JP3017346B2 - Inspection method for nozzle inner surface flaw - Google Patents

Inspection method for nozzle inner surface flaw

Info

Publication number
JP3017346B2
JP3017346B2 JP3339143A JP33914391A JP3017346B2 JP 3017346 B2 JP3017346 B2 JP 3017346B2 JP 3339143 A JP3339143 A JP 3339143A JP 33914391 A JP33914391 A JP 33914391A JP 3017346 B2 JP3017346 B2 JP 3017346B2
Authority
JP
Japan
Prior art keywords
nozzle
probe
ultrasonic
angle
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3339143A
Other languages
Japanese (ja)
Other versions
JPH05172790A (en
Inventor
節夫 藤村
雅晴 諸永
達成 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3339143A priority Critical patent/JP3017346B2/en
Publication of JPH05172790A publication Critical patent/JPH05172790A/en
Application granted granted Critical
Publication of JP3017346B2 publication Critical patent/JP3017346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超音波探傷方法に関し、
特に管台の穴の内面の欠陥の探傷を行うに好適な超音波
探傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection method ,
In particular, the present invention relates to an ultrasonic flaw detection method suitable for flaw detection of a defect on an inner surface of a nozzle hole.

【0002】[0002]

【従来の技術】従来の超音波探傷装置は、図7に示すよ
うに固定角探触子1’と探傷装置2’とから構成されて
いる。構造物の内部欠陥を探傷する場合には板厚tの2
倍程度の探触子走査スペ−スが必要であった。そのた
め、図8に示すように、管台ピッチが狭く、探触子の走
査するスペ−スが確保できない管台部において内面欠陥
検出の目的で超音波探傷装置を使用することは不可能で
あった。なお、従来技術の例が特公平2−15821号
公報に記載されている。
2. Description of the Related Art As shown in FIG. 7, a conventional ultrasonic flaw detector comprises a fixed angle probe 1 'and a flaw detector 2'. When detecting flaws inside a structure, a thickness t of 2
About twice as much probe scanning space was required. For this reason, as shown in FIG. 8, it is impossible to use the ultrasonic flaw detector for the purpose of detecting an inner surface defect in a nozzle portion where the nozzle pitch is narrow and the space scanned by the probe cannot be secured. Was. An example of the prior art is described in Japanese Patent Publication No. 15821/1990.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術は、
管台の内面欠陥の検出について配慮がなされておらず、
超音波探傷が管台の内面欠陥の検出に適用できないとい
う問題点があった。
The prior art described above is
No consideration has been given to the detection of inner surface defects in the nozzle,
There is a problem that ultrasonic flaw detection cannot be applied to the detection of an inner surface defect of a nozzle.

【0004】本発明は、上記した問題点を解決すること
を目的としており、電子セクタスキャン一点入射型探触
子を管台の穴の中心から管台の穴ピッチと管寄の厚さと
によって定まる所定の距離で、かつ管台の穴エッジの接
線方向に対して所定の角度でセットして形状エコ−と欠
陥エコ−との識別を容易とし、触子位置検出手段と超
音波ビ−ムの屈折角とビ−ム路程を演算する回路とゲ−
ト範囲内のエコ−信号のみを出力させる手段とビ−ム路
程/振幅自動補正回路とを有し、欠陥位置推定精度の向
上、欠陥定量精度を向上させた装置により、管台内面疵
検査に超音波探傷法を適用するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems. An electron sector scan single-point incidence probe is determined by the hole pitch of the nozzle from the center of the hole of the nozzle and the thickness of the nozzle. a predetermined distance, and the shape is set at a predetermined angle with respect to the tangential direction of the hole edge of the nozzle stub Eco - defect Eco - identification and to facilitate, probe position detecting means and the ultrasonic bi - beam Circuit for calculating the refraction angle of the beam and the beam path
It has a means to output only the eco-signal within the range and a beam path / amplitude automatic correction circuit. The application of ultrasonic flaw detection.

【0005】[0005]

【課題を解決するための手段】本発明によれば、電子セ
クタスキャン一点入射型探触子を用いる縦波・横波併用
探傷法にして、該探触子を管台の穴の中心から管台の穴
ピッチと管寄の厚さとによって定まる所定の距離、か
つ、管台の穴エッジの接線方向に対して20±10度の
範囲内の角度にセットして超音波ビ−ムを電子セクタス
キャンすることを特徴とする管台内面疵検査方法が提供
される。
According to the present invention, a longitudinal wave / shear wave combined flaw detection method using an electron sector scan single-point incidence type probe is used to move the probe from the center of the hole of the nozzle to the nozzle. A predetermined distance determined by the hole pitch and the thickness near the pipe, and 20 ± 10 degrees with respect to the tangential direction of the hole edge of the nozzle .
A method for inspecting an inner surface of a nozzle is provided, wherein the ultrasonic beam is set to an angle within the range and an electronic beam is scanned by an electronic sector.

【0006】この場合、上記管台内面に送信される超音
波ビ−ムの入射角、屈折角、ビ−ム路程を演算する回路
と、探触子のビ−ム入射点位置計測手段と、ゲ−ト範囲
内のエコ−信号のみ出力せしめる手段と、ビ−ム路程/
振幅自動補正回路と、を用いて欠陥位置推定および欠陥
エコー信号レベルの補償を行うことを特徴とする。
In this case, a circuit for calculating an incident angle, a refraction angle, and a beam path of the ultrasonic beam transmitted to the inner surface of the nozzle, a beam incident point position measuring means of the probe, and Means for outputting only the eco signal within the gate range, and beam path /
Estimation of defect position and defect using automatic amplitude correction circuit
The echo signal level is compensated.

【0007】[0007]

【作用】一点入射電子セクタスキャン超音波探傷法は超
音波ビ−ムを広範囲に送信することができる。従って探
触子を管台の穴の中心から管台の穴ピッチと管寄の厚さ
とによって定まる所定の距離、かつ管台の穴エッジの接
線方向に対して20±10度の範囲内の角度にセットす
ることができるので、狭隘な管台部において探触子を走
査する必要がない。
The single point incident electron sector scan ultrasonic inspection method can transmit an ultrasonic beam over a wide range. Therefore, the probe is placed at a predetermined distance determined by the hole pitch of the nozzle and the thickness near the nozzle from the center of the hole of the nozzle, and an angle within a range of 20 ± 10 degrees with respect to the tangential direction of the hole edge of the nozzle. it is possible to set, it is not necessary to scan the ultrasonic probe in narrow nozzle stub portion.

【0008】さらに本発明によれば、探触子を管台の穴
エッジの接線方向に対して20±10度の範囲内の角度
セットすることにより管台内面の形状エコ−を検出し
なくなるので、形状エコ−と欠陥エコ−との識別が容易
となる。
Further, according to the present invention, the probe is connected to the hole of the nozzle.
Angle within 20 ± 10 degrees to tangent direction of edge
By setting to, the shape echo on the inner surface of the nozzle will not be detected, so that it is easy to distinguish between the shape eco and the defect eco.

【0009】さらに本発明によれば、探触子のビ−ム入
射位置、入射角、屈折角、ビ−ム路程の演算機能および
ゲ−ト範囲内のエコ−信号のみを出力させる機能、さら
に、ビ−ム路程/振幅自動補正回路機能により、欠陥位
置推定精度、欠陥定量精度が増加するので、管台内面の
欠陥検出に超音波探傷法が適用できる。
Further, according to the present invention, a function for calculating the beam incident position, incident angle, refraction angle, and beam path of the probe and a function for outputting only an echo signal within the gate range, Since the beam path / amplitude automatic correction circuit function increases the defect position estimation accuracy and the defect quantification accuracy, the ultrasonic flaw detection method can be applied to the detection of defects on the inner surface of the nozzle.

【0010】[0010]

【実施例】図1を参照して本発明の実施例を詳述すれ
ば、管台内面の超音波探傷は、一点入射電子セクタスキ
ャン探触子1、電子スキャン超音波探傷装置2、電源装
置3およびモニタテレビ4で構成された超音波探傷装置
を使用し、探触子1を管台穴の中心Oから次式
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIG. 1. In the ultrasonic inspection of the inner surface of the nozzle, a one-point incident electron sector scan probe 1, an electronic scan ultrasonic inspection device 2, a power supply device The probe 1 is moved from the center O of the nozzle hole using the ultrasonic flaw detector constituted by the

【数1】 で求められる距離ALに超音波ビ−ム5の入射
点6を合せてセットする。
The incident point 6 of the ultrasonic beam 5 is set to the distance AL obtained by the equation (1) .

【数1】 AL=[{(B2+GAP+B3)sin70°}2+{(B2+GAP+B3)cos70°+R1}21/2 [ Equation 1] AL = [{((B2 + GAP + B3) sin70 °} 2 + {(B2 + GAP + B3) cos70 ° + R1} 2 ] 1/2

【数2】 B2={(R2cos70°+R2sin70°×tan70°)-R1}cos70° ここで、R1は管台の内半径、R2は溶接線の半径、G
APは探触子と溶接線との間隔、B3は探触子の前面か
らビ−ム入射点6までの距離を示す。
[Number 2] B2 = {(R2cos70 ° + R2sin70 ° × tan70 °) -R1} cos70 ° , where, R1 is the inner radius of the nozzle, R2 is the radius of the weld line, G
AP indicates the distance between the probe and the welding line, and B3 indicates the distance from the front surface of the probe to the beam incident point 6.

【0011】管台内面A点の欠陥を探傷する場合、探触
子1のビ−ム入射点6を前述の管台穴の中心O点から距
離ALの円周上にセットして、かつA点の接線方向に対
して20度の角度をつけて超音波ビ−ム5を投射する。
When detecting a defect at the point A on the inner surface of the nozzle, the beam incident point 6 of the probe 1 is set on the circumference at a distance AL from the center O of the nozzle hole. The ultrasonic beam 5 is projected at an angle of 20 degrees with respect to the tangential direction of the point.

【0012】図2について探傷原理を説明する。一点入
射電子セクタスキャン探触子1は、素子10が円弧状に
64個配列され、その16個の素子をイで示すように電
子スキャン超音波探傷装置2によって同時に励振して超
音波ビ−ム5を発生させる。次にロおよびハのように素
子1個分ずつシフトさせながら16個の素子を同時に励
振させることにより、円弧上から管寄20への一点入射
角度を変化させることによって、屈折角の異なる広範囲
の超音波ビ−ム5を管台内面に投射することができ、探
触子1を走査せしめずに探傷することが可能となる。
The principle of flaw detection will be described with reference to FIG. The single-point incident electron sector scan probe 1 has 64 elements 10 arranged in an arc shape, and the 16 elements are simultaneously excited by the electronic scanning ultrasonic flaw detector 2 as shown by a in FIG. 5 is generated. Next, by simultaneously exciting the 16 elements while shifting them by one element as in b and c, the incident angle at one point on the tube 20 from above the arc is changed, so that a wide range of different refraction angles are obtained. The ultrasonic beam 5 can be projected onto the inner surface of the nozzle, so that the probe 1 can be detected without scanning.

【0013】図3によって管寄と管台の内面の探傷につ
いて説明する。管台の内面の亀裂はエッジ部A点を起点
として放射に発生するものが大部分であるので、亀裂
発生方向に対して45ないし90度の角度で超音波ビ−
ムを投射し探傷するが、図4に示す角度と欠陥/コ−ナ
−エコ−との関係からコ−ナ−エコ−が検出されなくな
るエッジ接線方向に対して20度の角度で超音波ビ−ム
を投射すれば、充分に大きい欠陥エコ−が検出可能であ
り、コ−ナ−エコ−を検出することがない。
The flaw detection on the inner surface of the nozzle and the nozzle will be described with reference to FIG. A crack of the nozzle of the inner surface is what occurs in the radiation shape starting from the edge portion A point is at most, 45 not with respect to cracking direction and 90-degree angle with ultrasound bi -
A flaw is detected by projecting an ultrasonic beam at an angle of 20 degrees with respect to the edge tangent direction at which the corner-eco is no longer detected due to the relationship between the angle and the defect / corner-eco shown in FIG. By projecting a beam, a sufficiently large defect echo can be detected, and no corner echo is detected.

【0014】図5は管寄、管台部内面の超音波ビ−ムの
入射点6の方位における屈折角の変化の一例を示してお
り、図でMAXと記載した位置で最大であることが理解
される。
FIG. 5 shows an example of a change in the refraction angle in the direction of the incident point 6 of the ultrasonic beam on the inner surface of the nozzle near the nozzle. Understood.

【0015】前述したように探触子をセットしても探傷
する管台内面の位置によって屈折角および超音波ビ−ム
路程が異なるため、図6に示すように欠陥エコ−検出レ
ベルが相違し、欠陥を過小評価する危険性がある。しか
し、探傷位置に対する超音波ビ−ムの屈折角・ビ−ム路
程の演算回路およびビ−ム路程/振幅自動補正回路を備
えていることで検出位置が相違しても欠陥の大きさは同
一に評価され、定量評価精度を向上することが可能であ
る。
As described above, even if the probe is set, the angle of refraction and the path of the ultrasonic beam differ depending on the position of the inner surface of the nozzle to be flawed. Therefore, as shown in FIG. , There is a risk of underestimating defects. However, the provision of the circuit for calculating the angle of refraction of the ultrasonic beam with respect to the flaw detection position and the beam path and the circuit for automatically correcting the beam path / amplitude make the defect size the same even if the detection position is different. It is possible to improve the quantitative evaluation accuracy.

【0016】[0016]

【発明の効果】本発明によれば、広範囲超音波ビ−ムを
投射する一点入射電子セクタスキャン探触子を管台内面
の形状エコ−が表れない探傷位置にセットすることがで
きるので、管台内面の欠陥検出に超音波探傷が適用可能
となるという効果がある。
According to the present invention, the single point incident electron sector scan probe for projecting a wide range ultrasonic beam can be set at a flaw detection position where the shape of the inner surface of the nozzle is not visible. There is an effect that ultrasonic flaw detection can be applied to defect detection on the inner surface of the table.

【0017】また、超音波ビ−ムの入射位置、入射角、
屈折角、ビ−ム路程の演算、ゲ−ト範囲内のエコ−信号
のみを出力させる機能、およびビ−ム路程/振幅自動補
正機能を備えているので、欠陥位置推定精度および欠陥
定量精度向上の効果がある。
Further, the incident position, the incident angle of the ultrasonic beam ,
Calculation of refraction angle and beam path, output of only the echo signal within the gate range, and automatic correction of beam path / amplitude, improving defect position estimation accuracy and defect quantification accuracy Has the effect.

【0018】特に従来技術と対比した場合、従来技術で
は検査ができなかった管台、管内面などの狭隘部の検査
を非破壊的かつ高精度、短時間で検査できるという著し
い効果がある。
In particular, when compared with the prior art, there is a remarkable effect that an inspection of a narrow portion such as a nozzle and an inner surface of a pipe, which could not be inspected by the conventional technology, can be inspected nondestructively, with high accuracy and in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による管台内面の超音波探傷方法および
装置の概略図。
FIG. 1 is a schematic view of a method and an apparatus for ultrasonic inspection of an inner surface of a nozzle according to the present invention.

【図2】一点入射電子セクタスキャン超音波探傷原理の
説明図。
FIG. 2 is an explanatory diagram of the principle of one-point incident electron sector scan ultrasonic flaw detection.

【図3】管台内面の探傷の実施例を示す断面図。FIG. 3 is a cross-sectional view showing an example of flaw detection on the inner surface of the nozzle.

【図4】探傷角度に対する管台内面の欠陥エコ−と形状
エコ−とを示す図。
FIG. 4 is a view showing a defect echo and a shape echo on the inner surface of the nozzle with respect to the flaw detection angle.

【図5】管台内面欠陥検出に最適位置に探触子がある場
合の屈折角の変化を示す図。
FIG. 5 is a diagram showing a change in a refraction angle when a probe is located at an optimum position for detecting a nozzle inner surface defect.

【図6】屈折角の変化(ビ−ム路程)とエコ−信号レベ
ルの関係を示す図。
FIG. 6 is a diagram showing a relationship between a change in a refraction angle (beam path) and an eco-signal level.

【図7】従来の超音波探傷における探触子の走査スペ−
スを示す断面図。
FIG. 7 is a scanning spectrum of a probe in conventional ultrasonic testing.
FIG.

【図8】超音波探傷が適用されるボイラ管寄、管台の平
面図。
FIG. 8 is a plan view of a boiler nozzle and a nozzle to which ultrasonic testing is applied.

【符号の説明】[Explanation of symbols]

1…一点入射電子セクタスキャン探触子 2…電子スキャン超音波探傷装置 3…電源装置 4…モニタテレビ 5…超音波ビ−ム 6…入射点 10…素子 20…管寄 21…管台 1’…固定角探触子 2’…超音波探傷装置 DESCRIPTION OF SYMBOLS 1 ... Single point incident electron sector scan probe 2 ... Electronic scan ultrasonic flaw detector 3 ... Power supply device 4 ... Monitor television 5 ... Ultrasonic beam 6 ... Input point 10 ... Element 20 ... Yoke 21 ... Stub 1 ' … Fixed angle probe 2 '… Ultrasonic flaw detector

フロントページの続き (56)参考文献 特開 昭57−194349(JP,A) 特開 昭53−26186(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 Continuation of the front page (56) References JP-A-57-194349 (JP, A) JP-A-53-26186 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 29 / 00-29/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電子セクタスキャン一点入射型探触子を用
いる縦波・横波併用探傷法にして、前記探触子を管台の
穴の中心から管台の穴ピッチと管寄の厚さとによって定
まる所定の距離で、かつ、管台の穴エッジの接線方向に
対して20±10度の範囲内の角度にセットして超音波
ビ−ムを電子セクタスキャンすることを特徴とする管台
内面疵検査方法。
1. A longitudinal wave / shear wave combined flaw detection method using an electron sector scan one-point incidence type probe, wherein said probe is determined by the hole pitch of the nozzle and the thickness of the nozzle near the center of the hole of the nozzle. Electronic sector scanning of an ultrasonic beam by setting an angle within a range of 20 ± 10 degrees with respect to a tangential direction of a hole edge of the nozzle at a predetermined distance to be determined, and performing an electronic sector scan of the nozzle. Flaw inspection method.
【請求項2】請求項1記載の管台内面疵検査方法におい
て、上記管台内面に送信される超音波ビ−ムの入射角、
屈折角、ビ−ム路程を演算する回路と、探触子のビ−ム
入射点位置計測手段と、ゲ−ト範囲内のエコ−信号のみ
出力せしめる手段と、ビ−ム路程/振幅自動補正回路
と、を用いて欠陥位置推定および欠陥エコー信号レベル
の補償を行うことを特徴とする管台内面疵検査方法。
2. A method according to claim 1, wherein the inner surface of the nozzle is inspected.
Te, ultrasonic bi are transmitted to the pipe base inner surface - the angle of incidence of the beam,
A circuit for calculating a refraction angle and a beam path, a means for measuring a beam incident point position of a probe, a means for outputting only an echo signal within a gate range, and a beam path / amplitude automatic correction Circuit and using the defect location estimation and defect echo signal level
A method for inspecting an inner surface flaw of a nozzle, comprising:
JP3339143A 1991-12-21 1991-12-21 Inspection method for nozzle inner surface flaw Expired - Lifetime JP3017346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339143A JP3017346B2 (en) 1991-12-21 1991-12-21 Inspection method for nozzle inner surface flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339143A JP3017346B2 (en) 1991-12-21 1991-12-21 Inspection method for nozzle inner surface flaw

Publications (2)

Publication Number Publication Date
JPH05172790A JPH05172790A (en) 1993-07-09
JP3017346B2 true JP3017346B2 (en) 2000-03-06

Family

ID=18324646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339143A Expired - Lifetime JP3017346B2 (en) 1991-12-21 1991-12-21 Inspection method for nozzle inner surface flaw

Country Status (1)

Country Link
JP (1) JP3017346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149888A (en) * 2010-01-25 2011-08-04 Toden Kogyo Co Ltd Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
CN108845029B (en) * 2018-04-26 2023-10-31 隆华科技集团(洛阳)股份有限公司 Nondestructive testing method for D-shaped pipe box of composite cooler
CN113514548A (en) * 2021-07-09 2021-10-19 厦门大学 Weld defect detection method based on characteristic guided waves

Also Published As

Publication number Publication date
JPH05172790A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
WO2020048373A1 (en) Intermediate and large diameter thin-walled tube non-destructive detection method based on phased array ultrasonic flaw detector
JPH11183446A (en) Method and apparatus for ultrasonic flaw detection of weld
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP3017346B2 (en) Inspection method for nozzle inner surface flaw
JP2000146922A (en) Method and device for ultrasonic crack detection of wheel set
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
WO2019091029A1 (en) Phased array ultrasonic testing method for weld seam of housing welded by using aluminum alloy
JP4527216B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3497984B2 (en) Ultrasonic flaw detector
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JP4359892B2 (en) Ultrasonic flaw detection method
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
US3543566A (en) Method of testing metallic article by means of ultrasonic beams
JPH11183445A (en) Flaw detector
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JPH04366761A (en) Method for ultrasonic inspection
JPH10332649A (en) Method and apparatus for inspection of inside detect of water-wall pipe
JPH05203630A (en) Ultrasonic flaw detection for square steel
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JP2003344364A (en) Ultrasonic flaw detection method of solid shaft
Monette et al. Implementation of Special PA UT Techniques for Manufacturing Inspection of Friction Stir Welds
JPS61118658A (en) Two-probe ultrasonic flaw detection method and apparatus
JP2000321251A (en) Ultrasonic array flaw detecting method and device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term