)が6.25%、タングステン酸ナトリウム
(Na2WO4)が56.25モル%の割合となるように混
合して、1300℃に加熱した後、毎時2℃の速度で
徐冷することにより育成できる。
公知の化合物Sn2+ 2-x(M2-ySn4+ yO7-x-y/2は、不安
定なSn2+を含むことからその製造は石英ガラス
の真空封入管中で行われるのに対し、本発明の新
規化物では、含まれる成分がいずれも安定である
ことから、その製造は空気中で容易に行われる。
実施例 1
純度99.9%以上の酸化ビスマス(Bi2O3)粉末
と純度99.9%以上の酸化チタン(TiO2)粉末と
純度99.9%以上の酸化タングステン(WO3)粉末
さらに試薬特級の炭酸ナトリウム(Na2CO3)粉
末とを、割合がそれぞれ24.7〜26.0モル%、63.2
〜65.3モル%、5.5〜7.0モル%、3.7〜4.7モル%、
となるように秤量し、メノウ乳鉢中で充分に混合
することにより、微粉末混合物を得た。当該混合
物を白金ルツボに充填し、シリコニツト発熱体堅
型電気炉中に静置し、室温から加温をはじめ、当
該電気炉が900℃に達したのち、この温度に保つ
た。20時間後、当該ルツボを当該電気炉から取り
出し、当該新規ナトリウム・ビスマス・チタン・
タングステン酸化物Na2xBi2yTizWuOx+3y+2z+3u
(x=0.037〜0.047、y=0.247〜0.260、z=0.632
〜0.653、u=0.055〜0.070、x+y+z+u=
1)の多結晶体を製造した。
実施例 2
純度99.9%以上の酸化ビスマス(Bi2O3)粉末
と純度99.9%以上の酸化チタン(TiO2)粉末と
純度99.9%以上の酸化タングステン(WO3)粉末
ならびに、融剤として試薬特級のタングステン酸
ナトリウム(Na2WO4)粉末とを、割合がそれぞ
れ18.75モル%、18.75モル%、6.25モル%、なら
びに56.25モル%となるように秤量しメノウ乳鉢
中で充分に混合することにより、融液法による単
結晶育成のための出発微粉末混合物を得た。当該
混合物を白金ルツボに充填し、シリコニツト発熱
体堅型電気炉中に静置し、室温から加温をはじ
め、当該電気炉が1300℃に達したのちこの温度で
4時間保ち、その後毎時2℃の冷却速度で徐冷し
た。室温に達した後、当該ルツボを当該電気炉か
ら取り出し、温湯にて融剤のタングステン酸ナト
リウム(Na2WO4)を溶出せしめて、育成した当
該不定比パイロクロア型酸化物の単結晶を分離し
た。当該単結晶の外形は一辺が約5mmで厚さが約
1.5mmの六角板状であつた。これら結晶面の面指
数はいずれも{111}であることが確認された。[Table] As is clear from comparing and contrasting Tables 2 and 3, the novel compound of the present invention Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037-0.047,
y=0.247~0.260, z=0.632~0.653, u=0.055
~0.070, x+y+z+u=1) has a cubic non-stoichiometric pyrochlore type crystal structure, similar to the known compound Sn 2+ 2-x (M 2-y Sn 4+ y )O 7-xy/2 There was found. That is, the novel compound general formula of the present invention
Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037~0.047, y
=0.247~0.260, z=0.632~0.653, u=0.055~
0.070, representing x+y+z+u=1) can also be expressed as (Na, Bi) 2-x (Ti, W) 2 O 7-y . Therefore, the novel compound of the present invention Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037-0.047,
y=0.247~0.260, z=0.632~0.653, u=0.055
~0.070, x+y+z+u=1) is the A ion of the pyrochlore structure occupied by Sn 2+ and defects in the known compound Sn 2+ 2-x (M 2-y Sn 4+ y )O 7-xy/ 2 position
Na + , Bi 3+ and defects occupy disorderly, and M
It is clear that Ti 4+ and W 6+ occupy the B ion positions completely occupied by Nb 5+ or Ta 5+ ) and Sn 4+ in a disordered manner. Furthermore, regarding oxygen, both the new compound and the known compound have a defect at the oxygen corresponding to the O' position, which is omitted in FIG. Sodium-bismuth-titanium-tungsten oxide having cubic nonstoichiometric pyrochlore structure of the present invention Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037 to 0.047,
y=0.247~0.260, z=0.632~0.653, u=0.055
~0.070, x+y+z+u=1) can be produced by the following method. Sodium carbonate (Na 2 CO 3 ) or a compound that decomposes into sodium oxide (Na 2 O) when heated, and bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide (Bi 2 O 3 ) when heated. A compound and titanium oxide (TiO 2 ) or a compound that is decomposed by heating to produce titanium oxide (TiO 2 ) and tungsten oxide (WO 3 ) or
A compound that decomposes into tungsten oxide (WO 3 ) when heated is combined with sodium carbonate (Na 2 CO 3 ).
However, 3.7 to 4.7 mol% of bismuth oxide (Bi 2 O 3 )
24.7~26.0 mol%, titanium oxide ( TiO2 ) 63.2~
65.3 mol%, tungsten oxide ( WO3 ) 5.5~
Mix at a ratio of 7.0 mol% and heat at approximately 900℃
It can be produced by heating in air at a temperature of . Sodium-bismuth-titanium-tungsten oxide having cubic non-stoichiometric pyrochlore structure of the present invention Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037 to 0.047,
y=0.247~0.260, z=0.632~0.653, u=0.055
~0.070, x+y+z+u=1) is a single crystal of sodium tungstate (Na 2 WO 4 ) as follows:
It can be grown without mixing other impurities by the melt method using as a fluxing agent. Bismuth oxide (Bi 2 O 3 ) or a compound that is decomposed into bismuth oxide (Bi 2 O 3 ) by heating,
Titanium oxide (TiO 2 ) or a compound that produces titanium oxide (TiO 2 ) when decomposed by heating,
Tungsten oxide (WO 3 ) or a compound that decomposes into tungsten oxide (WO 3 ) when heated, and sodium tungstate (Na 2 WO 4 ) or a compound that decomposes into sodium tungstate (Na 2 WO 4 ) when heated Bismuth oxide (Bi 2 O 3 ) is 18.75 mol %, titanium oxide (TiO 2 ) is 18.75 mol %, tungsten oxide (WO 3 ) is 6.25 mol %, and sodium tungstate (Na 2 WO 4 ) is 56.25 mol %. The mixture can be grown by mixing at a ratio of 1,300°C, and then slowly cooling at a rate of 2°C per hour. The known compound Sn 2+ 2-x (M 2-y Sn 4+ y O 7-xy/2 contains unstable Sn 2+ , so its production is carried out in a vacuum-sealed quartz glass tube. On the other hand, the novel product of the present invention can be easily manufactured in the air because all of the contained components are stable.Example 1 Bismuth oxide (Bi 2 O 3 ) powder with a purity of 99.9% or more and titanium oxide (TiO 2 ) powder with a purity of 99.9% or more, tungsten oxide (WO 3 ) powder with a purity of 99.9% or more, and reagent-grade sodium carbonate (Na 2 CO 3 ) powder, each in a proportion of 24.7 to 26.0 mol%. , 63.2
~65.3 mol%, 5.5-7.0 mol%, 3.7-4.7 mol%,
A fine powder mixture was obtained by weighing and thoroughly mixing in an agate mortar. The mixture was filled into a platinum crucible and placed in a vertical electric furnace with a siliconite heating element.Heating started from room temperature, and after the electric furnace reached 900°C, it was kept at this temperature. After 20 hours, the crucible was taken out of the electric furnace and the new sodium, bismuth, titanium,
Tungsten oxide Na 2x Bi 2y Ti z W u O x+3y+2z+3u
(x=0.037~0.047, y=0.247~0.260, z=0.632
~0.653, u=0.055~0.070, x+y+z+u=
A polycrystalline body of 1) was produced. Example 2 Bismuth oxide (Bi 2 O 3 ) powder with a purity of 99.9% or more, titanium oxide (TiO 2 ) powder with a purity of 99.9% or more, tungsten oxide (WO 3 ) powder with a purity of 99.9% or more, and special grade reagent as a flux. and sodium tungstate (Na 2 WO 4 ) powder at a ratio of 18.75 mol %, 18.75 mol %, 6.25 mol %, and 56.25 mol %, respectively, and thoroughly mixed in an agate mortar. A starting fine powder mixture for single crystal growth by the melt method was obtained. The mixture was filled into a platinum crucible, placed in a vertical electric furnace with a siliconite heating element, heated from room temperature, and after the electric furnace reached 1300°C, kept at this temperature for 4 hours, and then heated at 2°C per hour. It was slowly cooled at a cooling rate of . After reaching room temperature, the crucible was taken out from the electric furnace and the fluxing agent sodium tungstate (Na 2 WO 4 ) was eluted with hot water to separate the grown single crystal of the non-stoichiometric pyrochlore type oxide. . The external shape of the single crystal is approximately 5 mm on each side and approximately 5 mm thick.
It was in the shape of a 1.5 mm hexagonal plate. It was confirmed that the plane indices of all of these crystal planes were {111}.
第1図は、本発明のNa2xBi2yTizWuOx+3y+2z+3u
(x=0.037〜0.047、y=0.247〜0.260、z=0.632
〜0.653、u=0.055〜0.070、x+y+z+u=
1)の結晶構造を示す。
Figure 1 shows the Na 2x Bi 2y Ti z W u O x+3y+2z+3u of the present invention.
(x=0.037~0.047, y=0.247~0.260, z=0.632
~0.653, u=0.055~0.070, x+y+z+u=
The crystal structure of 1) is shown.
Claims (1)
z=0.632〜0.653、u=0.055〜0.070、x+y+
z+u=1を表わす)で示される立方晶系の不定
比パイロクロア型構造を有するナトリウム・ビス
マス・チタン・タングステン酸化物。 2 炭酸ナトリウム(Na2CO3)もしくは、加熱
により酸化ナトリウム(Na2O)に分解される化
合物と、酸化ビスマス(Bi2O3)もしくは、加熱
により酸化ビスマス(Bi2O3)に分解される化合
物と、酸化チタン(Ti O2)もしくは、加熱によ
り分解されて酸化チタン(Ti O2)を生ずる化合
物ならびに酸化タングステン(WO3)もしくは、
加熱により、酸化タングステン(WO3)に分解
される化合物とを、炭酸ナトリウム(Na2CO3)
が3.7〜4.7モル%、酸化ビスマス(Bi2O3)が24.7
〜26.0モル%、酸化チタン(Ti O2)が63.2〜
65.3モル%、酸化タングステン(WO3)が5.5〜
7.0モル%になるように混合して、約900℃の温度
で大気中で加熱することを特徴とする一般式 Na2xBi2yTizWuOx+3y+2z+3u (x=0.037〜0.047、y=0.247〜0.260、z=
0.632〜0.653、u=0.055〜0.070、x+y+z+
u=1を表す)で示される立方晶系の不定比パイ
ロクロア型構造を有するナトリウム・ビスマス・
チタン・タングステン酸化物の製造法。 3 炭酸ナトリウム(Na2CO3)もしくは、加熱
により酸化ナトリウム(Na2O)に分解される化
合物と、酸化ビスマス(Bi2O3)もしくは、加熱
による酸化ビスマス(Bi2O3)に分解される化合
物と、酸化チタン(Ti O2)もしくは、加熱によ
り分解されて酸化チタン(Ti O2)を生ずる化合
物ならびに酸化タングステン(WO3)もしくは、
加熱により、酸化タングステン(WO3)に分解
される化合物とを、炭酸ナトリウム(Na2CO3)
が3.7〜4.7モル%、酸化ビスマス(Bi2O3)が24.7
〜26.0モル%、酸化チタン(Ti O2)が63.2〜
65.3モル%、酸化タングステン(WO3)が5.5〜
7.0モル%になるように混合し、該混合物をタン
グステン酸ナトリウム(Na2WO4)を融剤として
使用し、融液法により単結晶を育成することを特
徴とする一般式 Na2xBi2yTizWuOx+3y+2z+3u (x=0.037〜0.047、y=0.247〜0.260、z=
0.632〜0.653、u=0.055〜0.070、x+y+z+
u=1を表わす)で示される立方晶系の不定比パ
イロクロア型構造を有するナトリウム・ビスマ
ス・チタン・タングステン酸化物の製造法。[Claims] 1 General formula Na 2x Bi 2y Ti z W u O x+3y+2z+3u (where x=0.037 to 0.047, y=0.247 to 0.260,
z=0.632~0.653, u=0.055~0.070, x+y+
A sodium bismuth titanium tungsten oxide having a cubic non-stoichiometric pyrochlore structure represented by z+u=1. 2 Sodium carbonate (Na 2 CO 3 ) or a compound that decomposes into sodium oxide (Na 2 O) when heated, and bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide (Bi 2 O 3 ) when heated. a compound that produces titanium oxide (Ti O 2 ), or a compound that produces titanium oxide (Ti O 2 ) when decomposed by heating, and tungsten oxide (WO 3 ), or
A compound that decomposes into tungsten oxide (WO 3 ) when heated is combined with sodium carbonate (Na 2 CO 3 ).
is 3.7 to 4.7 mol%, and bismuth oxide (Bi 2 O 3 ) is 24.7
~26.0 mol%, titanium oxide ( TiO2 ) ~63.2
65.3 mol%, tungsten oxide ( WO3 ) 5.5~
General formula Na 2x Bi 2y Ti z W u O x+3y+2z+3u (x=0.037~ 0.047, y=0.247~0.260, z=
0.632~0.653, u=0.055~0.070, x+y+z+
Sodium bismuth, which has a cubic non-stoichiometric pyrochlore structure represented by u=1)
Production method of titanium/tungsten oxide. 3 Sodium carbonate (Na 2 CO 3 ) or a compound that decomposes into sodium oxide (Na 2 O) by heating, and bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide (Bi 2 O 3 ) by heating. a compound that produces titanium oxide (Ti O 2 ), or a compound that produces titanium oxide (Ti O 2 ) when decomposed by heating, and tungsten oxide (WO 3 ), or
A compound that decomposes into tungsten oxide (WO 3 ) when heated is combined with sodium carbonate (Na 2 CO 3 ).
is 3.7 to 4.7 mol%, and bismuth oxide (Bi 2 O 3 ) is 24.7
~26.0 mol%, titanium oxide ( TiO2 ) ~63.2
65.3 mol%, tungsten oxide ( WO3 ) 5.5~
The general formula Na 2x Bi 2y Ti is mixed to a concentration of 7.0 mol%, and the mixture is grown into a single crystal by a melt method using sodium tungstate (Na 2 WO 4 ) as a flux. z W u O x+3y+2z+3u (x=0.037~0.047, y=0.247~0.260, z=
0.632~0.653, u=0.055~0.070, x+y+z+
A method for producing sodium bismuth titanium tungsten oxide having a cubic non-stoichiometric pyrochlore structure represented by u=1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61073161A JPS62230621A (en) | 1986-03-31 | 1986-03-31 | Sodium-bismuth-titanium-tungsten oxide having indefinite-ratio pyrochlore-type structure of cubic system and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61073161A JPS62230621A (en) | 1986-03-31 | 1986-03-31 | Sodium-bismuth-titanium-tungsten oxide having indefinite-ratio pyrochlore-type structure of cubic system and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62230621A JPS62230621A (en) | 1987-10-09 |
JPH0432768B2 true JPH0432768B2 (en) | 1992-06-01 |
Family
ID=13510166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61073161A Granted JPS62230621A (en) | 1986-03-31 | 1986-03-31 | Sodium-bismuth-titanium-tungsten oxide having indefinite-ratio pyrochlore-type structure of cubic system and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62230621A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2236069C1 (en) * | 2003-06-10 | 2004-09-10 | Мятиев Ата Атаевич | Bismuth oxide based electrode-electrolyte couple, its production method, and organogel |
-
1986
- 1986-03-31 JP JP61073161A patent/JPS62230621A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62230621A (en) | 1987-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rao | Chemical synthesis of solid inorganic materials | |
Roy | Multiple ion substitution in the perovskite lattice | |
Wanklyn | Flux growth of some complex oxide materials | |
Izquierdo et al. | Phase equilibria in the system Li2O-TiO2 | |
JP7105955B2 (en) | Aluminum-doped lithium-ion conductor based on garnet structure | |
Spiridonova et al. | Synthesis, crystal structures, and properties of new acentric glaserite-related compounds Rb7Ag5–3xSc2+ x (XO4) 9 (X= Mo, W) | |
CN101595060B (en) | Method for producing solid solution fine particle | |
JP2018052755A (en) | Lithium ion-conducting material | |
JPH0432768B2 (en) | ||
Giraud et al. | The Stereochemical Effect of 6s2Lone-Pair Electrons: The Crystal Structure of a New Lead Bismuth Oxyphosphate Pb4BiO4PO4 | |
JPH05139781A (en) | Crystallized lithium glass | |
Carpenter et al. | A New Family of Quaternary, Early Rare-Earth Chalcogenides: Ca4 (RE) 2In4Q13 (RE= La, Nd, Sm, Gd; Q= S, Se) | |
Brower et al. | Flux synthesis of cubic potassium antimonate | |
Solodovnikov et al. | Resolving old problems with layered polytungstates related to hexagonal tungsten bronze: phase formation, structures, crystal chemistry and some properties | |
Pyke et al. | An electron microscope study of tin dioxide and antimony-doped tin dioxide | |
Abbattista et al. | Preparation and crystallographic characteristics of the new phase La2Au0. 5Li0. 5O4 | |
JPH01126204A (en) | Synthesis of oxide mixture | |
JPH05221795A (en) | Production of monoclinic plate crystal having layer structure represented by axmyti2-yo4 | |
JPS5934656B2 (en) | Compound having hexagonal layered structure represented by YbAlMnO↓4 and method for producing the same | |
US4792377A (en) | Flux growth of sodium beta" alumina | |
ROTH et al. | Synthesis, stability, and crystal chemistry of dibarium pentatitanate | |
Suchow | Bismuth magnesium titanate, an unusual new perovskite | |
Terebilenko et al. | The current progress in the synthesis and luminescence properties of doped bismuth complex oxides | |
JP2849704B2 (en) | Bismuth-vanadium oxide compound for oxide ion conductor and method for producing the same | |
JPH0427169B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |