JPS6011228A - Heat-resistant heat-insulating material of octotitanate - Google Patents

Heat-resistant heat-insulating material of octotitanate

Info

Publication number
JPS6011228A
JPS6011228A JP11646083A JP11646083A JPS6011228A JP S6011228 A JPS6011228 A JP S6011228A JP 11646083 A JP11646083 A JP 11646083A JP 11646083 A JP11646083 A JP 11646083A JP S6011228 A JPS6011228 A JP S6011228A
Authority
JP
Japan
Prior art keywords
octotitanate
heat
insulating material
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11646083A
Other languages
Japanese (ja)
Other versions
JPS6241176B2 (en
Inventor
Yoshinori Fujiki
藤木 良規
Takefumi Mihashi
武文 三橋
Hidehiko Tanaka
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP11646083A priority Critical patent/JPS6011228A/en
Publication of JPS6011228A publication Critical patent/JPS6011228A/en
Publication of JPS6241176B2 publication Critical patent/JPS6241176B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat-resistant heat-insulating material proof against high temp., having a significant heat insulating effect, and made of a specified octotitanate having a high m.p., low heat conductivity and a hollandite type structure. CONSTITUTION:An octotitanate represented by formula I (where A is an alkali metal, Ba, Cu or Ni; B is Mg, a bivalent transition metal, Al, Fe, Cr or Ga; each of (x) and (y) is 0.5-3; and (z) is 5-8) is used as a heat insulating material. The octotitanate has a high m.p., low heat conductivity and a hollandite type structure. Titanium oxide is mixed wih the oxide of the metal (A) and the oxide of the metal (B) to prepare a solid soln., and this solid soln. is mixed with a metallic molybdate represented by formula II (where (n) is 0-3). The mixture is melted, and crystals are grown from the melt to obtain the octotitanate represented by the formula I as fibrous crystals.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な耐熱性断熱材料に関する。更に詳しくは
ホーランダイト型構造を有するオクトチタン酸塩からな
る耐熱性断熱材料に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a novel heat-resistant thermal insulation material. More specifically, the present invention relates to a heat-resistant heat insulating material made of octotitanate having a hollandite structure.

従来技術 従来、最も広く利用されている耐熱性断熱材料としてア
スベストがある。しかし、アスベストはう1細化し易く
公害を起こす欠点があり、その代替材料の開発が要望さ
れている。
BACKGROUND OF THE INVENTION Conventionally, asbestos has been the most widely used heat-resistant heat insulating material. However, asbestos has the disadvantage that it easily shrinks and causes pollution, and there is a demand for the development of alternative materials.

その代替材料として、本発明者の一人がさきに、チタン
酸カリウムからなる繊維を開発した(特公昭55−25
157号公報参照)。しかし、該チタン酸カリウム繊維
はセラミックスの中で断熱性が抜群に優れているが、融
点が1370℃であるため、使用温度が1200℃程度
までである欠点があった。
As an alternative material, one of the inventors of the present invention previously developed a fiber made of potassium titanate (Japanese Patent Publication No. 55-25
(See Publication No. 157). However, although the potassium titanate fiber has excellent heat insulation properties among ceramics, it has a drawback that its melting point is 1370°C, so it can only be used at a temperature of up to about 1200°C.

、″ )明の目的 一′蕃発明はその欠点を解消し、1500℃以上にも耐
゛1覧、しかもそれよシ熱伝導率の小さい優れた断熱材
料を提供するにある。
The object of the present invention is to overcome these drawbacks and to provide an excellent heat insulating material that is resistant to temperatures above 1500°C and has a lower thermal conductivity.

発明の構成 本発明者らはチタン酸カリウムについて永年に亘る研究
の結果、その断熱特性の原因は一次元的なトンネル構造
に関係することを明らかにした。
Structure of the Invention As a result of many years of research into potassium titanate, the present inventors have revealed that the cause of its heat insulating properties is related to its one-dimensional tunnel structure.

更にチタン酸カリウムよシも大きいトンネル構造を持ち
、かつ融点の高い物質を得んと鋭意研究の結果、特定の
オクトチタン酸塩の結晶物は高融点で且つ熱伝導率がチ
タン酸カリウムよシも小さい特性を有することが分った
。この知見に基いて本発明を完成した。
Furthermore, as a result of intensive research to obtain a substance with a larger tunnel structure and higher melting point than potassium titanate, we found that a specific octotitanate crystal has a higher melting point and thermal conductivity than potassium titanate. was also found to have small characteristics. The present invention was completed based on this knowledge.

本発明ノ要旨は、一般式、Ax(ByTiz) 801
6(ただし、式中人はアルカリ金属、 Ba 、 Ou
およびNiから選ばれた金属、BはMg、二価遷移金属
The gist of the present invention is the general formula Ax(ByTiz) 801
6 (However, the person in the formula is an alkali metal, Ba, Ou
and Ni; B is Mg, a divalent transition metal;

1 、 Fe 、 OrおよびGaから選ばれた金属、
Xは0.5〜3、yは0.5〜3.2は5〜8を表わす
)で示されるホーランダイト型構造を有するオクトチタ
ン酸塩の結晶物からなる耐熱性断熱材料にある6 本発明における一般式に示されるA成分である。
1, metal selected from Fe, Or and Ga,
6 in a heat-resistant heat insulating material made of an octotitanate crystal having a hollandite structure, where X is 0.5 to 3 and y is 0.5 to 3.2 is 5 to 8 This is component A shown in the general formula in the invention.

Li 、 Na 、 K 、 Rb 、 Osのアルカ
リ金属をはじめ、Ba 、 Ou 、 Niはいずれも
トンネル構造中に配位することができる金属である。特
にKとBaは配位し易く、試料が作り易く、かつ熱伝導
率が小さくなる点で好ましい。またA成分は前記に示し
た2元素以上の固溶成分であっても差支えない。
Alkali metals such as Li, Na, K, Rb, and Os, as well as Ba, Ou, and Ni are all metals that can be coordinated in the tunnel structure. In particular, K and Ba are preferred because they are easy to coordinate, easy to prepare samples, and have low thermal conductivity. In addition, component A may be a solid solution component containing two or more of the above-mentioned elements.

また、前記一般式で示されるB成分であるMg1Gu 
、 Zn 、 Ni 、 Goの二価遷移金属、A7.
Fe%0’rXGaはいずれもトンネルの枠組を作るT
ie6アj八面体中のTiの席を置換して占有すること
ができる金属である。特にMgとAlはTiを置換し易
く、試料が作り易く、かつ融点が高くなる点で好ましい
。またB成分は前記に示した2元素以上の固溶成分であ
っても差し支えない。
In addition, Mg1Gu which is the B component shown in the above general formula
, Zn, Ni, Go divalent transition metals, A7.
Fe%0'rXGa is T that forms the framework of the tunnel.
It is a metal that can replace and occupy the Ti seat in the ie6aj octahedron. In particular, Mg and Al are preferable because they can easily replace Ti, make samples easy to prepare, and have a high melting point. Moreover, the B component may be a solid solution component of two or more of the above-mentioned elements.

前記一般式で示されるxlyは、いずれも0.5〜3の
範囲であることが必要であり、好ましくは1.0〜2.
4の範囲である。この範囲外では目的のオクトチタン酸
塩以外の相が生成して混合相となシ、熱伝導率を大きく
したり、機械的強度の低下をきたす。
All xly shown in the above general formula needs to be in the range of 0.5 to 3, preferably 1.0 to 2.
The range is 4. Outside this range, phases other than the target octotitanate are formed and a mixed phase is formed, resulting in an increase in thermal conductivity and a decrease in mechanical strength.

また2は5〜8であることが必要である。この範囲外で
はトンネル構造のTiO6の八面体が得難くなる。
Moreover, 2 needs to be 5-8. Outside this range, it becomes difficult to obtain a TiO6 octahedron with a tunnel structure.

本発明のオクトチタン酸塩の結晶質物からなる耐熱断熱
材料の製造法としては、焼成法、溶融法。
Methods for producing the heat-resistant heat insulating material made of crystalline octotitanate of the present invention include a firing method and a melting method.

水熱法、フラックス法のいずれの方法でも製造し □得
られるが、塗料や焼結体製品を作るには粉末物が好まし
いので焼成法が適し、繊維状の形状のものを作るには、
モリブデン酸塩やタングステン酸塩を7ラツク=とじて
用いるフラックス法で製造 1する方法が好ましい。そ
れは装置が大型化でき、連続製造が容易であり、かつ比
較的低温で結晶を成長させることができる上に、高圧力
を必要としないため危険がなく、またフラックスが低揮
発性のだめ揮発による公害の心配もなく、水に易溶性の
ため生成した繊維の分離が簡単で回収が容易であるから
である。
It can be produced by either the hydrothermal method or the flux method, but powder is preferable for making paints and sintered products, so the firing method is suitable.For making fibrous products,
It is preferable to manufacture by flux method using 7 kg of molybdate or tungstate. This is because the equipment can be large-sized, continuous production is easy, crystals can be grown at relatively low temperatures, and high pressure is not required, so there is no danger, and the flux has low volatility, so it does not cause pollution due to volatilization. This is because the fibers produced are easy to separate and recover because they are easily soluble in water.

本発明におけるホーランダイト型構造のオクトチタン酸
塩のフラックス法による製造法を示すと次の通りである
The method for producing octotitanate having a hollandite structure according to the present invention by the flux method is as follows.

一般式で示されるA成分の金属酸化物または加熱により
該金属酸化物を生成する化合物と、B成分の金属酸化物
または加熱によシ該金属酸化物と、酸化チタンまたは加
熱により酸化チタンを生成するチタン化合物を原料とし
て使用する。
A metal oxide of component A or a compound that generates the metal oxide when heated, represented by the general formula, a metal oxide of component B or the metal oxide that generates the metal oxide when heated, and titanium oxide or a compound that generates the metal oxide when heated. A titanium compound is used as a raw material.

加熱によ#)AOを生成する化合物としては、例えばム
(OH)21 AGO3,ACNo3)21 AF21
 AO121AB O、ASO4などが挙げられる。ま
た加熱によ7 すBOを生成する化合物としては、MgOO3に価’−
:=曹移金属の炭酸化物、 Mg(OH)2.二価遷移
金属の水酸化物、 MgH2(Co、)、2 に二価遷
移金属の重水素炭酸化物、 1(OH)、 、 Fe(
OH)、 、 0r(OH)、、Ga(OH)、lA4
2(003)5. Fe2(Co、)、 、 0r2(
Co3)、、 Ga2(Co、)。
Examples of compounds that generate #)AO upon heating include Mu(OH)21 AGO3, ACNo3)21 AF21
Examples include AO121AB O, ASO4, and the like. In addition, as a compound that generates BO upon heating, MgOO3 has a valence of -
:=Carbonide of carbonate metal, Mg(OH)2. Hydroxide of divalent transition metal, MgH2(Co, ), 2 deuterium carbonate of divalent transition metal, 1(OH), , Fe(
OH), , 0r(OH), , Ga(OH), lA4
2(003)5. Fe2(Co, ), , 0r2(
Co3), Ga2(Co,).

などが挙げられる。Examples include.

加熱にTiO2を生成する化合物は前記と同様なTi化
合物が挙げられる。
Compounds that generate TiO2 upon heating include the same Ti compounds as mentioned above.

とれらの原料の内、B成分を一般式BI[0(ただし、
BIIはMgまたは二価遷移金属を表わす)と一般式B
IIIO(ただし、BII[はAz、FetたはGaを
表わす)とし、各原料をモル比で、 AO: BI[0: Tie2= 2 : 1 : 3
〜5 : 2 : 3または AO: BI[0: Tie2= 2 : 1 : 3
〜4 : 3 : 3の割合の混合物または固溶体を作
る。
Among these raw materials, component B is expressed by the general formula BI[0 (however,
BII represents Mg or a divalent transition metal) and general formula B
IIIO (however, BII[represents Az, Fet or Ga), and the molar ratio of each raw material is AO:BI[0:Tie2=2:1:3
~5:2:3 or AO:BI[0:Tie2=2:1:3
-Create a mixture or solid solution in the ratio of 4:3:3.

これに、一般式 A2M004・nMOo5(ただしAは前記金属を示し
、nはO〜3を表わす)で示されるモリブデン酸塩を混
合する。
A molybdate represented by the general formula A2M004.nMOo5 (where A represents the metal and n represents O-3) is mixed therein.

この混合割合はモル%で、10:90〜50:50の割
合であることが好ましい。これらの混合物を例えば80
0〜1500℃で溶融して溶融体を作シ、その溶融体か
ら結晶前゛成することによって得られる。その具体例は
実施例に示す。
This mixing ratio is preferably 10:90 to 50:50 in mol%. A mixture of these, for example 80
It can be obtained by melting at 0 to 1500°C to form a melt, and pre-crystals are formed from the melt. Specific examples thereof are shown in Examples.

実施例1. K)((AlyTiz) 6016(ただ
し、x=y=2.0〜2.4、z=8−y)の結晶質粉
体の製造炭酸カリウム、酸化アルミニウムおよび酸化チ
ターンの各粉末をに2003:Al2O3:Ti02=
1.0:1・I’o : 6〜1.2 : 1.2 :
 5.6゜、ヤ比割合に混合口!この混合物をさらによ
く摩砕混合して出発原料−よした。この出発原料約3O
fを50−の白金るつぼに充填し、炭化珪素発熱体電気
炉で1200℃で3時間仮焼し、これを取出して摩砕混
合した後、再び1200℃で約20時間焼成した。
Example 1. Production of crystalline powder of K) ((AlyTiz) 6016 (where x = y = 2.0 to 2.4, z = 8 - y) 2003: Al2O3:Ti02=
1.0:1・I'o: 6~1.2: 1.2:
5.6°, mixing port at the ratio! This mixture was further thoroughly ground and mixed to obtain a starting material. Approximately 3O of this starting material
f was filled in a 50-degree platinum crucible, calcined at 1200°C for 3 hours in a silicon carbide heating element electric furnace, taken out, ground and mixed, and fired again at 1200°C for about 20 hours.

得られた粉状結晶体はX線粉末回折で同定した。The obtained powdery crystalline material was identified by X-ray powder diffraction.

その組成はに2.。AI、。Ti6016〜に2.4 
A’2.4 ”5.60.6であった。
Its composition is 2. . A.I. Ti6016 ~ 2.4
A'2.4"5.60.6.

この場合、Xとyが2.0より小さく、2が6.0より
大きいモル比割合ではカリウム−アルミニウムーオクタ
チタン酸塩のほかにルチル相が生成し、ま、−:庭Xと
yが2.4より大きく、2が5.6よシ小さいモル割合
では未知相が生成した。
In this case, when X and y are smaller than 2.0 and 2 is larger than 6.0, a rutile phase is formed in addition to potassium-aluminum-octatitanate, and At molar ratios greater than 2.4 and 2 less than 5.6, unknown phases were formed.

また、Al2O3の代りにFe2O3,Cr2O3,T
a2o3を使用した場合も同様にオクトチタン酸塩結晶
質粉体が得られた。
Also, instead of Al2O3, Fe2O3, Cr2O3, T
When a2o3 was used, octotitanate crystalline powder was similarly obtained.

実施例2. K)((MgyTiz) ao+6(ただ
し、X=2.0〜2.4 、’/ = ”/2 、 z
 = 8 ”/’2) (D結晶質粉体の製造、 −)。
Example 2. K) ((MgyTiz) ao+6 (however, X=2.0~2.4,'/=''/2,z
= 8''/'2) (Production of D crystalline powder, -).

炭酸カリウム、炭酸マグネシウムおよび酸化チソンノ各
粉末を、K2O03: Kg(io、 : ’I’10
2= 1,0 :・贅も8□、。〜1.2 : 1.2
 : 6.8゜、ヤ比。1合し、この混合物をさらによ
く摩砕混合して出発原料とした。この出発原料約307
を50−白金るつぼに充填し、実施例1と同様に焼成し
た。得られた結晶体はX線粉末回折で同定した。その組
成はに2.。MgTi、0.6〜に2.4Mg1.2T
i6.80,6であった。
Potassium carbonate, magnesium carbonate, and oxidized powder were added to K2O03: Kg (io, : 'I'10
2 = 1,0: ・Fuwa also 8□. ~1.2: 1.2
: 6.8°, Ya ratio. This mixture was further thoroughly ground and mixed to obtain a starting material. This starting material is about 307
was filled into a 50-platinum crucible and fired in the same manner as in Example 1. The obtained crystalline material was identified by X-ray powder diffraction. Its composition is 2. . MgTi, 0.6~2.4Mg1.2T
It was i6.80.6.

この場合、Xが2より小さく、yが1より小さく、zが
7よシ大きいモル割合ではオクトチタン酸塩のほかにル
チル相が生成し、Xが2.4よ勺大きく、yが1.2よ
シ大きく、2が6.8よシ小さいモル比混合物では未知
相が生成した。
In this case, when X is smaller than 2, y is smaller than 1, and z is larger than 7, a rutile phase is formed in addition to octotitanate, and X is larger than 2.4 and y is 1. An unknown phase was formed in a molar ratio mixture where 2 was greater than 2 and 2 was less than 6.8.

実施例3. 8ax(AlyTi2)80.6(ただし
、x=1.0〜1.4、y=2x、z=8−y)結晶質
粉体の製造 炭酸バリウム、酸化アルミニウムおよび酸化チタンの各
粉末を、Ba0O,: k120. : Tie□= 
1.0: 2.0 : 6〜1.4 : 2.8 : 
5.2のモル比割合の混1 ′ 、Ba’マ、a ”2,8 Tis、20115であっ
た。
Example 3. 8ax (AlyTi2) 80.6 (x = 1.0 to 1.4, y = 2x, z = 8-y) Production of crystalline powder Each powder of barium carbonate, aluminum oxide, and titanium oxide was mixed with Ba0O ,: k120. : Tie□=
1.0: 2.0: 6-1.4: 2.8:
It was a mixture of 1', Ba'ma, a''2,8 Tis, 20115 with a molar ratio of 5.2.

、・1、ジ )−:、)−3お、Al2O3の代りにFe2O3+ 
0r20. 、 Ta20xを使用した場合も同様にオ
クトチタン酸塩結晶質粉体が得られた。
,・1, di)-:,)-3, Fe2O3+ instead of Al2O3
0r20. , Ta20x was used to similarly obtain octotitanate crystalline powder.

実施例4− Bax(MgyTiz)6016 (ただ
し、x = 1.0〜1.4、V = 1.0〜1.4
、z=s−y)結晶質粉体の製造 炭酸バリウム、炭酸マグネシウムおよび酸化チp7の各
粉末を、BaGO,: Mg(EO,: Tie2= 
1.0: 1.0 : 7.0〜1.4 : 1.4 
: 6.6のモル比割合の混合物を出発原料とし、実施
例1と同様にして焼成′した。得られた結晶体の組成は
BaMgTi70,6〜Ba1.4 Mg1.4 ”6
.6016であった。
Example 4 - Bax (MgyTiz) 6016 (where x = 1.0-1.4, V = 1.0-1.4
, z=s-y) Production of crystalline powder Barium carbonate, magnesium carbonate and chip oxide p7 powders were converted into BaGO,: Mg(EO,: Tie2=
1.0: 1.0: 7.0~1.4: 1.4
: A mixture having a molar ratio of 6.6 was used as a starting material and calcined in the same manner as in Example 1. The composition of the obtained crystal is BaMgTi70,6~Ba1.4 Mg1.4''6
.. It was 6016.

実施例5.Kx(AlyTi2)80,6(ただし、x
=y=1.5〜2.0、z=8−’/)繊維状結晶体の
製造炭酸カリウム、酸化アルミニウムおよび酸化チタン
の各粉末をに2C03:Al2O3:Ti02=2:2
:3のモル比割合の混合物に、フラックスとしてモリー
ブデン酸カリウムと酸化モリブデンの各粉末を170.
5のモル割合の混合物を、20F80〜30ニア0のモ
ル%割合で混合した。得られた混合特約゛□’12or
を100−白金るつぼに充填し、炭化珪素発熱体電気炉
で1300℃に加熱し、約1〜20時間保持した。その
後、950℃付近まで4〜8℃24の速度で徐冷した。
Example 5. Kx (AlyTi2) 80,6 (however, x
=y=1.5-2.0, z=8-'/) Production of fibrous crystals Potassium carbonate, aluminum oxide, and titanium oxide powders were added to 2C03:Al2O3:Ti02=2:2
To a mixture with a molar ratio of: 3:3, 170% of each powder of potassium molybdate and molybdenum oxide was added as a flux.
A mixture with a molar percentage of 20F80-30Nia0 was mixed with a molar percentage of 20F80-30Nia0. The resulting mixed special contract゛□'12or
was filled in a 100-Platinum crucible, heated to 1300° C. in a silicon carbide heating element electric furnace, and held for about 1 to 20 hours. Thereafter, it was slowly cooled to around 950°C at a rate of 4 to 8°C.

徐冷後炉から取出し、室温まで放冷した後、温水でフラ
ックスを溶解して結晶を分離した。得られた結晶は、軸
方向へ伸長した繊維状で、長さ1.0〜10.0111
111であった。その結晶組成はに1.6 A’1.6
 Ti6.4016であった。
After slow cooling, the mixture was taken out of the furnace, allowed to cool to room temperature, and the crystals were separated by dissolving the flux with hot water. The obtained crystals have a fibrous shape extending in the axial direction and have a length of 1.0 to 10.0111 mm.
It was 111. Its crystal composition is 1.6 A'1.6
Ti was 6.4016.

実施例6− Kx(MgyTiz)ao+6(ただし、
x=1.5〜2.0、y=功、z = 8− V/2 
)繊維状結晶体の・製造 炭酸カリウム、炭酸マグネシウムおよび酸化チp7(7
)各粉末を、K2O05: Mg00. : Tie2
= 3 :1:3のモル比割合の混合物を出発原料とし
、実施例5と同様にして繊維状結晶体を製造した。得ら
れた結晶体はC軸方向へ伸長した繊維長1.0〜1o、
ommのものであった。その組成はに1.6Mgo、8
Ti7,2016であった。
Example 6 - Kx (MgyTiz) ao+6 (but
x=1.5~2.0, y=gong, z=8-V/2
) Production of fibrous crystals Potassium carbonate, magnesium carbonate and oxide chip p7 (7
) Each powder was converted into K2O05: Mg00. : Tie2
A fibrous crystalline material was produced in the same manner as in Example 5 using a mixture having a molar ratio of 3:1:3 as a starting material. The obtained crystal has a fiber length of 1.0 to 1o extending in the C-axis direction,
It was from omm. Its composition is 1.6 Mgo, 8
It was Ti7, 2016.

、::°″\ 炭酸バリウム、酸化アルミニウムおよび二酸化チp7の
各粉末を、BaCO3:A12o、:Ti02=2:2
:3のモル比割合の混合物を出発原料とした。
, ::°″\ Each powder of barium carbonate, aluminum oxide and chip p7 was mixed with BaCO3:A12o, :Ti02=2:2
A mixture having a molar ratio of :3 was used as the starting material.

フラックスとしてモリブデン酸カリウムと酸化モリブデ
ンの各粉末を1=0゜5のモル比割合の混合物を使用し
た。出発原料ニアラックス=20:80〜30 : 7
0のモル%の割合で混合し、これを実施例1と同様にし
て結晶を得た。得られた結晶はC軸方向へ伸長した繊維
状物で、長さは1.0〜J1i)、□mmであシ、その
組成はBa(,8A/1.6Ti6.40.6であった
。々お、Al2O3の代りにMgOO3を用いた場合も
同様にオクトチタン酸塩の繊維状結晶体が得られた。
As a flux, a mixture of potassium molybdate powder and molybdenum oxide powder was used in a molar ratio of 1=0.5. Starting material near lux=20:80~30:7
Crystals were obtained in the same manner as in Example 1. The obtained crystals were fibrous substances extending in the C-axis direction, the length was 1.0~J1i), □mm, and the composition was Ba(,8A/1.6Ti6.40.6). Furthermore, when MgOO3 was used instead of Al2O3, fibrous crystals of octotitanate were similarly obtained.

実施例8゜ 実施例7と同様にしてBa1.4A’2,8 Ti5.
2016の組成の繊維状結晶体(以下本発明の結晶体と
言う)・ 1( られる。
Example 8゜Ba1.4A'2,8 Ti5.
Fibrous crystalline material having a composition of 2016 (hereinafter referred to as the crystalline material of the present invention) 1 (hereinafter referred to as the crystalline material of the present invention).

K= ρ ・ C・ α ここで、ρは試料の外形寸法と重量よシ算出し、また、
Cとαはレーサーフラッシュ法によって測定した。
K= ρ・C・α Here, ρ is calculated based on the external dimensions and weight of the sample, and
C and α were measured by the racer flash method.

本発明の結晶体は厚さ1.964mm、外径8.10鴎
の円板状物で、密度42!M’−cIn−3のものを使
用した0 なお、比較としてに2.oA12.。Ti6o、6の厚
さ1.921闘、外径7.8011111の円板状物で
、密度3.429・ニー3のものを使用した。これらの
円板状試料の一方の面にクロメル−コンスクン熱電対を
接着し、他のレーザー照射面には黒鉛微粒子を塗布した
The crystal of the present invention is a disc-shaped object with a thickness of 1.964 mm, an outer diameter of 8.10 mm, and a density of 42! For comparison, 2. oA12. . A disk-shaped material made of Ti6o, 6 with a thickness of 1.921mm, an outer diameter of 7.8011111mm, and a density of 3.429mm was used. A Chromel-Conskun thermocouple was adhered to one side of these disk-shaped samples, and graphite fine particles were applied to the other laser-irradiated surface.

比熱容量を測定する際にはアルミナ単結晶を基準試料と
した。
When measuring the specific heat capacity, an alumina single crystal was used as a reference sample.

それぞれの試料の室温および1000 Kにおける比熱
容量C1熱拡散率α、および熱伝導率Kを測定−した結
果は次の通シであった。
The specific heat capacity C1 thermal diffusivity α and thermal conductivity K of each sample at room temperature and 1000 K were measured, and the results were as follows.

せ ¥ この結果から、本発明の結晶体は大チタン酸カリウムよ
りも低い熱伝導率を示し、約30%以上低い値を有する
ことが明らかである。また室温よシも100OKの方が
低熱伝導率を示し、高温下で断熱性に優れた特性を示す
ものである。
From these results, it is clear that the crystalline material of the present invention exhibits a thermal conductivity lower than that of large potassium titanate, and has a value lower by about 30% or more. Furthermore, 100OK exhibits lower thermal conductivity than room temperature, and exhibits excellent heat insulation properties at high temperatures.

発明の効果 本発明のオクトチタン酸塩からなる断熱材料の融点はセ
ラミックス中で最も断熱性に優れている1:1 ン酸カリウムよりも小さく、断熱性も極めて優れたもの
である。
Effects of the Invention The melting point of the heat insulating material made of the octotitanate of the present invention is lower than that of 1:1 potassium phosphate, which has the best heat insulating properties among ceramics, and has extremely excellent heat insulating properties.

Claims (1)

【特許請求の範囲】 1、一般式 AX(ByTi2)80,6、(ただし、
式中Aはアルカリ金属I Ba IGuおよびNiから
選ばれた金属、Bは即。 二価遷移金属+ A’ r Fer CFおよびGaか
ら選ばれた金属、Xは0.−5〜3、yは0.5〜3.
2は5〜8を表わす)で示されるホーランダイト型構造
を有するオクトチタン酸塩からなる耐熱性断熱材料。
[Claims] 1. General formula AX(ByTi2)80,6, (however,
In the formula, A is a metal selected from alkali metals I Ba IGu and Ni, and B is a metal selected from the group consisting of alkali metals I Ba IGu and Ni; Divalent transition metal + A' r Fer A metal selected from CF and Ga, X is 0. -5 to 3, y is 0.5 to 3.
2 represents 5 to 8) A heat-resistant heat insulating material made of an octotitanate having a hollandite structure.
JP11646083A 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate Granted JPS6011228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11646083A JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11646083A JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Publications (2)

Publication Number Publication Date
JPS6011228A true JPS6011228A (en) 1985-01-21
JPS6241176B2 JPS6241176B2 (en) 1987-09-01

Family

ID=14687659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11646083A Granted JPS6011228A (en) 1983-06-28 1983-06-28 Heat-resistant heat-insulating material of octotitanate

Country Status (1)

Country Link
JP (1) JPS6011228A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210026A (en) * 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Fibrous compound having orthorhombic tunnel structure expressed by a1-xti2+xm5-xo12 and its production
JPH02150695U (en) * 1989-05-24 1990-12-27
JPH0333219A (en) * 1989-06-27 1991-02-13 Natl Inst For Res In Inorg Mater Production of fiber or film of barium titanogallate
FR2683373A1 (en) * 1991-10-31 1993-05-07 Pechiney Uranium NUCLEAR FUEL ELEMENTS COMPRISING AN OXIDE-BASED FISSION PRODUCTS TRAP.
US8966926B2 (en) 2008-05-08 2015-03-03 Whirlpool Corporation Refrigerator with easy access drawer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011581A1 (en) * 2004-07-27 2006-02-02 Sumitomo Chemical Company, Limited Thermoelectric conversion material and process for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164015A (en) * 1980-05-16 1981-12-16 Natl Inst For Res In Inorg Mater Cation solid electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164015A (en) * 1980-05-16 1981-12-16 Natl Inst For Res In Inorg Mater Cation solid electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210026A (en) * 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Fibrous compound having orthorhombic tunnel structure expressed by a1-xti2+xm5-xo12 and its production
JPH0321485B2 (en) * 1987-02-24 1991-03-22 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
JPH02150695U (en) * 1989-05-24 1990-12-27
JPH0333219A (en) * 1989-06-27 1991-02-13 Natl Inst For Res In Inorg Mater Production of fiber or film of barium titanogallate
JPH0478736B2 (en) * 1989-06-27 1992-12-14 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
FR2683373A1 (en) * 1991-10-31 1993-05-07 Pechiney Uranium NUCLEAR FUEL ELEMENTS COMPRISING AN OXIDE-BASED FISSION PRODUCTS TRAP.
US8966926B2 (en) 2008-05-08 2015-03-03 Whirlpool Corporation Refrigerator with easy access drawer

Also Published As

Publication number Publication date
JPS6241176B2 (en) 1987-09-01

Similar Documents

Publication Publication Date Title
US2776896A (en) Ceramic composition having thermal shock resistance
Harrison et al. High‐Temperature Zirconium Phosphates
US4142879A (en) Method for producing low expansion ceramics
JP3062497B1 (en) Method for producing flaky titanate
Hasegawa et al. Phase relations and crystallization of glass in the system PbO-GeO 2
Hauck Uranates (VI) and tungstates (VI) within the system Li2O UO3 WO3
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
US3342616A (en) Refractory with periclase-based stabilized solid solution
JP3867136B2 (en) Sodium cobalt oxide single crystal and method for producing the same
US2934443A (en) Impact resistant ceramic dielectric and method of making same
JPS6011227A (en) Manufacture of fibrous barium titanate having hollandite type structure
JPS6163529A (en) Production of titanium compound fiber
JPH0242771B2 (en)
US2060017A (en) Cast refractory and the process of manufacturing the same
JPH04275944A (en) Sealing material
JPS60259627A (en) Production of potassium hexatitanate fiber or its composite fiber
JPH09301737A (en) Monoclinic celsian-containing crystallized glass, glass having composition fit for its production and production
JPH0242772B2 (en)
JPH03137019A (en) Heat resistant and heat insulating material
JPH0242769B2 (en)
JPS61111961A (en) Manufacture of hydration-resistant high fineness magnesia sintered body
SU1155630A1 (en) Bismuth stannate-vanadate and method of obtaining same
Ahmad et al. Microstructure and thermophysical characteristics of PbTiO 3-based ceramics
CA1046240A (en) Method of making fibrous alkali titanate
JPH0159215B2 (en)