JPS6239706B2 - - Google Patents

Info

Publication number
JPS6239706B2
JPS6239706B2 JP55025815A JP2581580A JPS6239706B2 JP S6239706 B2 JPS6239706 B2 JP S6239706B2 JP 55025815 A JP55025815 A JP 55025815A JP 2581580 A JP2581580 A JP 2581580A JP S6239706 B2 JPS6239706 B2 JP S6239706B2
Authority
JP
Japan
Prior art keywords
probe
weld line
output
flaw detection
welded pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55025815A
Other languages
Japanese (ja)
Other versions
JPS56122953A (en
Inventor
Hiroaki Kondo
Takayoshi Kawano
Kenichi Ooriki
Giichi Takazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kawasaki Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP2581580A priority Critical patent/JPS56122953A/en
Publication of JPS56122953A publication Critical patent/JPS56122953A/en
Publication of JPS6239706B2 publication Critical patent/JPS6239706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は垂直探触子と斜角探触子とを用いて
溶接管を探傷する超音波探傷装置に関し、詳しく
は接触子の超音波ビーム走査位置によつてそれぞ
れの欠陥判定レベルを変える機能を備えた溶接管
の超音波探傷装置を提供するものである。
[Detailed Description of the Invention] The present invention relates to an ultrasonic flaw detection device that detects flaws in welded pipes using a vertical probe and an oblique probe. The present invention provides an ultrasonic flaw detection device for welded pipes that has a function of changing the defect determination level.

電縫管等、管長方向に直接溶接される鋼管は一
般にコイル状に巻かれた帯状鋼帯を巻き解き、そ
れを造管ラインに連続的に搬送させ、造管機で丸
形に曲げて継目部を高周波溶接することにより自
動的に製造される。
For steel pipes such as ERW pipes that are directly welded in the longitudinal direction of the pipe, the steel strip is generally uncoiled into a coil, conveyed continuously to a pipe-making line, bent into a round shape by a pipe-making machine, and then joined. Automatically manufactured by high frequency welding of parts.

ところで上記電縫管の品質管理における超音波
探傷の普及は著しく製品の品質保証に不可欠のも
のとなつて来ており、電縫管の品質管理のために
は溶接線部の斜角超音波探傷による溶接欠陥の探
傷と電縫鋼管の母材部の垂直超音探傷によるラミ
ネーシヨン欠陥の探傷とが必要である。
Incidentally, the spread of ultrasonic flaw detection in the quality control of ERW pipes has become extremely popular, and it has become essential for product quality assurance. It is necessary to detect welding defects by using ERW and to detect lamination defects by vertical ultrasonic testing of the base material of ERW steel pipes.

従来、電縫管の超音波探傷法としては母材部を
造管前の鋼帯状態で垂直探触子で探傷し、溶接部
は電縫管を回転させずに長手方向に移動させて斜
角探触子を溶接線に傲わせながら探傷する第1の
探傷方法と、垂直探触子と斜角探触子を溶接後の
電縫管の周りに回転させるとともに電縫管を回転
させずに長手方向に送ることにより母材部と溶接
線をスパイラル状に走査探傷する第2の探傷方法
がある。
Conventionally, in the ultrasonic flaw detection method for ERW pipes, the base material is tested using a vertical probe in the state of the steel strip before pipe making, and the welded part is detected obliquely by moving the ERW pipe in the longitudinal direction without rotating it. The first flaw detection method involves placing the angle probe over the welding line for flaw detection, and the other involves rotating the vertical probe and angle probe around the welded ERW tube without rotating the ERW tube. There is a second flaw detection method in which the base metal part and the weld line are scanned in a spiral manner by sending the weld in the longitudinal direction.

しかしながら上記第1の探傷法では母材部を探
傷する超音波探傷機と溶接部を探傷する超音波探
傷機が造管ライン上の別の場所に必要とするため
設備価格、探傷機の設置スペースが多大となる。
また造管前の母材部はコイル巻き解きの板材であ
るため板の曲りや振動が大大きく精密な探傷を行
なうためには板の性状改善のためのピンチロール
等の各種設備が必要なる。一方第2の探傷法では
造管後の電縫管を垂直探触子と斜角探触子の回転
によりスパイラル状に走査探傷する接触子回転型
の探傷機一台で探傷可能であるが、垂直探触子に
よる母材部探傷においては溶接部の余盛形状や余
盛カツト面の凹凸によつて溶接線部をも探傷する
という誤検出の恐れがあつた。また斜角探触子に
よる溶接線探傷においては母材部に微少介在物等
が存在するとその微少介在物等をも検出するため
の欠陥弁別能力を悪化させるという問題点があ
る。
However, in the first flaw detection method described above, an ultrasonic flaw detector to detect flaws in the base material and an ultrasonic flaw detector to detect flaws in the welded part are required at different locations on the pipe production line, which reduces the equipment cost and installation space for the flaw detector. becomes large.
Furthermore, since the base material before pipe making is a plate material that has been uncoiled, the plate is subject to significant bending and vibration, and in order to perform precise flaw detection, various equipment such as pinch rolls is required to improve the properties of the plate. On the other hand, in the second flaw detection method, flaws can be detected using a single rotary contact type flaw detector that scans the ERW pipe after tube formation in a spiral pattern by rotating a vertical probe and an angle probe. When detecting flaws in the base metal using a vertical probe, there is a risk of erroneous detection of flaws in the weld line due to the shape of the weld and the unevenness of the cut surface of the weld. Furthermore, in weld line flaw detection using an angle probe, there is a problem in that the presence of minute inclusions in the base metal deteriorates the defect discrimination ability for detecting even the minute inclusions.

従つて良品も不良品として選別され、再検査の
ための設備および人員を必要とし、製造効率の悪
化を招くという問題があつた。
Therefore, good products are also sorted out as defective products, requiring equipment and personnel for re-inspection, resulting in a problem of deterioration of manufacturing efficiency.

この発明はこのような従来の問題点を改善する
ためになされたもので、その特微とするところは
探触子回転型の超音波探傷装置において、垂直探
触子と斜角探触子の超音波ビーム走査位置をそれ
ぞれ検出する検出器と、溶接管の溶接線の位置を
検出する検出器と、上記二つの検出器の出力によ
り上記垂直探触子および斜角探触子の超音波ビー
ム走査位置が溶接管の母材部かあるいは溶接線に
あるかを判定する判定器とを設け上記判定器の出
力に基づいて母材部と溶接線の欠陥判定レベルを
それぞれ変えるようにしたところにある。
This invention was made to improve these conventional problems, and its feature is that in a rotating probe type ultrasonic flaw detection device, a vertical probe and an oblique probe can be used. A detector that detects the ultrasonic beam scanning position, a detector that detects the position of the weld line of the welded pipe, and the output of the two detectors determines the ultrasonic beam of the vertical probe and the angle probe. A determination device for determining whether the scanning position is in the base metal portion of the welded pipe or the weld line is provided, and the defect determination levels for the base metal portion and the weld line are changed respectively based on the output of the determination device. be.

以下この発明の一実施例を第1図〜第3図を用
いて詳述する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 3.

第1図aはこの発明の一実施例を示す溶接管の
超音波探傷装置の構成図、第1図bは溶接管と探
触子との関係を示す図である。
FIG. 1a is a block diagram of an ultrasonic flaw detection apparatus for a welded pipe showing an embodiment of the present invention, and FIG. 1b is a diagram showing the relationship between the welded pipe and a probe.

第1図a,bにおいて1は回転せずに矢印a方
向に送られる溶接管、2は溶接管1の母材、3は
溶接管の管長方向に有する溶接線、4はその中空
部に上記溶接管1が通過し、固定部材5の周りを
ベアリング6を介して回転する回転機構で、この
回転機構には垂直探触子7と斜角探触子8が所定
の間隔で取付けられ、探触子7,8が溶接管1の
周りを矢印9の方向に回転できるようにないてい
る。上記垂直探触子7は点線イに示すように溶接
管1内に垂直に超音波ビームを入射させて母材部
のラミネーシヨン欠陥10を検出し、また上記斜
角探触子8は点線口に示すように溶接管1内に斜
角に超音波ビームを入射させて溶接不良等の漕状
欠陥11を検出するようになつている。12は上
記固定部材5に取付けられた探触子回転角検出器
で、この検出器12は回転機構4に取付けられ、
かつ1周に1個の凸起と360個の歯車状の凸起を
もつた円板13と結合して探触子1回転毎にパル
スPを、また回転角1/360周毎にパルスP/360を
発生するようになつている。14は回転機構4に
取付けられ探触子と同様に溶接管1の周りを回転
して溶接線3の管周方向振れを検出する溶接管検
出器で、この検出器14は溶接線3上を走査して
いる間オンとなり出力15を発生する。なおこの
溶接線検出器14としては通常渦流検出器が用い
られる。16は探触子回転角検出器12の出力P
およびP/360と溶接線検出器14の出力15と
を入力して垂直探触子7と斜角探触子8それぞれ
の超音波ビームが母材部2を走査しているかまた
は溶接線を走査しているかによつてそれぞれの欠
陥判定レベルL,Nを2段階に切換えて出力する
欠陥判定レベル変換器である。またこの変換器1
6は溶接線検出器14と垂直探触子7および斜角
探触子8の管周位置の差異は回転角検出器12の
出力Pと1/360Pの計数により修正し、また上記
欠陥判定レベルの切換えは上記各探触子からの超
音波ビームが溶接線区間を走査するタイミングで
制御するようになつている。17は送信パルスを
回転トランス18を介して斜角探触子8へ供給す
るとともに上記斜角探触子8により検知された欠
陥エコー信号を回転トランス18を介して受信増
幅し、欠陥エコーの大きさに比例したアナログ出
力VLを発生する斜角探傷用の送受信器、19は
送信パルスを回転トランス18を介して垂直探触
子7へ供給するとともに上記垂直探触子7により
検知された欠陥エコー信号を回転トランス18を
介して受信増幅し、欠陥エコーの大きさに比例し
たアナログ出力VNを発生する垂直探傷用の送受
信器、20は斜角探傷用の送受信器17のアナロ
グ出力VLが欠陥判定レベルL以上のとき欠陥有
りと判定する斜角探傷用の欠陥レベル判定器、2
1は垂直探傷用の送受信器19のアナログ出力
VNが欠陥判定レベルN以上のとき欠陥有りと判
定する垂直探傷用の欠陥レベル判定器、22は上
記二つの欠陥レベル判定器20,2の出力を導入
して溶接管1の合否選別、欠陥位置のマーキング
および欠陥等の記録表示を行う処理部である。
In Figures 1a and b, 1 is a welded pipe that is sent in the direction of arrow a without rotating, 2 is the base material of the welded pipe 1, 3 is a weld line in the longitudinal direction of the welded pipe, and 4 is the hollow part of the welded pipe as described above. This is a rotating mechanism in which the welded tube 1 passes through and rotates around a fixed member 5 via a bearing 6. A vertical probe 7 and an angle probe 8 are attached at a predetermined interval to this rotating mechanism. The tentacles 7, 8 are arranged so as to be able to rotate around the welded pipe 1 in the direction of the arrow 9. The vertical probe 7 detects lamination defects 10 in the base material by vertically injecting an ultrasonic beam into the welded pipe 1 as shown by the dotted line A, and the oblique probe 8 As shown in FIG. 1, an ultrasonic beam is incident at an oblique angle into a welded pipe 1 to detect row-shaped defects 11 such as poor welding. 12 is a probe rotation angle detector attached to the fixed member 5, and this detector 12 is attached to the rotation mechanism 4,
It is combined with a disk 13 that has one protrusion per revolution and 360 gear-like protrusions to generate a pulse P every rotation of the probe, and a pulse P every 1/360 revolution of the rotation angle. /360. Reference numeral 14 denotes a welded pipe detector that is attached to the rotating mechanism 4 and rotates around the welded pipe 1 in the same way as a probe to detect the deflection of the welded line 3 in the pipe circumferential direction. It is turned on during scanning and generates output 15. Note that as this weld line detector 14, an eddy current detector is normally used. 16 is the output P of the probe rotation angle detector 12
Then input P/360 and the output 15 of the welding line detector 14 to check whether the ultrasonic beams of the vertical probe 7 and the angle probe 8 are scanning the base material 2 or scanning the welding line. This is a defect determination level converter that outputs defect determination levels L and N that are switched to two levels depending on whether the defect determination level L or N is being output. Also, this converter 1
6 corrects the difference in tube circumferential position between the welding line detector 14, the vertical probe 7, and the oblique angle probe 8 by counting the output P of the rotation angle detector 12 and 1/360P, and also adjusts the above defect judgment level. The switching is controlled at the timing when the ultrasonic beams from each of the probes scan the weld line section. 17 supplies transmission pulses to the bevel probe 8 via the rotary transformer 18, receives and amplifies the defect echo signal detected by the bevel probe 8 via the rotary transformer 18, and determines the magnitude of the defect echo. A transmitter/receiver 19 for angle angle flaw detection generates an analog output VL proportional to A transmitter/receiver for vertical flaw detection receives and amplifies the signal via a rotary transformer 18 and generates an analog output VN proportional to the size of the defect echo. 20 is a transmitter/receiver for oblique flaw detection where the analog output VL of the transmitter/receiver 17 is used for defect determination. Defect level determiner for angle angle flaw detection that determines that there is a defect when level L or higher, 2
1 is the analog output of the transceiver 19 for vertical flaw detection
A defect level determiner 22 for vertical flaw detection determines that there is a defect when VN is equal to or higher than the defect determination level N, and a defect level determiner 22 inputs the outputs of the two defect level determiners 20 and 2 to select pass/fail for the welded pipe 1 and determine the defect location. This is a processing unit that records and displays markings, defects, etc.

次に第1図aに示した欠陥判定レベル変換器1
6の具体的構成および動作について第2図および
第3図により説明する。
Next, the defect determination level converter 1 shown in FIG.
The specific configuration and operation of 6 will be explained with reference to FIGS. 2 and 3.

第2図はこの発明の特徴とする欠陥判定レベル
変換器16の一例を示すブロツク図、第3図は斜
角探触子8および垂直探触子7の超音波ビーム位
置と溶接線3の位置との関係を説明するための図
である。
FIG. 2 is a block diagram showing an example of the defect determination level converter 16 which is a feature of the present invention, and FIG. 3 is a block diagram showing the ultrasonic beam positions of the angle probe 8 and the vertical probe 7 and the position of the weld line 3. FIG.

第2図および第3図において回転角発生カウン
タ23は探触子回転角検出器12の出力パルス
PP/360を受け、出力パルスPによりカウンタを
零にリセツトした後、出力パルスP/360をカウ
ントして回転角検出器12の周位置基準の探触子
回転角信号Aを発生する。溶接線位置発生器24
は溶接線検出器14が第3図に示す溶接線の中心
B0点を検出したときに発するパルス信号15で
上記回転角発生カウンタ23の出力を入力し、再
び中心B0点を通過するまで記憶することにより
溶接線の管走行による管周方向の振れを検出する
ようになつている。加算器25および減算器26
は、上記溶接線位置発生器24の出力B0を入力
して溶接区間の両端位置B1,B2に相当する信号
を出力するもので第3図に示す様に溶接線の中心
B0に対する幅△,△の区間を溶接区間とす
る場合、上記加算器25はB0+△、減算器2
6はB0−△を演算してそれぞれB1,B2の位置
信号を発生するようになつている。第1の走査位
置発生器27は上記探触子回転信号Aを入力して
垂直探触子7からのビームの管周走査位置信号
ANを発生するもので、溶接線検出器14と垂直
探触子7との管周方向の位置を補正する機能をも
ち例えば第1図aの様に垂直探触子7と溶接線検
出器14が管周180度異なつた場合はAN=A+
180の加算を行なうようになつている。第2の走
査位置発生器28は上記探触子回転角信号Aを入
力して斜角探触子8からのビームの管周走査位置
信号ALを発生するものであり、例えば第1図a
に示す様に斜角探触子8と溶接線検出器14と同
一管周位置にある場合、第1図bに示した点線口
の様に欠陥11の位置と斜角探触子8の位置とは
管周角θだけ異なるのでA−θの減算を行なつて
走査位置信号ALを出力するようになつている。
In FIGS. 2 and 3, the rotation angle generation counter 23 indicates the output pulse of the probe rotation angle detector 12.
After receiving PP/360, the counter is reset to zero by the output pulse P, and then the output pulse P/360 is counted to generate a probe rotation angle signal A based on the circumferential position of the rotation angle detector 12. Weld line position generator 24
is the center of the weld line shown in FIG. 3 by the weld line detector 14.
By inputting the output of the rotation angle generation counter 23 using the pulse signal 15 generated when the B 0 point is detected and storing it until the center passes through the center B 0 point again, the deflection in the circumferential direction of the pipe due to the pipe running of the weld line can be reduced. It is now being detected. Adder 25 and subtracter 26
is a device that inputs the output B 0 of the welding line position generator 24 and outputs signals corresponding to both end positions B 1 and B 2 of the welding section, and as shown in FIG.
When the area of widths △ 1 and △ 2 with respect to B 0 is defined as a welding area, the adder 25 has B 0 + △ 2 and the subtracter 2
6 calculates B 0 -Δ1 and generates position signals B 1 and B 2 , respectively. The first scanning position generator 27 inputs the probe rotation signal A and generates a circumferential scanning position signal of the beam from the vertical probe 7.
It generates AN and has a function to correct the position of the weld line detector 14 and the vertical probe 7 in the tube circumferential direction. If the pipe circumference differs by 180 degrees, AN=A+
It is designed to add 180. The second scanning position generator 28 receives the probe rotation angle signal A and generates a circumferential scanning position signal AL of the beam from the angle probe 8. For example, as shown in FIG.
When the bevel probe 8 and the weld line detector 14 are located at the same circumferential position as shown in FIG. Since the angle θ differs from the angle θ, the scanning position signal AL is output by subtracting A−θ.

第1の比較器30は加算器25の出力B2と第
1の走査位置発生器27の出力ANとを比較し、
その比較結果がAN<B2のときのみHighレベル
(まさたはLOWレベル)の信号を第1のアンド回
路34に出力し、また第2の比較器31は減算器
26の出力B1と第1の走査位置発生器27の出
力ANとを比較し、その比較結果がAN>B1のとき
Highレベル(またはLOWレベル)の信号を第1
のアンド回路34に出力するようになつている。
第1のアンド回路34は上記第1および第2の比
較器30の出力が共にHighレベル(またはLOW
レベル)すなわちB1<AN<B2のときゲートを開
きHighレベル(またはLOWレベル)の信号を出
力して第1のスイツチS1を母材部用判定レベル発
生器36側から溶接部用判定レベル発生器37側
へ切換えるようにしている。
The first comparator 30 compares the output B 2 of the adder 25 with the output AN of the first scanning position generator 27;
Only when the comparison result is AN< B2 , a high level (or low level) signal is output to the first AND circuit 34, and the second comparator 31 outputs the output B1 of the subtracter 26 and the 1 and the output AN of the scanning position generator 27, and when the comparison result is AN>B 1
High level (or LOW level) signal is the first
The output signal is output to an AND circuit 34.
The first AND circuit 34 operates so that the outputs of the first and second comparators 30 are both at High level (or Low level).
level), that is, when B 1 < AN < B 2 , the gate is opened and a high level (or low level) signal is output, and the first switch S 1 is used to determine the welding part from the base metal determination level generator 36 side. The switch is made to the level generator 37 side.

第3の比較器32は第2の走査位置発生器28
の出力ALと加算器25の出力B2とを比較し、ま
た第4の比較器33は第2の走基位置発生器28
の出力ALと減算器26の出力B1とを比較してそ
れぞれの比較結果がAL<B2、AL>B1のとき
Highレベル(またはLOWレベル)の信号を第2
のアンド回路35へ出力するようになつている。
The third comparator 32 is connected to the second scan position generator 28
The output AL of the adder 25 is compared with the output B2 of the adder 25, and the fourth comparator 33 compares the output AL of the adder 25 with the output B2 of the adder 25.
When the output AL of the subtracter 26 is compared with the output B 1 of the subtracter 26, and the respective comparison results are AL<B 2 and AL>B 1.
High level (or LOW level) signal to the second
The output signal is output to an AND circuit 35.

この第2のアンド回路35は上記第3および第
4の比較器32,33の出力が共にHighレベル
(またはLOWレベル)すなわちB1<AL<B2のと
きゲートを開きHighレベル(またはLOWレベ
ル)の信号を第2のスイツチS2へ出力して第2の
スイツチS2を母材部用判定レベル発生器38側か
ら溶接部用判定レベル発生器39側へ切換えるよ
うにしている。
This second AND circuit 35 opens the gate when the outputs of the third and fourth comparators 32 and 33 are both at High level (or Low level), that is, B 1 < AL < B 2 . ) is output to the second switch S 2 to switch the second switch S 2 from the base metal determination level generator 38 side to the weld zone determination level generator 39 side.

上記第1および第2のスイツチS1,S2は通常母
材部用判定レベル発生器36,38側に接続され
ており、上記第1および第2のアンド回路34,
35の出力により切換制御されて判定レベル信号
LNをそれぞれ欠陥レベル判定器20,21へ出
力するようにしている。
The first and second switches S 1 and S 2 are normally connected to the base metal judgment level generators 36 and 38, and the first and second AND circuits 34,
The judgment level signal is controlled by the output of 35.
LN is output to defect level determiners 20 and 21, respectively.

なおここで垂直探傷における溶接部の欠陥判定
レベルは溶接余盛等による凹凸で誤動作する恐れ
のない高いレベルに設定されまた斜角探傷におけ
る母材部の欠陥判定レベルは製品質上無害な欠陥
エコーを検出しない高いレベルに設定される。
The defect determination level of the welded part in vertical flaw detection is set to a high level that does not cause malfunction due to irregularities caused by weld overfill, etc., and the defect determination level of the base metal part in oblique flaw detection is set to a high level that does not cause malfunction due to irregularities caused by welding excess. is set to a high level that does not detect it.

以上のようにこの発明の超音波探傷装置は垂直
探触子および斜角探触子の超音波ビームが溶線線
または溶接線を除く母材部を走査しているかによ
つて欠陥判定レベルを変える機能を備えているの
で、垂直探触子によつて得られる信号処理では溶
接線の欠陥データを、また斜角探触によつて得ら
れる信号処理では溶接線を除く母材部の欠陥デー
タをそれぞれマスクすることができる。従つて垂
直探傷においては溶接線をマスクすることによつ
て溶接線での形状変化による誤検出がなくなり、
また斜角探傷においては溶接線を除く母材部をマ
スクすることによつて母材部の微少介在物等が検
出されなくなるので効率の良い探傷が可能とな
る。
As described above, the ultrasonic flaw detection device of the present invention changes the defect determination level depending on whether the ultrasonic beams of the vertical probe and the oblique probe scan the melt line or the base material excluding the weld line. Since the signal processing obtained by the vertical probe can be used to collect defect data on the weld line, the signal processing obtained by the oblique probe can be used to collect defect data on the base material excluding the weld line. Each can be masked. Therefore, by masking the weld line during vertical flaw detection, false detections due to shape changes at the weld line can be eliminated.
In addition, in oblique flaw detection, by masking the base metal except for the weld line, minute inclusions in the base metal are not detected, allowing efficient flaw detection.

なお上記実施例では溶接線の位置を検出する方
法として例えば渦流検出器を探触子と一体の回転
位置に設けておき、溶接管の周りを回転しながら
溶接線の位置を検出するようになつているが、こ
の発明はこれに限るものではなく例えば垂直探触
子の外表面エコーによる溶接線凸起を検出する方
法等種々の方法がある。
In the above embodiment, as a method for detecting the position of the weld line, for example, an eddy current detector is provided at a rotating position integral with the probe, and the position of the weld line is detected while rotating around the weld pipe. However, the present invention is not limited to this, and there are various methods including, for example, a method of detecting a weld line protrusion using an outer surface echo of a vertical probe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す溶接管の超
音波探傷装置の構成図、第2図はこの発明の特微
とする欠陥判定レベル変換器を示す構成図、第3
図は溶接線と探触子の位置関係を説明するための
図である。 図において1は溶接管、2は母材部、3は溶接
線、4は回転機構、7は垂直探触子、8は斜角探
触子、12は探触子回転角検出器、14は溶接線
検出器、16は欠陥判定レベル変換器、20は斜
角探傷用の欠陥レベル判定器、21は垂直探傷用
の欠陥レベル判定器である。なお、図中同一ある
いは相当部分には同一符号を付して示してある。
Fig. 1 is a block diagram of an ultrasonic flaw detection device for welded pipes showing an embodiment of the present invention, Fig. 2 is a block diagram showing a defect judgment level converter which is a feature of the present invention, and Fig.
The figure is a diagram for explaining the positional relationship between the weld line and the probe. In the figure, 1 is a welded pipe, 2 is a base metal part, 3 is a weld line, 4 is a rotation mechanism, 7 is a vertical probe, 8 is an oblique angle probe, 12 is a probe rotation angle detector, and 14 is a 16 is a defect determination level converter; 20 is a defect level determiner for oblique flaw detection; and 21 is a defect level determiner for vertical flaw detection. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 回転せずに長手方向に送られる溶接管の周り
を回転する回転機構に設けられた垂直探触子およ
び斜角探触子によつて溶接管をスパイラル状に走
査するようにした溶接管の超音波探傷装置におい
て、上記溶接管の溶接線位置を検出する第1の検
出手段と、上記垂直探触子および上記斜角探触子
の回転角を検出して溶接管に対する超音波ビーム
位置を検出する第2の検出手段と、上記第1およ
び第2の検出手段の出力に基づいて上記垂直探触
子および斜角探触子それぞれの超音波ビームが溶
接線、あるいは母材部を走査しているか否かを判
定する判定手段と、上記判定手段の出力に基づい
て溶接線と母材部の欠陥判定レベルをそれぞれ異
なるレベルに切換える手段とを備え、垂直探触子
によつて得られる信号処理では溶接線の欠陥デー
タを、また斜角探触子によつて得られる信号処理
では母材部の欠陥データをそれぞれマスクして行
なうようにしたことを特徴とする溶接管の超音波
探傷装置。
1. A welded pipe in which the welded pipe is scanned in a spiral manner by a vertical probe and an oblique probe installed in a rotating mechanism that rotates around the welded pipe that is fed in the longitudinal direction without rotating. The ultrasonic flaw detection apparatus includes a first detection means for detecting the weld line position of the welded pipe, and a rotation angle of the vertical probe and the oblique probe to detect the ultrasonic beam position with respect to the welded pipe. The ultrasonic beams of the vertical probe and the oblique probe scan the weld line or the base material based on the outputs of the second detection means and the first and second detection means. a signal obtained by a vertical probe; An ultrasonic flaw detection device for welded pipes, characterized in that defect data of the weld line is masked during processing, and defect data of the base metal portion is masked during signal processing obtained by an angle probe. .
JP2581580A 1980-02-29 1980-02-29 Ultrasonic defectoscope for welded pipe Granted JPS56122953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2581580A JPS56122953A (en) 1980-02-29 1980-02-29 Ultrasonic defectoscope for welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2581580A JPS56122953A (en) 1980-02-29 1980-02-29 Ultrasonic defectoscope for welded pipe

Publications (2)

Publication Number Publication Date
JPS56122953A JPS56122953A (en) 1981-09-26
JPS6239706B2 true JPS6239706B2 (en) 1987-08-25

Family

ID=12176355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2581580A Granted JPS56122953A (en) 1980-02-29 1980-02-29 Ultrasonic defectoscope for welded pipe

Country Status (1)

Country Link
JP (1) JPS56122953A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231784A (en) * 1975-09-05 1977-03-10 Nippon Steel Corp Ultrasonic flaw detection method for welded steel pipe ends
JPS54110890A (en) * 1978-02-17 1979-08-30 Sumitomo Metal Ind Ultrasonic flaw detector for welded steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231784A (en) * 1975-09-05 1977-03-10 Nippon Steel Corp Ultrasonic flaw detection method for welded steel pipe ends
JPS54110890A (en) * 1978-02-17 1979-08-30 Sumitomo Metal Ind Ultrasonic flaw detector for welded steel pipe

Also Published As

Publication number Publication date
JPS56122953A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US4144766A (en) Apparatus for the in-situ detection and location of flaws in welds
US5763786A (en) Automated mill roll inspection system
US5113697A (en) Process and apparatus for detecting discontinuities on long workpieces
JPH02120659A (en) Non-destructive dimensions and defect inspection for thin tube weld part
US4665734A (en) Method and installation for selective detection of defects in a workpiece
US3873830A (en) Method and apparatus for monitoring the quality of welds in seamed tubes
JPS6239706B2 (en)
JP2985740B2 (en) Pipe end detector for automatic flaw detector
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JPS6342744B2 (en)
JP2953301B2 (en) Ultrasonic flaw detection method and device
JP3916603B2 (en) Ultrasonic oblique angle flaw detection method and apparatus
JPH04274754A (en) Ultrasonic flaw detector for turbine rotor blade base
JPS594663B2 (en) Non-destructive material inspection method for fin tubes using ultrasound
JP3017346B2 (en) Inspection method for nozzle inner surface flaw
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPH06304649A (en) Method and device for detecting welding position of uo steel pipe
JPS63256851A (en) Ultrasonic flaw detector
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head
JP2004085478A (en) Ultrasonic flaw detection method and device
JPS59120952A (en) Flaw detector for copying welded steel pipe
SU1298647A1 (en) Method of ultrasonic checking of article weld
JPS6410777B2 (en)
JPS61173152A (en) Method for discriminating defect of electric welded steel pipe