JP2000146922A - Method and device for ultrasonic crack detection of wheel set - Google Patents

Method and device for ultrasonic crack detection of wheel set

Info

Publication number
JP2000146922A
JP2000146922A JP10316359A JP31635998A JP2000146922A JP 2000146922 A JP2000146922 A JP 2000146922A JP 10316359 A JP10316359 A JP 10316359A JP 31635998 A JP31635998 A JP 31635998A JP 2000146922 A JP2000146922 A JP 2000146922A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
angle
inspected
wheel set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10316359A
Other languages
Japanese (ja)
Inventor
Yoji Yoshida
洋司 吉田
Mitsuo Koshirae
美津男 拵
Osamu Kikuchi
修 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Ibaraki Hitachi Information Service Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Ibaraki Hitachi Information Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Ibaraki Hitachi Information Service Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10316359A priority Critical patent/JP2000146922A/en
Publication of JP2000146922A publication Critical patent/JP2000146922A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce checking costs by the non-overhaul of a wheel set, and to improve the reliability of checking by press-fit echo reduction by operating the crack detection of all interfit parts from the face of a wheel set at the time of the ultrasonic crack detection test of a wheel set for a vehicle or the like. SOLUTION: This is an angle beam method for detecting material cracks in the neighborhood of an axial outer peripheral face including interfit parts 108 and 109 of a wheel set 101 for a train into which a wheel set 102 or a gear 51 are interfit by an ultrasonic probe 21 set on an axial edge face 105. The probe 21 is constituted so that slide type vibrators for generating SH ultrasonic waves can be arranged like an array, and the propagating direction (angle of refraction θ) and converged position of ultrasonic beams can be controlled by the electronic scanning of an ultrasonic crack detector 20. In this case, the angle of refraction θ = 90 deg.C - an incident angle αwhich is an incident angle to the normal of the face of a part to be inspected. The incident angle α is selected so that the part to be inspected can escape a dead angle due to a level cutting part 107. Then, the number of skips or road length W for converting the beams on the part to be inspected are decided based on the angle of refraction θ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波探傷試験に係
わり、特に鉄道車両用等の輪軸の材料きず検査に好適な
超音波探傷試験方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection test, and more particularly to an ultrasonic flaw detection test method suitable for inspecting a flaw in a wheel axle for a railway vehicle or the like.

【0002】[0002]

【従来の技術】鉄道車両等の輪軸の外周面は、嵌合部材
や摺動部材との接触部に材料傷が発生しやすい。従来の
車軸探傷装置は、図11に示すように、車軸101と車輪1
02及び歯車103の嵌合部110〜113の超音波探傷を、
(a)に示すように軸の端面105と、(b)に示す軸受
け面104の両面から行っている。
2. Description of the Related Art The outer peripheral surface of a wheel set of a railway vehicle or the like is liable to cause material damage at a contact portion with a fitting member or a sliding member. As shown in FIG. 11, a conventional axle flaw detection device includes an axle 101 and a wheel 1.
02 and ultrasonic flaw detection of the fitting portions 110 to 113 of the gear 103,
As shown in (a), the operation is performed from both the end surface 105 of the shaft and the bearing surface 104 shown in (b).

【0003】検査対象の嵌合部のうち、車輪嵌合外縁部
110は軸の段削り部107に遮られて超音波ビーム210が到
達しないため、軸端面105からの探傷が実施できない。
このため、軸受け面104から超音波を入射し、段削り部1
07に遮断されずに超音波を車輪嵌合外縁部110に超音波
ビームを到達させている(例えば、特開平7−1204
43号公報参照)。
[0003] Of the fitting parts to be inspected, a wheel fitting outer edge part
Since the ultrasonic beam 210 does not reach 110 because of being blocked by the step cutting portion 107 of the shaft, flaw detection from the shaft end face 105 cannot be performed.
For this reason, ultrasonic waves are incident from the bearing surface 104 and the step
The ultrasonic beam is allowed to reach the wheel fitting outer edge portion 110 without being interrupted by 07 (for example, see Japanese Unexamined Patent Application Publication No.
No. 43).

【0004】軸の端面105からの探傷は軸端蓋63を取り
外せば実施できる。しかし、軸受け面104からの探傷
は、図12のように、車両(図示してない)を解体し
て、台車枠60を取り外し、軸受け61を分解しなければ実
施できず、多大な労力と時間を費やしている。また、探
傷する部位によって使用する超音波の屈折角(探触子を
当てた材料表面の法線に対する超音波ビームの角度)が
異なるため、検査部位に合わせて複数の探触子を準備し
て、探傷する部位が変わるたびに探触子を交換する必要
があった。
The flaw detection from the shaft end face 105 can be performed by removing the shaft end cover 63. However, flaw detection from the bearing surface 104 cannot be performed unless the vehicle (not shown) is disassembled, the bogie frame 60 is removed, and the bearing 61 is disassembled, as shown in FIG. Spending. In addition, since the angle of refraction of the ultrasonic wave used (the angle of the ultrasonic beam with respect to the normal to the surface of the material to which the probe is applied) differs depending on the part to be inspected, prepare a plurality of probes according to the inspection part. The probe had to be replaced every time the area to be flawed changed.

【0005】ところで、探傷試験に使用される超音波に
は縦波と横波の二つの振動様式がある。図13(a)に
示すように、縦波は材料の粒子が超音波の伝搬方向と平
行に変位するように振動する。一方、横波は伝搬方向と
垂直に振動し、(b)に示すように、超音波入射面114
に対して垂直に近い方向に変位するSV超音波と、
(c)に示すように、入射面114に対して平行に変位す
るSH超音波がある。
[0005] There are two types of vibration of ultrasonic waves used for flaw detection tests: longitudinal waves and transverse waves. As shown in FIG. 13A, the longitudinal waves vibrate so that the particles of the material are displaced in parallel with the propagation direction of the ultrasonic wave. On the other hand, the transverse wave vibrates perpendicular to the propagation direction, and as shown in FIG.
SV ultrasonic waves displaced in a direction nearly perpendicular to
As shown in (c), there is an SH ultrasonic wave displaced in parallel to the incident surface 114.

【0006】図14に示すように、従来の斜角探傷で使
用してきたSV超音波は、屈折角が33度以下では十分
な往復通過率、つまり実用可能な超音波の強度が得られ
ない。また、SV超音波は嵌合部のように二つの部材が
大きな面圧で接している部分からは、圧入エコーと呼ば
れる超音波エコーが発生して軸のきずによるエコーとの
識別を困難にする。
As shown in FIG. 14, the SV ultrasonic wave used in the conventional oblique flaw detection cannot obtain a sufficient reciprocating passage rate, that is, a practical ultrasonic intensity, when the refraction angle is 33 degrees or less. Also, in the case of SV ultrasonic waves, an ultrasonic echo called a press-fit echo is generated from a portion where two members are in contact with each other with a large surface pressure, such as a fitting portion, making it difficult to distinguish the echo from an echo due to a shaft defect. .

【0007】SV超音波の使用できない屈折角以下で
は、同時に発生する往復通過率の高い縦波超音波が使用
されてきた。しかし、縦波超音波は材料表面に開口した
きずなど、コーナー部における2回の反射で振動様式が
変換するので、超音波の減衰が大きい。図15に示すよ
うに、縦波の入射角が傷に垂直に近い0度や90度の付
近以外では、反射波強度Rが著しく低下するので、傷の
部位や形状による検出性能に問題があった。
Below the refraction angle at which SV ultrasonic waves cannot be used, simultaneously generated longitudinal ultrasonic waves having a high reciprocating rate have been used. However, since the vibration mode of longitudinal wave ultrasonic waves is converted by two reflections at corners such as a flaw opened on the surface of a material, the attenuation of ultrasonic waves is large. As shown in FIG. 15, when the incident angle of the longitudinal wave is not near 0 ° or 90 °, which is perpendicular to the flaw, the reflected wave intensity R is remarkably reduced. Was.

【0008】[0008]

【発明が解決しようとする課題】上記したように、従来
の軸端面からの超音波探傷は輪軸に段削り部等のある場
合、超音波が段部で反射してしまって到達でない不感帯
を持つ。このため、軸受け面からの探傷と併用せざるを
得なかった。
As described above, the conventional ultrasonic flaw detection from the shaft end face has a dead zone which is not reached because the ultrasonic wave is reflected by the stepped portion when the wheel shaft has a stepped portion or the like. . For this reason, it had to be used together with the flaw detection from the bearing surface.

【0009】不感帯を回避するための斜角探傷も、縦波
の場合はきずの性状によって検出性能が著しく変化し、
スキップ探傷による円周面での減衰も著しい。縦波から
変換されるSV波の場合は、超音波の屈折角に制約があ
ること、使用可能な屈折角であっても圧入エコーによる
傷の識別に困難があることなど、種々の問題があった。
これら縦波やSV波の問題点は、モード変換による損失
の大きいことが一因となっている。
In the case of oblique flaw detection for avoiding a dead zone, in the case of longitudinal waves, the detection performance significantly changes depending on the nature of the flaw.
Attenuation on the circumferential surface due to skip flaw detection is also remarkable. In the case of an SV wave converted from a longitudinal wave, there are various problems, such as limitations on the angle of refraction of the ultrasonic wave, and difficulty in identifying a flaw by a press-in echo even with a usable angle of refraction. Was.
One of the problems with these longitudinal waves and SV waves is that the loss due to mode conversion is large.

【0010】本発明者らは、SH波がモード変換を起こ
しにくく、変換に伴う損失が少ないことに着目し、その
利用を検討してきた。そして、特願平9−174269
号で、SH波を使用して車輪圧入部の軸端からの超音波
探傷を行う発明、特願平10−143346号で、すべ
り型振動子でアレイセンサを構成しSH波の単一モード
の電子走査方式により実現する発明をそれぞれ提案して
いる。
The present inventors have paid attention to the fact that SH waves are less likely to cause mode conversion and have less loss associated with the conversion, and have studied the use thereof. And Japanese Patent Application No. 9-174269
Japanese Patent Application No. Hei 10-143346, in which an ultrasonic sensor is used to detect an ultrasonic flaw from the shaft end of a wheel press-fitting part using an SH wave. The invention realized by the electronic scanning method has been proposed.

【0011】本発明の目的は、上記先願におけるSH波
利用をさらに発展させ、輪軸探傷における実用可能なS
Hビームの屈折角の有効範囲を明確にし、さらに、スキ
ップ法を適用する場合の超音波の路程を自動決定する手
法を実現することにある。これにより、鉄道車両用等の
輪軸の嵌合面等に発生する材料きずを軸端面から効率良
く、かつ高精度に検査できる超音波探傷方法と装置を提
供する。
An object of the present invention is to further develop the use of SH waves in the above-mentioned prior application, and to develop a practically usable S wave in wheel axle inspection.
It is an object of the present invention to clarify the effective range of the refraction angle of the H beam and to realize a method of automatically determining the path of an ultrasonic wave when the skip method is applied. As a result, an ultrasonic flaw detection method and apparatus capable of efficiently and highly accurately inspecting material flaws generated on a fitting surface of a wheel set for a railway vehicle or the like from a shaft end face are provided.

【0012】[0012]

【課題を解決するための手段】本発明はSH波がSV波
に比べ、輪軸の嵌合部等での圧入エコーが極めて少なく
なる試験結果に着目してなされたものである。図2は、
超音波ビームの屈折角度に対する圧入エコー高さの試験
例で、(a)に試験条件、(b)に試験結果を示す。試
験は幅25mm、厚さ40mmの鋼板に厚さ10mmの
鋼片を万力で締め付けてセットし、超音波探触子から屈
折角を変えながら圧入エコーを観測した。なお、測定感
度はSV、SHとも、厚さ18mmの試験片の底面に設
けた1.0mmスリットに対し、80%+10dBとし
た。(b)に示すように、SV波による場合は屈折角3
8°〜60°の範囲で、圧入エコー高さが20〜40%
である。なお、SV波の発生限界は33.2°である。
これに対し、SH波は屈折角15°〜60°の範囲で、
圧入エコー高さがほぼ0%である。
DISCLOSURE OF THE INVENTION The present invention has been made by paying attention to a test result in which an SH wave has an extremely small press-in echo at a fitting portion of a wheel set as compared with an SV wave. FIG.
In the test example of the press-fit echo height with respect to the angle of refraction of the ultrasonic beam, (a) shows test conditions and (b) shows test results. In the test, a steel slab having a thickness of 10 mm was set on a steel plate having a width of 25 mm and a thickness of 40 mm by tightening it with a vice, and a press-fit echo was observed while changing the refraction angle from the ultrasonic probe. The measurement sensitivity was set to 80% + 10 dB with respect to a 1.0 mm slit provided on the bottom surface of a test piece having a thickness of 18 mm for both SV and SH. As shown in (b), in the case of the SV wave, the refraction angle is 3
In the range of 8 ° -60 °, the injection echo height is 20-40%
It is. The generation limit of the SV wave is 33.2 °.
In contrast, the SH wave has a refraction angle of 15 ° to 60 °,
The press-fit echo height is almost 0%.

【0013】ここで注目すべきことは、SV波の使用不
可能な35°以下の小屈折角の領域において、SH波は
高感度と高精度を得られることである。これにより、端
面からの超音波を妨害する段部のある輪軸の斜角探傷に
おいて、段部のすぐ後方の被検査部にも超音波を大入射
角により到達できるので、段部による不感帯(死角)を
低減できる。なお、SH超音波は屈折角0°〜90°の
範囲で発生でき、利用可能である。
It should be noted here that the SH wave can obtain high sensitivity and high accuracy in a region where the SV wave cannot be used and has a small refraction angle of 35 ° or less. As a result, in oblique flaw detection of a wheel set having a step portion that interferes with ultrasonic waves from the end face, the ultrasonic wave can reach the portion to be inspected immediately behind the step portion at a large incident angle. ) Can be reduced. Note that SH ultrasonic waves can be generated and used at a refraction angle of 0 ° to 90 °.

【0014】この実験的知見に基づき、前記目的を達成
するためになされた本発明は、外周面に被検査部を有す
る輪軸の軸端面に超音波探触子を設置し、前記超音波探
触子より輪軸内に超音波を被検査部に向けて送出し、前
記被検査部の材料きずから反射してくる超音波を前記探
触子で受信して、前記材料きずを検出する輪軸の超音波
探傷方法において、前記超音波探触子から材料の粒子が
超音波の伝搬軸に対して垂直方向に振動する振動様式の
SH超音波を送出し、前記外周面で少なくとも1回は反
射(スキップ)させ、被検査部面の法線に対して入射角
αで前記SH超音波を入射する場合に、前記超音波探触
子から送出する前記SH超音波の屈折角θを、θ=90
度−αの関係に設定することを特徴とする。
The present invention, which has been made to achieve the above-mentioned object based on this experimental finding, has an ultrasonic probe installed on the shaft end surface of a wheel set having a portion to be inspected on the outer peripheral surface, and the ultrasonic probe An ultrasonic wave is transmitted from the probe into the wheel axle toward the portion to be inspected, and the ultrasonic wave reflected from the material flaw of the portion to be inspected is received by the probe to detect the material flaw. In the ultrasonic flaw detection method, SH ultrasonic waves of a vibration type in which particles of a material vibrate in a direction perpendicular to the propagation axis of ultrasonic waves are transmitted from the ultrasonic probe, and are reflected (skipped) at least once on the outer peripheral surface. ), The refraction angle θ of the SH ultrasonic wave transmitted from the ultrasonic probe when the SH ultrasonic wave is incident at an incident angle α with respect to the normal to the surface of the inspected part is θ = 90
It is characterized in that the relationship is set to a degree-α.

【0015】また、前記超音波探触子から輪軸内にSH
超音波を送出し、前記外周面で前記SH超音波をスキッ
プ(反射)しながら到達させる場合に、前記被検査部が
死角とならないように被検査部面の法線に対する前記S
H超音波の入射角αを定め、前記入射角αから前記輪軸
内に送出される前記SH超音波の屈折角θを求め、前記
屈折角θに基づいて前記SH超音波を収束する路程Wを
求め、前記探触子からのSH超音波を前記屈折角θで送
出し、路程Wに収束させることを特徴とする。
Further, SH is introduced from the ultrasonic probe into the axle.
When transmitting the ultrasonic wave and causing the SH ultrasonic wave to reach the outer peripheral surface while skipping (reflecting) the S ultrasonic wave with respect to the normal to the surface of the inspected portion so that the inspected portion does not become a blind spot.
The incident angle α of the H ultrasonic wave is determined, the refraction angle θ of the SH ultrasonic wave sent into the wheel shaft is determined from the incident angle α, and the path W for converging the SH ultrasonic wave based on the refraction angle θ is determined. Then, the SH ultrasonic wave from the probe is transmitted at the refraction angle θ and converged on the path W.

【0016】前記路程Wが超音波探触子から被検査部ま
での超音波経路の距離として求められると、探触子から
の超音波が距離Wで収束するように、つまり、被検査部
に収束するように、超音波探傷器によるSH探触子の電
子制御が行われる。
When the path W is determined as the distance of the ultrasonic path from the ultrasonic probe to the part to be inspected, the ultrasonic wave from the probe converges at the distance W, that is, the ultrasonic wave Electronic control of the SH probe by the ultrasonic flaw detector is performed so as to converge.

【0017】なお、収束位置の距離Wは別の方法によっ
ても決定できる。すなわち、軸端面の探触子から軸内に
屈折角θで送出される超音波は、半径Rの輪軸の軸線を
最初に越えてから距離W以内で一旦、収束させれば、被
検査部に到達する超音波のビーム幅の拡散を抑制でき
る。本発明者らの実験的確認によれば、このときの距離
WはR/2以内である。
The distance W of the convergence position can be determined by another method. That is, the ultrasonic wave transmitted from the probe at the shaft end face into the shaft at a refraction angle θ is once converged within a distance W after first passing over the axis of the wheel set having the radius R, and then converged to the portion to be inspected. The spread of the beam width of the arriving ultrasonic wave can be suppressed. According to the experimental confirmation by the present inventors, the distance W at this time is within R / 2.

【0018】本発明の方法を適用する超音波探傷装置
は、超音波探触子と、外周面に被検査部を有する輪軸の
軸端面に超音波探触子を設置し、前記探触子を前記軸端
面の円周方向に回動させる探触子駆動装置を備え、前記
超音波探触子を回動しては輪軸内に超音波を入射し、前
記被検査部から反射してきて前記探触子で受信される超
音波から前記材料きずを検出する輪軸の超音波探傷装置
において、前記探触子駆動装置は、上下方向及び輪軸の
長手方向に移動可能にした架台と、前記架台上に設置さ
れた回転部材と、前記回転部材に一端を固定して先端部
を前記軸端面の中心穴に挿入する位置決め用の案内棒
と、前記案内棒の外側に平行に配置され、前記回転部材
に一端を支持され他端に前記超音波探触子を前記軸端面
に対向させて保持する探触子保持部材と、を設けたこと
を特徴とする。
An ultrasonic flaw detector to which the method of the present invention is applied is provided with an ultrasonic probe and an ultrasonic probe on a shaft end surface of a wheel set having a portion to be inspected on an outer peripheral surface. A probe driving device for rotating the shaft end surface in a circumferential direction, and when the ultrasonic probe is rotated, an ultrasonic wave is incident on a wheel axle, reflected from the portion to be inspected, and the probe is driven. In a wheel set ultrasonic flaw detector that detects the material flaws from ultrasonic waves received by a stylus, the probe driving device includes a gantry movable in the vertical direction and the longitudinal direction of the rim, and An installed rotating member, a positioning guide rod for fixing one end to the rotating member and inserting a tip end into a center hole of the shaft end face, and disposed in parallel outside the guide rod, One end is supported, and the other end holds the ultrasonic probe facing the shaft end face. A probe holding member, characterized in that the provided.

【0019】これにより、超音波探触子の位置決めが容
易に行え、輪軸の端面の同一円周上から、輪軸の被検査
部の周方向の全部を簡単に自動探傷することができる。
Thus, the positioning of the ultrasonic probe can be easily performed, and it is possible to easily and automatically detect the entire circumferential portion of the inspected portion of the wheel set from the same circumference of the end face of the wheel set.

【0020】本発明の作用を説明する。超音波は二つの
媒体が接する境界面を通過する際、あるいは境界面で反
射する際に大なり小なり振動様式の変換を伴う。超音波
探触子から材料中に入射した超音波の振動様式Aと材料
きずから反射する超音波の振動様式Bが異なる場合、超
音波探触子は振動様式Bに対する検出感度が低いので、
きずの検出感度の低下を来たす原因になる。特に、材料
表面に開口した割れ状のきずと材料表面とで形成するコ
ーナー部で反射する場合は、2回の反射を伴うため、縦
波超音波の入射角度によっては著しい振動様式変換が生
じて、大きな感度低下を起こす。しかるに、SH超音波
は、反射に伴う振動様式の変換が生じにくく、コーナー
反射による感度低下が著しく少ない。
The operation of the present invention will be described. Ultrasound involves a change in vibration mode, either greater or less, as it passes through or reflects off the interface where the two media meet. When the vibration mode A of the ultrasonic wave incident on the material from the ultrasonic probe and the vibration mode B of the ultrasonic wave reflected from the material flaw are different, the ultrasonic probe has low detection sensitivity for the vibration mode B,
This may cause a decrease in the detection sensitivity of flaws. In particular, when the light is reflected at a corner formed by a crack-like flaw opened on the surface of the material and the surface of the material, two reflections are involved, so that a remarkable vibration mode conversion occurs depending on the incident angle of the longitudinal ultrasonic wave. Causes a large decrease in sensitivity. However, in the SH ultrasonic wave, conversion of the vibration mode due to reflection hardly occurs, and the sensitivity decrease due to corner reflection is extremely small.

【0021】また、縦波やSV波は輪軸の嵌合部を通過
する際にも振動様式の変換を生じる。このため、その一
部が圧入エコーとなって超音波探触子に受信され、嵌合
部に発生するきずとの識別を困難にする。しかし、SH
超音波は通過に伴うモード変換が極めて少ないので、図
2に示したように圧入エコーが殆ど受信されず、高S/
Nとなって、検査精度を向上できる。
The longitudinal wave and the SV wave also change the vibration mode when passing through the fitting portion of the wheel set. For this reason, a part of the echo is received as a press-fit echo by the ultrasonic probe, which makes it difficult to identify a flaw generated in the fitting portion. However, SH
Since the ultrasonic wave has very little mode conversion accompanying the passage, almost no press-in echo is received as shown in FIG.
N, the inspection accuracy can be improved.

【0022】さらに、SH超音波は低屈折角からの斜角
探傷が可能になるので、軸方向に広範囲の探傷が軸端面
から容易に実現できる。また、軸端面から超音波を斜め
に入射させた場合、軸の段削り部等で超音波が遮られ
て、目標とする車輪嵌合外縁部等に超音波が到達できな
くなる。これを回避するために、軸端面から入射した超
音波ビームを軸受け面で少なくとも一回反射させてから
被検査部位に伝播させるスキップ法を用いるが、SHは
外周面での反射による減衰が小さいので感度低下がな
く、かつ、利用できる屈折角の範囲が広いので探傷条件
の設定、特に連続的な変更設定が容易になる。
Further, since the SH ultrasonic wave can be used for oblique flaw detection from a low refraction angle, flaw detection over a wide range in the axial direction can be easily realized from the shaft end face. Also, when ultrasonic waves are obliquely incident from the shaft end face, the ultrasonic waves are blocked by the stepped portion of the shaft or the like, so that the ultrasonic waves cannot reach the target wheel fitting outer edge or the like. To avoid this, a skip method is used in which the ultrasonic beam incident from the shaft end surface is reflected at least once on the bearing surface and then propagated to the inspected portion. However, since SH has a small attenuation due to reflection on the outer peripheral surface, it is used. Since there is no reduction in sensitivity and the range of usable refraction angles is wide, it is easy to set flaw detection conditions, particularly, to continuously change settings.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。図1は、車両用
輪軸に適用した超音波探傷装置の一実施例を示す。車軸
101に車輪102、歯車103を嵌合した輪軸100があり、その
軸端面105に超音波探触子21を押し当て、車軸101内に超
音波ビーム210を伝搬させる。超音波ビーム210は車輪嵌
合部108、歯車嵌合部109に到達して、それらの部分に材
料きずが存在する場合に、きずエコーとして、再び超音
波探触子21で受信され、きずが検出される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an embodiment of an ultrasonic flaw detector applied to a vehicle wheel set. axle
A wheel shaft 100 in which a wheel 102 and a gear 103 are fitted to 101 is provided. The ultrasonic probe 21 is pressed against a shaft end face 105 of the wheel shaft 100, and an ultrasonic beam 210 is propagated in the axle 101. The ultrasonic beam 210 reaches the wheel fitting portion 108 and the gear fitting portion 109, and when there is a material flaw in those portions, it is received again by the ultrasonic probe 21 as a flaw echo, and the flaw is detected. Is detected.

【0024】超音波探傷器20はパルス状の電圧を発生し
て、探触子21を励振し超音波を発生させると同時に、探
触子21が超音波エコーを受信したときに発生する受信信
号を増幅してデータ収録処理装置40に送る。
The ultrasonic flaw detector 20 generates a pulsed voltage to excite the probe 21 to generate an ultrasonic wave, and at the same time, a reception signal generated when the probe 21 receives an ultrasonic echo. Is amplified and sent to the data recording processing device 40.

【0025】図3は、超音波探傷器の構成図を示す。本
実施例の超音波探傷器20は電子走査式である。トリガ信
号発生器23で発生したトリガ信号は、送信遅延回路25
で、それぞれ異なる遅延時間をもったn個のトリガ信号
に分割される。ここでnの数は、超音波探触子21を構成
する振動子22の数である。これらn個のトリガ信号は、
パルス発生器24を励起し、その結果パルス発生器24は、
それぞれ遅延時間をもったn個のパルス電圧を発生させ
る。それらのパルス電圧は、超音波探触子21を構成する
複数の振動子22を順次励振する。
FIG. 3 shows a configuration diagram of the ultrasonic flaw detector. The ultrasonic flaw detector 20 of this embodiment is of an electronic scanning type. The trigger signal generated by the trigger signal generator 23 is transmitted to the transmission delay circuit 25
Then, the signal is divided into n trigger signals having different delay times. Here, the number n is the number of transducers 22 that constitute the ultrasonic probe 21. These n trigger signals are
Excites the pulse generator 24 so that the pulse generator 24
N pulse voltages each having a delay time are generated. These pulse voltages sequentially excite a plurality of transducers 22 constituting the ultrasonic probe 21.

【0026】図4に、電子走査式超音波探触子の概略の
構造と動作を示す。探触子21はすべり振動型の横波振動
子を使用して、(a)のように振動子22をアレイ状に配
列して構成している。(b)に超音波探触子21の側面図
を示す。各振動子のパルス発生タイミングは送信遅延回
路25の各遅延素子によって制御される。(c)に示すよ
うに、遅延回路25による遅延時間の長さを定性的に示す
と、各振動子22がタイミングを変えて発射した超音波の
波面が合成されて、任意の方向(屈折角θ)に伝搬し、
さらに任意の位置(F)に収束する超音波ビーム210を
形成する。
FIG. 4 shows a schematic structure and operation of the electronic scanning ultrasonic probe. The probe 21 uses a shear vibration type shear wave vibrator, and the vibrators 22 are arranged in an array as shown in FIG. FIG. 2B shows a side view of the ultrasonic probe 21. The pulse generation timing of each oscillator is controlled by each delay element of the transmission delay circuit 25. As shown in (c), when the length of the delay time by the delay circuit 25 is qualitatively indicated, the wavefronts of the ultrasonic waves emitted from the respective oscillators 22 at different timings are synthesized and combined in an arbitrary direction (refraction angle). θ),
Further, an ultrasonic beam 210 converging at an arbitrary position (F) is formed.

【0027】なお、すべり振動型の振動子によるSH超
音波の発生や電子走査は、前述の特願H10−1433
46号の明細書(段落0012〜0015及び図2〜図
4)等に詳述されている。
The generation of SH ultrasonic waves and electronic scanning by a sliding vibration type vibrator are described in the aforementioned Japanese Patent Application H10-1433.
No. 46 (paragraphs 0012 to 0015 and FIGS. 2 to 4).

【0028】本実施例の輪軸探傷は軸端面からSH超音
波を斜角入射する。図5に斜角探傷の説明図を示す。
(a)のように、輪軸101に車輪102が嵌合し、車輪嵌合
部内側111を探傷する場合、軸端面105の所定位置に探触
子21を設置し、屈折角θで超音波ビーム210を送出し
て、目標の検査部位111にビーム210を収束させる。この
とき、SH超音波はきずからのエコー強度が大で、か
つ、嵌合部での圧入エコーが小さいので、高感度、高S
/Nの斜角探傷が可能になる。
In the wheel flaw detection of this embodiment, SH ultrasonic waves are obliquely incident from the shaft end face. FIG. 5 is an explanatory diagram of the oblique flaw detection.
As shown in (a), when the wheel 102 is fitted to the wheel axle 101 and flaw detection is performed on the inside 111 of the wheel fitting portion, the probe 21 is installed at a predetermined position on the shaft end surface 105, and the ultrasonic beam is refracted at the refraction angle θ. The beam 210 is transmitted to converge the beam 210 to the target inspection region 111. At this time, since the SH ultrasonic wave has a large echo intensity from the flaw and a small press-in echo at the fitting portion, a high sensitivity and a high S
/ N oblique flaw detection becomes possible.

【0029】ところで、車輪嵌合部内側110を探傷する
場合、段削り部107での反射により目標の検査部位が死
角(不感帯)となる。このときは、(b)のように、段
削り部107の手前の円柱面で超音波を反射させ、すなわ
ち障害物をスキップして目標の検査部位110に超音波を
収束させる。1回の反射で目標位置に収束させる場合を
1.0スキップ法、2回の場合を1.5スキップ法、3
回の場合を2.0スキップ法のように呼ぶ。一般に、超
音波ビームの路程が長くなるほどその減衰が大になるの
で、異なるスキップ数で目標部位の探傷が可能な場合
は、少ないスキップ数の方が望ましい。
By the way, when flaw detection is performed on the inside 110 of the wheel fitting portion, the target inspection portion becomes a blind spot (dead zone) due to reflection at the step-off portion 107. At this time, as shown in (b), the ultrasonic wave is reflected on the cylindrical surface in front of the stepped portion 107, that is, the ultrasonic wave is focused on the target inspection region 110 by skipping the obstacle. The 1.0 skip method when converging to the target position by one reflection, the 1.5 skip method when two reflections are performed, 3
The number of times is referred to as the 2.0 skip method. In general, the longer the path of an ultrasonic beam, the greater the attenuation. Therefore, when flaw detection of a target portion can be performed with a different skip number, a smaller skip number is more desirable.

【0030】検査部位に対する超音波ビームの伝播方向
(屈折角θ)や、超音波が検査部位に到達するまでのビー
ム経路は、制御装置31からの指示により超音波探傷器20
の電子走査によって制御する。図6に、制御装置による
屈折角とビーム経路の決定手順を示す。図7に示す1.
5スキップ法によるビーム経路の幾何学的な説明図を参
照して、手順を説明する。
Propagation direction of ultrasonic beam to inspection site
(Refraction angle θ) and the beam path until the ultrasonic wave reaches the inspection site are determined by the ultrasonic flaw detector 20 according to an instruction from the control device 31.
Is controlled by electronic scanning. FIG. 6 shows a procedure for determining the refraction angle and the beam path by the control device. As shown in FIG.
The procedure will be described with reference to a geometrical illustration of the beam path by the 5-skip method.

【0031】制御装置31は屈折角とビーム経路の決定に
際し、まず、検査部位P3の設定を行う(s101)。
具体的には、探触子21の設置されている軸端面105か
ら、きず120の存在する検査部位P3までの水平距離B
を与える。次に、超音波ビーム210が最終反射点(ここ
では、P2)から外周面の検査部位P3に入射するとき
の入射角αを決定する(s102)。入射角αは、外周
面P3の法線211に対する角度で、ビーム210が段削り部
107での反射を回避できる最小角(αmin)以上となる。
When determining the refraction angle and the beam path, the control device 31 first sets the inspection site P3 (s101).
Specifically, the horizontal distance B from the shaft end face 105 where the probe 21 is installed to the inspection site P3 where the flaw 120 is present is shown.
give. Next, the incident angle α when the ultrasonic beam 210 is incident on the inspection portion P3 on the outer peripheral surface from the final reflection point (here, P2) is determined (s102). The incident angle α is an angle with respect to the normal line 211 of the outer peripheral surface P3.
It is more than the minimum angle (αmin) that can avoid the reflection at 107.

【0032】次に、入射角αから屈折角θを算出する
(s103)。超音波ビーム210の入射点P0における
屈折角(軸端面105の法線212に対する角度)をθとする
と、第1反射点P1、第2反射点P2で等角の反射を繰
り返すので、結局、屈折角θ=(90度−入射角α)と
なる。すなわち、検査部位P3へのビーム経路で、障害
物を回避できる最終ビームの入射角αから屈折角θを決
定することができる。
Next, the refraction angle θ is calculated from the incident angle α (s103). Assuming that the angle of refraction of the ultrasonic beam 210 at the incident point P0 (the angle with respect to the normal 212 of the shaft end face 105) is θ, the first reflection point P1 and the second reflection point P2 repeatedly reflect at an equal angle, and as a result, the refraction occurs. Angle θ = (90 degrees−incident angle α). That is, the refraction angle θ can be determined from the incident angle α of the final beam that can avoid the obstacle on the beam path to the inspection site P3.

【0033】次に、屈折角θと水平距離Bからスキップ
数iを算出する(s103)。P0点とP1点、P1点
とP2点、P2点とP3点それぞれの垂直投影距離をA
1、A2及びA3は、探触子21の位置と輪軸100のサイ
ズから固定値となるので、屈折角θは数1のように定義
できる。
Next, the skip number i is calculated from the refraction angle θ and the horizontal distance B (s103). The vertical projection distance of each of the points P0 and P1, the points P1 and P2, and the points P2 and P3 is A
1, A2, and A3 are fixed values based on the position of the probe 21 and the size of the wheel set 100, so that the refraction angle θ can be defined as in Equation 1.

【0034】[0034]

【数1】θ=tan~1(ΣAi/B) 図7の例で、i=1〜3、ΣAi=A1+A2+A3と
なる。
## EQU1 ## θ = tan の1 (ΣAi / B) In the example of FIG. 7, i = 1 to 3, and ΣAi = A1 + A2 + A3.

【0035】屈折角θが求まれば、数1の関係からスキ
ップ数iが決定できる。なお、スキップ数iの算出は必
須の手順ではなく、スキップ数が未知でもスキップ探傷
は可能である。次に、水平距離Bと屈折角θからビーム
路程Wを数2により求める(s105)。
Once the refraction angle θ has been obtained, the skip number i can be determined from the relationship of Equation 1. The calculation of the skip number i is not an essential procedure, and skip flaw detection is possible even if the skip number is unknown. Next, the beam path W is obtained from the horizontal distance B and the refraction angle θ by using Equation (2) (s105).

【0036】[0036]

【数2】W=B/cosθ これより、電子走査による超音波ビームの収束位置を路
程Wに決定できる。
## EQU2 ## From this, the convergence position of the ultrasonic beam by electronic scanning can be determined to be the path W.

【0037】制御装置31は検査部位に対する屈折角θと
ビーム路程Wを求めると、それらを超音波探傷器20に伝
送する。超音波探傷器20のCPU(図示なし)は、屈折
角θと超音波路程Wを受け取ると各振動子の遅延時間を
算出し、遅延回路25の制御端に遅延時間を指示する。
When the control device 31 obtains the refraction angle θ and the beam path W with respect to the inspection site, it transmits them to the ultrasonic flaw detector 20. Upon receiving the refraction angle θ and the ultrasonic path W, the CPU (not shown) of the ultrasonic flaw detector 20 calculates the delay time of each transducer, and instructs the control terminal of the delay circuit 25 of the delay time.

【0038】超音波探傷器20は、遅延回路25を屈折角θ
と路程Wのビーム収束位置(検査部位P3)に設定する
と、トリガ信号を発信して探触子21から超音波ビーム21
0を輪軸100内に送出し、検査部位P3にビーム210を収
束させる。検査部位P3に傷120がある場合、傷エコー
は上記のビーム経路を反対に伝播して探触子21に受信さ
れ、超音波探傷器20で識別される。この後、探触子駆動
装置30により、探触子21を円周方向に所定角度ずつ回動
して、検査部位P3の全周に亘る探傷を行う。
The ultrasonic flaw detector 20 sets the delay circuit 25 to the refraction angle θ.
And the beam convergence position (inspection site P3) of the path W, a trigger signal is transmitted and the ultrasonic beam 21
0 is transmitted into the wheel set 100, and the beam 210 is focused on the inspection site P3. If the inspection site P3 has a flaw 120, the flaw echo propagates in the opposite direction along the beam path, is received by the probe 21, and is identified by the ultrasonic flaw detector 20. Thereafter, the probe driving device 30 rotates the probe 21 by a predetermined angle in the circumferential direction to perform a flaw detection over the entire circumference of the inspection region P3.

【0039】次に、検査部位P3の位置を軸方向に、水
平距離Bが大きくなる方向へ変更する場合、P3は段削
り部107から次第に遠くなるので、入射角αは次第に小
さな角度で済むようになる。したがって、距離Bの変化
分△Bと屈折角θの変化分△θを予め対応付けておけ
ば、以後は屈折角θを△θずつ可変して検査部位の調節
を行うことができる。これにより、車軸101の外周面の
全検査範囲を容易に自動探傷できる。
Next, when the position of the inspection part P3 is changed in the axial direction and in the direction in which the horizontal distance B increases, the incident angle α needs to be gradually smaller since the position P3 gradually becomes farther from the stepped portion 107. become. Therefore, if the change amount ΔB of the distance B and the change amount Δθ of the refraction angle θ are associated in advance, the inspection part can be adjusted by changing the refraction angle θ by Δθ. Thus, the entire inspection range of the outer peripheral surface of the axle 101 can be easily and automatically detected.

【0040】このように、本実施例による輪軸の超音波
探傷法によれば、屈折角θを10数度の小角度から使用
でき、軸端面からのスキップ探傷で段削り部などによる
超音波の死角を回避できるので、従来のように車両を分
解して円周面から探傷を行う必要がなくなり、輪軸の超
音波探傷試験を飛躍的に合理化できる。
As described above, according to the ultrasonic inspection method for the wheel set according to the present embodiment, the refraction angle θ can be used from a small angle of about several tens of degrees, and the ultrasonic inspection by the stepped portion or the like is performed by the skip inspection from the shaft end surface. Since blind spots can be avoided, there is no need to disassemble the vehicle and perform flaw detection from the circumferential surface as in the related art, and the ultrasonic flaw detection test for the wheel set can be drastically rationalized.

【0041】図8は探触子駆動装置の構造を示す。本実
施例の探触子駆動装置30は、超音波探触子21を軸端面10
1の中心からずれた円周上に設定するとともに、円周上
を数度ずつ間歇的に旋回して、車軸101の全ての円柱面
を探傷できるように構成している。
FIG. 8 shows the structure of the probe driving device. The probe driving device 30 of the present embodiment is configured such that the ultrasonic probe 21
1 is set on a circle deviated from the center, and is turned intermittently several degrees on the circumference so that all the cylindrical surfaces of the axle 101 can be detected.

【0042】超音波探触子21はエアシリンダ33と探触子
保持器319で構成される探触子ホルダ320に保持されて、
車軸101の端面105に押し当てられる。探触子21の軸端面
105上の半径方向位置は、軸端面の中心穴106に挿入され
た案内棒35を基準にして決められている。軸端面105と
超音波探触子21の接触面には超音波の伝達を助ける接触
媒質(図示してない)が塗布され、探触子21は、エアシ
リンダ33によって、軸端面105に押し付けられながら、
電動機32によって、減速機313と回転軸34を介して回転
され、軸端面上を走査する。
The ultrasonic probe 21 is held by a probe holder 320 composed of an air cylinder 33 and a probe holder 319.
It is pressed against the end face 105 of the axle 101. Shaft end face of probe 21
The radial position on 105 is determined with reference to guide rod 35 inserted into center hole 106 in the shaft end face. The contact surface between the shaft end face 105 and the ultrasonic probe 21 is coated with a couplant (not shown) for assisting the transmission of ultrasonic waves, and the probe 21 is pressed against the shaft end face 105 by the air cylinder 33. While
It is rotated by the electric motor 32 via the reduction gear 313 and the rotating shaft 34, and scans on the shaft end face.

【0043】探触子ホルダ320および電動機32は前後移
動台36に固定して取り付けられており、前後移動ハンド
ル315で前後移動ねじ37を回すことにより軸端面105に対
する探触子21の概略位置決めが行われる。前後移動台36
は支柱316で結合された昇降台38に乗っていて、昇降ね
じ39を昇降ハンドル314を回転させることによって、上
下方向の位置合わせが行われる。
The probe holder 320 and the electric motor 32 are fixedly mounted on the front-rear moving table 36. By turning the front-rear moving screw 37 with the front-rear moving handle 315, the probe 21 can be roughly positioned with respect to the shaft end face 105. Done. Front and rear carriage 36
Is mounted on an elevating table 38 connected by columns 316, and the elevating screw 39 is rotated by an elevating handle 314, thereby performing vertical alignment.

【0044】図9に、探触子駆動装置を用いた車軸探傷
の手順を示す。まず、案内棒35を軸端面のセンターホール106に
挿入し、超音波探触子21の軸端面25に対する半径方向の
位置を決める(s201)。次に、軸端面に接触媒質を
塗布し(s202)、エアシリンダ33を作動させて、探
触子21を軸端面105に押し付ける(s203)。
FIG. 9 shows an axle flaw detection procedure using the probe drive device. First, the guide rod 35 is inserted into the center hole 106 of the shaft end face, and the position of the ultrasonic probe 21 in the radial direction with respect to the shaft end face 25 is determined (s201). Next, a couplant is applied to the shaft end face (s202), and the probe 21 is pressed against the shaft end face 105 by operating the air cylinder 33 (s203).

【0045】次に、制御装置31に探触子21の設定位置
(検査停止する旋回角)、検査部位までの水平距離
(B)等の探傷条件を設定する(s204)。これによ
り、制御装置31は屈折角θや検査部位までの超音波路程
Wを求めて、このθとWにより超音波探触子21の電子走
査条件(各素子の遅延時間)を設定する。
Next, flaw detection conditions such as the set position of the probe 21 (turning angle at which inspection is stopped) and the horizontal distance (B) to the inspection site are set in the control device 31 (s204). As a result, the control device 31 obtains the refraction angle θ and the ultrasonic path W to the inspection site, and sets the electronic scanning condition (delay time of each element) of the ultrasonic probe 21 based on the θ and W.

【0046】次に、制御装置31の探傷開始スイッチ330
を投入して探傷を開始する(s205)。この結果、ア
レイ型超音波探触子の各振動子22は、設定された遅延時
間に応じて順次励振して、超音波ビーム210の屈折角θ
及び収束距離Wを固定または変更しながら、軸101の内
部に超音波を送出する(s206)。
Next, the flaw detection start switch 330 of the control device 31
To start flaw detection (s205). As a result, each transducer 22 of the array type ultrasonic probe sequentially excites according to the set delay time, and the refraction angle θ of the ultrasonic beam 210
While fixing or changing the convergence distance W, an ultrasonic wave is transmitted inside the shaft 101 (s206).

【0047】この結果、軸内部から反射してくる超音波
エコーを探触子21で受信、検出して、探触子の向き、ビ
ーム路程及び超音波エコー高さ等のデータを収録する
(s207)。また、収録したデータを、リアルタイム
で表示する(s208)。これは探傷の進捗度と検出さ
れた傷の有無を監視するためのもので、たとえば、Cス
コープ画面(縦軸を超音波ビーム路程、横軸を探触子の
回転走査角とした平面つまり、軸を縦に切り開いた展開
図上に、きず信号が検出された位置を表示したもの)を
表示する。
As a result, the ultrasonic echo reflected from the inside of the axis is received and detected by the probe 21, and data such as the direction of the probe, the beam path, and the ultrasonic echo height are recorded (s207). ). The recorded data is displayed in real time (s208). This is to monitor the progress of the flaw detection and the presence or absence of the detected flaw. For example, a C scope screen (a plane with the vertical axis representing the ultrasonic beam path and the horizontal axis representing the rotational scanning angle of the probe, A position where a flaw signal is detected is displayed on a developed view in which the axis is cut vertically.

【0048】次に、電動機32を駆動させて、超音波探触
子21を軸端面105のセンターホール106を中心に一定角度
だけ回転させて停止する(s209)。そして、上記s
206からの処理を繰り返し、規定の回転角度までの探
傷が終了した場合に(s210)終了する。なお、検査
部位を軸方向に移動する場合は、超音波ビーム210の屈
折角θを変更する。屈折角θは段削り部107から遠ざか
るにしたがい、入射角αが小さくなるので、たとえば屈
折角θを所定刻みで増加して、検査部位を可変すること
ができる。
Next, the electric motor 32 is driven to rotate the ultrasonic probe 21 by a predetermined angle around the center hole 106 of the shaft end surface 105 and stop (s209). And the above s
The processing from step 206 is repeated, and when the flaw detection up to the specified rotation angle is completed (s210), the processing ends. When the inspection part is moved in the axial direction, the refraction angle θ of the ultrasonic beam 210 is changed. Since the angle of refraction θ decreases as the distance from the stepping portion 107 decreases, the angle of refraction θ increases at predetermined intervals, for example, so that the inspection site can be changed.

【0049】以上、従来のSV波や縦波がきずのコーナ
で2回反射して音圧が大幅に低下するのに対し、本実施
例は探傷面に平行に振動するSH超音波を使用し、その
モード変換の少ない特性を利用して、エコー強度の低下
が少ない高感度の超音波探傷を実現した。
As described above, while the conventional SV wave or longitudinal wave is reflected twice at the corner of the flaw and the sound pressure is greatly reduced, the present embodiment uses the SH ultrasonic wave vibrating parallel to the flaw detection surface. Utilizing the characteristic of the mode conversion that is small, high-accuracy ultrasonic flaw detection with little decrease in echo intensity was realized.

【0050】特に、車軸の嵌合部などを軸端面から斜角
探傷する場合に、従来のSV波では屈折角35°以下で
の使用が不可能であったのに対し、SH超音波は屈折角
35°以下での使用が可能で、超音波路程の設定や不感
帯の回避に裕度が高い。さらに、縦波やSV波で問題に
なる嵌合部からの圧入エコーが極めて小さいので、きず
の識別精度を大幅に向上できる。
In particular, in the case of oblique flaw detection of the fitting portion of the axle from the shaft end face, the conventional ultrasonic wave cannot be used at a refraction angle of 35 ° or less, whereas the SH ultrasonic wave is refraction. It can be used at an angle of 35 ° or less, and has high latitude in setting the ultrasonic path and avoiding the dead zone. Furthermore, since the press-in echo from the fitting portion, which is a problem with longitudinal waves or SV waves, is extremely small, the accuracy of flaw identification can be greatly improved.

【0051】また、本実施例では、電子走査式の超音波
探触子を用い、アレイ状に配列したSH振動子の励起ト
リガーの遅延時間を、検査部位から求めた屈折角と超音
波路程に応じて任意に制御できるようにしたので、効率
のよい検査を実施できる。
In this embodiment, an electronic scanning type ultrasonic probe is used, and the delay time of the excitation trigger of the SH transducers arranged in an array is set to the refraction angle and the ultrasonic path determined from the inspection site. Since the control can be arbitrarily performed according to this, efficient inspection can be performed.

【0052】上記実施例において、探触子からの検査部
位までの超音波路程の総延長距離Wに超音波ビームを収
束するようにしている。ところが、別の実験的知見によ
れば、スキップ探傷を行う場合の収束位置は必ずしも検
査部位にしなくても良い場合がある。すなわち、超音波
ビーム路程の所定位置で一旦、ビーム幅を収束させる
と、各スキップ点でのビーム幅が順次、狭められること
が認められた。
In the above embodiment, the ultrasonic beam is converged to the total extension distance W of the ultrasonic path from the probe to the inspection site. However, according to another experimental knowledge, the convergence position when skip flaw detection is performed may not necessarily be the inspection part. That is, it was recognized that once the beam width was converged at a predetermined position along the ultrasonic beam path, the beam width at each skip point was sequentially narrowed.

【0053】図10に、別の収束方法による実施例を示
す。図示例は、軸端面105の中心線上で、中心からずれ
た位置にSH探触子21を設置し、1.5スキップ法で探
傷部位P3の材料きず120を探傷する場合である。超音
波ビームは屈折角θで車軸101内にP0から送出さ
れ、P1、P2で反射してP3に到達する。この場合、
P0から入射したビームが最初に中心軸o−o’を越え
て円柱面(ここでは、P1)で反射する前で、中心軸o
−o’から垂直に車軸半径Rの1/2以内の位置F1
に、一旦、収束させれば、検査部位P3に到達したビー
ム幅はP0でのビーム幅以下となる。つまり、P0〜P
3の各点でのビーム幅をW0、W1、W2、W3とする
と、W0≧W1≧W2≧W3となって、反射を繰り返す
度にビーム幅が狭くなり、検査部位にることが認められ
た。
FIG. 10 shows an embodiment using another convergence method. The illustrated example is a case in which the SH probe 21 is installed at a position deviated from the center on the center line of the shaft end face 105, and the material flaw 120 at the flaw detection site P3 is flawed by the 1.5 skip method. The ultrasonic beam is transmitted from the point P0 into the axle 101 at the refraction angle θ, reflected by the points P1 and P2, and reaches the point P3. in this case,
Before the beam incident from P0 first reflects beyond the central axis oo 'on the cylindrical surface (here, P1), the central axis o
A position F1 vertically within -1/2 of the axle radius R from -o '
However, once converged, the beam width reaching the inspection site P3 becomes smaller than the beam width at P0. That is, P0-P
Assuming that the beam width at each point of No. 3 is W0, W1, W2, W3, W0 ≧ W1 ≧ W2 ≧ W3, and the beam width becomes narrower each time reflection is repeated, and it is recognized that the beam is located at the inspection site. .

【0054】このように、軸端面から斜角入射されたS
H超音波ビームが、最初に中心軸を越えて円柱面で反射
する前で、かつ、中心軸から垂直に車軸半径の1/2以
内の位置に収束するように、電子走査式超音波探触子の
走査条件を設定する。これによれば、検査部位に関係な
くビームの収束位置を固定的に取り扱えるので、屈折角
のみを制御条件とすればよく、広汎な検査部位の連続的
な試験がより容易になる。
As described above, S incident obliquely from the shaft end face
Electronic scanning ultrasonic probe so that the H ultrasonic beam converges to a position within 1/2 of the axle radius perpendicular to the central axis before it first reflects off the cylindrical surface beyond the central axis. Set the child scanning conditions. According to this, since the convergence position of the beam can be fixedly handled regardless of the inspection site, only the refraction angle needs to be set as the control condition, and continuous testing of a wide range of inspection sites becomes easier.

【0055】[0055]

【発明の効果】本発明によれば、輪軸の嵌合部の超音波
探傷に低屈折角からの使用が可能なSH超音波を用いて
スキップ探傷するので、段削り部などでの反射による超
音波の死角を大幅に低減でき、軸端面から嵌合部など全
接触部の探傷が可能になるので、従来の軸受面からの探
傷が不要になり、検査能率を飛躍的に向上できる。
According to the present invention, the ultrasonic flaw detection of the fitting portion of the wheel set is performed by using the SH ultrasonic wave which can be used from a low refraction angle. Blind spots of sound waves can be greatly reduced, and flaw detection of all contact parts such as fitting parts from the shaft end face becomes possible, so that conventional flaw detection from the bearing surface becomes unnecessary, and inspection efficiency can be dramatically improved.

【0056】また、SH超音波は嵌合部材や傷部での反
射による振動様式の変換が少ないので、スキップ探傷の
適用による超音波強度の減衰が小さく、かつ、嵌合部で
の圧入エコーがSV超音波に比べ大幅に低減するので、
探傷の感度と検査精度を大幅に向上できる。
Also, since the SH ultrasonic wave has little change in the vibration mode due to reflection at the fitting member or the flaw, the attenuation of the ultrasonic intensity due to the application of the skip flaw detection is small, and the press-in echo at the fitting part is reduced. As it is greatly reduced compared to SV ultrasonic,
The flaw detection sensitivity and inspection accuracy can be greatly improved.

【0057】さらに、本発明の輪軸の超音波探傷装置
は、軸端面の中心穴に挿入する位置決め用の案内棒と、
前記案内棒の外側に平行に配置され、前記回転部材に一
端を支持され他端に前記超音波探触子を前記軸端面に対
向させて保持する探触子保持部材と、を設けているの
で、超音波探触子の位置決めが容易に行え、輪軸の端面
の同一円周上から、輪軸の被検査部の周方向の全域を簡
単に自動探傷することができる。
Further, the ultrasonic inspection apparatus for a wheel axle according to the present invention comprises: a positioning guide rod inserted into a center hole of the shaft end face;
A probe holding member disposed parallel to the outside of the guide rod, one end of which is supported by the rotating member and the other end of which holds the ultrasonic probe facing the shaft end face. In addition, the ultrasonic probe can be easily positioned, and the entire area in the circumferential direction of the inspected portion of the wheelset can be easily and automatically detected from the same circumference on the end face of the wheelset.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による輪軸探傷装置のブロッ
ク図。
FIG. 1 is a block diagram of a wheel set flaw detector according to one embodiment of the present invention.

【図2】本発明で使用するSH超音波の優位性を示す試
験例の説明図。
FIG. 2 is an explanatory diagram of a test example showing the superiority of SH ultrasonic waves used in the present invention.

【図3】超音波探傷装置の構成図。FIG. 3 is a configuration diagram of an ultrasonic flaw detector.

【図4】電子走査式のSH超音波探触子の概略構造と動
作原理を示す説明図。
FIG. 4 is an explanatory diagram showing a schematic structure and an operation principle of an electronic scanning SH ultrasonic probe.

【図5】車軸端面からの斜角探傷の方法を示す説明図。FIG. 5 is an explanatory view showing a method of oblique flaw detection from an axle end face.

【図6】電子走査する超音波路程として、超音波ビーム
の屈折角と収束位置を決定する処理フロー図。
FIG. 6 is a processing flowchart for determining a refraction angle and a convergence position of an ultrasonic beam as an ultrasonic path for electronic scanning.

【図7】段削り部のある車軸の嵌合部を探傷する超音波
経路の説明図。
FIG. 7 is an explanatory diagram of an ultrasonic path for flaw detection of a fitting portion of an axle having a stepped portion.

【図8】一実施例による超音波探触子駆動装置の構造
図。
FIG. 8 is a structural diagram of an ultrasonic probe driving device according to one embodiment.

【図9】一実施例による輪軸の超音波探傷試験の手順を
示すフロー図。
FIG. 9 is a flowchart showing the procedure of an ultrasonic inspection test for a wheel set according to one embodiment.

【図10】他の実施例による超音波ビームの収束方法を
示す説明図。
FIG. 10 is an explanatory diagram showing a method of converging an ultrasonic beam according to another embodiment.

【図11】車軸に段削り部のある場合に、従来の超音波
探傷方法を示す説明図。
FIG. 11 is an explanatory view showing a conventional ultrasonic flaw detection method when a stepped portion is provided on an axle.

【図12】従来の超音波探傷のため、電車用車軸の分解
の様子示す説明図。
FIG. 12 is an explanatory view showing a state in which a train axle is disassembled for conventional ultrasonic testing.

【図13】超音波の振動様式を説明するイメージ図。FIG. 13 is an image diagram illustrating a vibration mode of an ultrasonic wave.

【図14】斜め入射の音圧往復通過率の試験例を示す説
明図。
FIG. 14 is an explanatory diagram showing a test example of a sound pressure reciprocating passage rate at oblique incidence.

【図15】縦波超音波の強度が減弱する様子を示す説明
図。
FIG. 15 is an explanatory diagram showing how the intensity of longitudinal ultrasonic waves is reduced.

【符号の説明】[Explanation of symbols]

20…超音波探傷器、21…超音波探触子、22…振動子、
23…トリガ信号発生器、24…パルス発生器、25…送信遅
延回路、26…受信遅延回路、27…加算増幅器、28…掃引
信号発生器、29…表示装置、30…探触子駆動装置、31…
制御装置、32…電動機、33…エアシリンダ、34…回転
軸、35…案内棒、36…前後移動台、37…前後移動ねじ、
38…昇降台、39…昇降ねじ、40…データ収録処理装置、
41…記録装置、100…輪軸、101…車軸、102…車輪、103
…歯車、104…軸受け面、105…軸端面、106…中心穴、1
07…段削り部、108…車輪嵌合部、109…歯車嵌合部、21
0…超音波ビーム。
20: ultrasonic flaw detector, 21: ultrasonic probe, 22: vibrator,
23 ... trigger signal generator, 24 ... pulse generator, 25 ... transmission delay circuit, 26 ... reception delay circuit, 27 ... addition amplifier, 28 ... sweep signal generator, 29 ... display device, 30 ... probe drive device, 31…
Control device, 32: Electric motor, 33: Air cylinder, 34: Rotary shaft, 35: Guide rod, 36: Front / rear moving table, 37: Front / rear moving screw,
38: lifting table, 39: lifting screw, 40: data recording and processing device,
41… Recording device, 100… Wheel, 101… Axle, 102… Wheel, 103
... gear, 104 ... bearing surface, 105 ... shaft end surface, 106 ... center hole, 1
07: Step cutting part, 108: Wheel fitting part, 109: Gear fitting part, 21
0: Ultrasonic beam.

フロントページの続き (72)発明者 拵 美津男 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 菊池 修 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 Fターム(参考) 2G047 AA07 AC08 AD18 BB02 BC07 CB00 DB02 EA09 EA10 EA13 GA05 GB02 GB04 Continuing on the front page (72) Inventor Kozitsu Mitsue 3-2-1, Sachimachi, Hitachi-shi, Ibaraki Prefecture Within Hitachi Engineering Co., Ltd. (72) Inventor Osamu Kikuchi 3-2-1, Sachimachi, Hitachi-shi, Hitachi, Hitachi F term in Engineering Co., Ltd. (reference) 2G047 AA07 AC08 AD18 BB02 BC07 CB00 DB02 EA09 EA10 EA13 GA05 GB02 GB04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外周面に被検査部を有する輪軸の軸端面
に超音波探触子を設置し、前記超音波探触子より輪軸内
に超音波を被検査部に向けて送出し、前記被検査部の材
料きずから反射してくる超音波を前記探触子で受信し
て、前記材料きずを検出する輪軸の超音波探傷方法にお
いて、 前記超音波探触子から材料の粒子が超音波の伝搬軸に対
して垂直方向に振動する振動様式のSH超音波を送出
し、前記外周面で少なくとも1回は反射(スキップ)さ
せ、被検査部面の法線に対して所定の入射角αで前記S
H超音波を入射する場合に、前記超音波探触子から送出
する前記SH超音波の屈折角θを、θ=90度−αの関
係に設定することを特徴とする輪軸の超音波探傷方法。
An ultrasonic probe is installed on a shaft end surface of a wheel set having a portion to be inspected on an outer peripheral surface, and ultrasonic waves are transmitted from the ultrasonic probe to the portion to be inspected within the wheel set, and In the wheel flaw detection method in which the probe receives ultrasonic waves reflected from the material flaws of the inspected part and detects the material flaws, particles of the material from the ultrasonic probe generate ultrasonic waves. Is transmitted at least once on the outer peripheral surface, and is reflected at a predetermined angle of incidence α with respect to the normal to the surface of the inspected portion. And the S
A method for detecting flaws on a wheel axle, wherein the angle of refraction θ of the SH ultrasonic waves transmitted from the ultrasonic probe when H ultrasonic waves are incident is set to a relation of θ = 90 degrees−α. .
【請求項2】 外周面に被検査部を有する輪軸の軸端面
に超音波探触子を設置し、前記超音波探触子より輪軸内
に超音波を被検査部に向けて送出し、前記被検査部の材
料きずから反射してくる超音波を前記探触子で受信し
て、前記材料きずを検出する輪軸の超音波探傷方法にお
いて、 前記超音波探触子から輪軸内にSH超音波を送出し、前
記外周面で前記SH超音波をスキップ(反射)しながら
到達させる場合に、前記被検査部が死角にならないよう
に被検査部面の法線に対する前記SH超音波の入射角α
を定め、前記入射角αから前記輪軸内に送出される前記
SH超音波の屈折角θを求め、前記屈折角θに基づいて
前記SH超音波を収束する路程Wを求め、前記探触子か
らのSH超音波を前記屈折角θで送出し、路程Wに収束
させることを特徴とする輪軸の超音波探傷方法。
2. An ultrasonic probe is installed on a shaft end surface of a wheel set having a part to be inspected on an outer peripheral surface, and ultrasonic waves are transmitted from the ultrasonic probe to the part to be inspected within the wheel set, and An ultrasonic flaw detection method for a wheel set in which the probe receives ultrasonic waves reflected from a material flaw of the inspected portion and detects the material flaw, wherein SH ultrasonic waves are introduced into the wheel set from the ultrasonic probe. And when the SH ultrasonic waves reach the outer peripheral surface while being skipped (reflected), the incident angle α of the SH ultrasonic waves with respect to the normal to the surface of the inspection target so that the inspection target does not become a blind spot.
Is determined from the angle of incidence α, the refraction angle θ of the SH ultrasonic wave transmitted into the wheel axle, a path W for converging the SH ultrasonic wave based on the refraction angle θ is determined, and And transmitting said SH ultrasonic wave at said refraction angle θ and converging it on a path W.
【請求項3】 請求項1または2において、 前記屈折角θ及び前記探触子と前記被検査部間の水平距
離Bが定まっている場合に、前記被検査部の軸方向の変
更は屈折角θを可変して行うことを特徴とする輪軸の超
音波探傷方法。
3. The method according to claim 1, wherein when the angle of refraction θ and the horizontal distance B between the probe and the part to be inspected are determined, the axial direction of the part to be inspected is changed by the angle of refraction. An ultrasonic flaw detection method for a wheel set, which is performed by changing θ.
【請求項4】 超音波探触子と、外周面に被検査部を有
する輪軸の軸端面に超音波探触子を設置し、前記探触子
を前記軸端面の円周方向に回動させる探触子駆動装置を
備え、前記超音波探触子を回動しては輪軸内に超音波を
入射し、前記被検査部の材料きずから反射して前記探触
子で受信される超音波から前記材料きずを検出する輪軸
の超音波探傷装置において、 前記探触子駆動装置は、上下方向及び輪軸の長手方向に
移動可能にした架台と、前記架台上に設置された回転部
材と、前記回転部材に一端を固定して先端部を前記軸端
面の中心穴に挿入する位置決め用の案内棒と、前記案内
棒の外側に平行に配置され、前記回転部材に一端を支持
され他端に前記超音波探触子を前記軸端面に対向させて
保持する探触子保持部材と、を設けたことを特徴とする
輪軸の超音波探傷装置。
4. An ultrasonic probe and an ultrasonic probe are installed on a shaft end surface of a wheel set having a portion to be inspected on an outer peripheral surface, and the probe is rotated in a circumferential direction of the shaft end surface. A probe driving device is provided, the ultrasonic probe is rotated, and an ultrasonic wave is incident on a wheel axis, reflected from a material flaw of the inspection target, and received by the probe. In the wheel flaw detection device for detecting the material flaw from the, the probe drive device, a gantry movable in the vertical direction and the longitudinal direction of the wheel axis, and a rotating member installed on the gantry, A positioning guide rod for fixing one end to a rotating member and inserting a tip into a center hole of the shaft end face, disposed in parallel outside the guide rod, one end supported by the rotating member and the other end A probe holding member for holding an ultrasonic probe in opposition to the shaft end face, and Ultrasonic flaw detector wheelsets to symptoms.
JP10316359A 1998-11-06 1998-11-06 Method and device for ultrasonic crack detection of wheel set Pending JP2000146922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316359A JP2000146922A (en) 1998-11-06 1998-11-06 Method and device for ultrasonic crack detection of wheel set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316359A JP2000146922A (en) 1998-11-06 1998-11-06 Method and device for ultrasonic crack detection of wheel set

Publications (1)

Publication Number Publication Date
JP2000146922A true JP2000146922A (en) 2000-05-26

Family

ID=18076232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316359A Pending JP2000146922A (en) 1998-11-06 1998-11-06 Method and device for ultrasonic crack detection of wheel set

Country Status (1)

Country Link
JP (1) JP2000146922A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005903A (en) * 2000-06-20 2002-01-09 Mitsubishi Heavy Ind Ltd Ultrasonic inspection device and flaw detection method
ES2294942A1 (en) * 2006-09-22 2008-04-01 Interlab, Ingenieria Electronica Y De Control, S.A.U. Method for inspecting axis of railway transport material, involves emitting ultrasound towards axis of shaft and receiving set of echoes by transducer, which results in emission of ultrasound
JP2008139325A (en) * 2008-01-16 2008-06-19 Toshiba Corp Ultrasonic flaw detector
JP2008256624A (en) * 2007-04-09 2008-10-23 Jfe Steel Kk Method, apparatus, and system for ultrasonic flaw detection of shaft member
JP2009042173A (en) * 2007-08-10 2009-02-26 Toshiba Corp Device and method for ultrasonic inspection
CN103558294A (en) * 2013-11-05 2014-02-05 南车二七车辆有限公司 Probe movement position control device for wheel set ultrasonic flaw detection, and using method thereof
JP2014185895A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Ultrasonic flaw detection probe and ultrasonic flaw detection method
JP2015135268A (en) * 2014-01-17 2015-07-27 三菱重工業株式会社 Fitting part looseness inspection method and inspection device
CN105651860A (en) * 2016-02-03 2016-06-08 北京铁道工程机电技术研究所有限公司 Method and system for obtaining wheel set flaw detection data
JP2017514737A (en) * 2014-03-27 2017-06-08 ルッキーニ エッレエセ エセ.ピ.ア.Lucchini Rs S.P.A. Wheelset axle and corresponding ultrasonic inspection method
CN110470741A (en) * 2019-09-10 2019-11-19 常州春雷电子高新技术有限公司 Wheel axle end surface reflectoscope
CN111983025A (en) * 2020-08-31 2020-11-24 南通大学 Method for analyzing defects of rail head and rail web of steel rail

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005903A (en) * 2000-06-20 2002-01-09 Mitsubishi Heavy Ind Ltd Ultrasonic inspection device and flaw detection method
ES2294942A1 (en) * 2006-09-22 2008-04-01 Interlab, Ingenieria Electronica Y De Control, S.A.U. Method for inspecting axis of railway transport material, involves emitting ultrasound towards axis of shaft and receiving set of echoes by transducer, which results in emission of ultrasound
JP2008256624A (en) * 2007-04-09 2008-10-23 Jfe Steel Kk Method, apparatus, and system for ultrasonic flaw detection of shaft member
JP2009042173A (en) * 2007-08-10 2009-02-26 Toshiba Corp Device and method for ultrasonic inspection
JP2008139325A (en) * 2008-01-16 2008-06-19 Toshiba Corp Ultrasonic flaw detector
JP4602421B2 (en) * 2008-01-16 2010-12-22 株式会社東芝 Ultrasonic flaw detector
JP2014185895A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Ultrasonic flaw detection probe and ultrasonic flaw detection method
CN103558294A (en) * 2013-11-05 2014-02-05 南车二七车辆有限公司 Probe movement position control device for wheel set ultrasonic flaw detection, and using method thereof
JP2015135268A (en) * 2014-01-17 2015-07-27 三菱重工業株式会社 Fitting part looseness inspection method and inspection device
JP2017514737A (en) * 2014-03-27 2017-06-08 ルッキーニ エッレエセ エセ.ピ.ア.Lucchini Rs S.P.A. Wheelset axle and corresponding ultrasonic inspection method
CN105651860A (en) * 2016-02-03 2016-06-08 北京铁道工程机电技术研究所有限公司 Method and system for obtaining wheel set flaw detection data
CN110470741A (en) * 2019-09-10 2019-11-19 常州春雷电子高新技术有限公司 Wheel axle end surface reflectoscope
CN110470741B (en) * 2019-09-10 2024-03-15 常州春雷电子高新技术有限公司 Ultrasonic flaw detector for end face of wheel axle
CN111983025A (en) * 2020-08-31 2020-11-24 南通大学 Method for analyzing defects of rail head and rail web of steel rail

Similar Documents

Publication Publication Date Title
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
JP2000146922A (en) Method and device for ultrasonic crack detection of wheel set
JP4955359B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5633059B2 (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detection apparatus
JP5391375B2 (en) Plate thickness measuring method and plate thickness measuring apparatus
JP2004069301A (en) Acoustic inspection method and acoustic inspection device
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
EP3044581B1 (en) Rolling curved array ultrasonic scanner
JP2002214204A (en) Ultrasonic flaw detector and method using the same
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3571473B2 (en) Angle beam ultrasonic inspection method and apparatus
JP3612849B2 (en) C-scan ultrasonic flaw detection method and apparatus
US20240210358A1 (en) Method and Device for Checking the Wall of a Pipeline for Flaws
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JP3017346B2 (en) Inspection method for nozzle inner surface flaw
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
JP2003254952A (en) Ultrasonic flaw detection device and automatic flaw detection device using the same
JPH11326289A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JP2003344364A (en) Ultrasonic flaw detection method of solid shaft
JP3298085B2 (en) Ultrasonic flaw detection method and device
JPH10332649A (en) Method and apparatus for inspection of inside detect of water-wall pipe
JP2003004709A (en) Ultrasonic inspection method for wheel and apparatus therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727