JP2009042173A - Device and method for ultrasonic inspection - Google Patents

Device and method for ultrasonic inspection Download PDF

Info

Publication number
JP2009042173A
JP2009042173A JP2007209839A JP2007209839A JP2009042173A JP 2009042173 A JP2009042173 A JP 2009042173A JP 2007209839 A JP2007209839 A JP 2007209839A JP 2007209839 A JP2007209839 A JP 2007209839A JP 2009042173 A JP2009042173 A JP 2009042173A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducers
flaw detection
sensor
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209839A
Other languages
Japanese (ja)
Inventor
Hiroyuki Adachi
弘幸 安達
Atsushi Chihoshi
淳 千星
Junichi Takabayashi
順一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007209839A priority Critical patent/JP2009042173A/en
Publication of JP2009042173A publication Critical patent/JP2009042173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems, wherein an ultrasonic sensor using SH waves needs a contact medium, with high viscosity and physical scanning thereof takes a considerable time, and the adhesiveness between an oscillator and a flaw detection surface and the uniformity of a contact medium film cannot be obtained, when a flaw detection surface shape has a curvature, even though electronic scanning can be scanned by phased array technique in the prior phased array technique. <P>SOLUTION: The method for ultrasonic detection includes the steps of improving the adhesiveness and the uniformity of the contact medium film using a sensor 1 formed by connecting vibrators V1 to V8 each other generating SH waves with an elastic body 5 and by reading relative positional relation information of adjacent oscillators with strain gauges G1a to G7a, and G1b to G7b; calculating the drive timing of the oscillators, by using the incident angle of ultrasonic beams and the relative position relationship information of adjacent oscillators; and preventing an error in oscillators' drive timing due to the deformation of the sensor 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フェイズドアレイ探触子を用いて検査対象に発生したき裂等の検出を行う超音波探傷装置および超音波探傷方法に関わる。 The present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for detecting a crack or the like generated in an inspection object using a phased array probe.

一般に超音波探傷装置とは、検査対象物に超音波を送信し、き裂等から反射した超音波信号を受信・解析することによって検査対象のき裂等を検出するものである。   In general, an ultrasonic flaw detector detects a crack or the like of an inspection object by transmitting an ultrasonic wave to an inspection object and receiving and analyzing an ultrasonic signal reflected from the crack or the like.

このような超音波装置としては、ShearVertical波(以下SV波)、ShearHorizontal波(以下SH波)を用いたものがよく知られている。SH波はモード変換を起こさないために干渉による減衰や擬似エコーの発生がSV波よりも少なく、SV波よりも探傷精度が高いことが知られている。しかし、SV波のほうが取り扱い容易であるため、実際にはSV波を用いた探傷装置が多く用いられている。   As such an ultrasonic apparatus, those using a shear vertical wave (hereinafter referred to as an SV wave) and a shear horizontal wave (hereinafter referred to as an SH wave) are well known. Since SH waves do not cause mode conversion, it is known that attenuation due to interference and generation of pseudo echoes are less than those of SV waves, and the flaw detection accuracy is higher than that of SV waves. However, since the SV wave is easier to handle, in fact, many flaw detection devices using the SV wave are used.

SH波は、モード変換を利用して検査対象へ入射することが不可能であるため、センサーを検査対象へ配置する際に粘度の高い液体などの接触媒質を用いる必要がある。接触媒質は検査対象となる構造物よりも超音波のエネルギー減衰率が高く、また音速も検査対象と異なるため、なるべく薄く均一な膜状に形成されることが望ましい。また、このような粘度の高い接触媒質を用いる場合は、センサー配置後に反射エコーが安定するまでに数分から数十分程度の時間を要する。このため、センサーの移動によって走査を行うことは非常に時間がかかり非効率的である。   Since the SH wave cannot enter the inspection object using mode conversion, it is necessary to use a contact medium such as a liquid with high viscosity when the sensor is arranged on the inspection object. Since the contact medium has a higher ultrasonic energy attenuation rate than the structure to be inspected and the sound velocity is different from that of the inspection object, it is desirable that the contact medium be formed as thin and uniform as possible. Further, when such a contact medium having a high viscosity is used, it takes a time from several minutes to several tens of minutes until the reflection echo is stabilized after the sensor is arranged. For this reason, scanning by moving the sensor is very time consuming and inefficient.

この問題に対して、超音波ビームを電子的に走査させてさまざまな角度で探傷を行うフェイズドアレイ技術を用いることにより、センサーの物理的な走査を行わずに検査対象内部の走査を可能とすることができる。   To solve this problem, it is possible to scan the inside of the inspection object without performing physical scanning of the sensor by using phased array technology that electronically scans the ultrasonic beam to detect flaws at various angles. be able to.

フェイズドアレイ技術の概要について、図6を用いて説明する。複数個の振動子102からなセンサー107が接触媒質106を介して検査対象物108に配置されている。複数の振動子の駆動タイミングをずらして順番に駆動して振動子102の各々が超音波109を発生させる。この超音波109が合成されることによって、所望の入射角θを有する超音波ビーム110が発生する。各振動子の駆動タイミングを計算して制御することでさまざまな角度の超音波ビームを合成し、超音波ビームの電子的な走査を実現している。   The outline of the phased array technology will be described with reference to FIG. A sensor 107 including a plurality of vibrators 102 is arranged on the inspection object 108 via a contact medium 106. Each of the vibrators 102 generates ultrasonic waves 109 by sequentially driving the plurality of vibrators at different driving timings. By synthesizing the ultrasonic wave 109, an ultrasonic beam 110 having a desired incident angle θ is generated. By calculating and controlling the drive timing of each transducer, an ultrasonic beam of various angles is synthesized, and electronic scanning of the ultrasonic beam is realized.

入射角θを有する超音波ビーム110を得るための複数の振動子の駆動タイミングについて、(1)式を用いて以下説明する。各振動子間の距離をd(mm)、探傷角度をθ(度)、超音波の音速をv(m/s)とすると各振動子間の駆動タイミングを下記(1)式に示すΔt(ms)だけ遅らせて超音波を送信することにより斜角探傷は実現できる。   The drive timing of the plurality of transducers for obtaining the ultrasonic beam 110 having the incident angle θ will be described below using the equation (1). When the distance between the transducers is d (mm), the flaw detection angle is θ (degrees), and the sound velocity of the ultrasonic waves is v (m / s), the drive timing between the transducers is expressed by Δt ( The oblique flaw detection can be realized by transmitting ultrasonic waves with a delay of ms).

Δt=d・sinθ/v (1)
しかしながら、このようなフェイズドアレイ探触子は、配置される探傷面が水平でない場合、各振動子の駆動タイミングの計算結果と実際の超音波に誤差が生じるため、超音波ビームが検査対象のターゲットに収束せず探傷精度が低下する。SH波を用いる場合、センサーの再配置を繰り返して検査に好適な探傷面を探すことは、センサーの再配置の度に反射エコーが安定するまでの時間を要するため非効率的である。
Δt = d · sin θ / v (1)
However, in such a phased array probe, when the flaw detection surface to be arranged is not horizontal, an error occurs between the calculation result of the drive timing of each transducer and the actual ultrasonic wave, so the ultrasonic beam is the target to be inspected. The accuracy of flaw detection is reduced. When the SH wave is used, it is inefficient to search for a flaw detection surface suitable for inspection by repeating the rearrangement of the sensor because it takes time until the reflected echo is stabilized each time the sensor is rearranged.

探傷面の形状に起因する精度の低下を解消するための技術として、例えば特許文献1に示される装置がある。   As a technique for eliminating the decrease in accuracy caused by the shape of the flaw detection surface, for example, there is an apparatus disclosed in Patent Document 1.

特許文献1に示された従来のフェイズドアレイ式超音波探傷装置について、図7を用いて以下説明する。図7(a)は従来の装置の概略を示すブロック図、図7(b)は従来の装置を探傷面105に配置した状態の概略を示すブロック図である。   A conventional phased array type ultrasonic flaw detector disclosed in Patent Document 1 will be described below with reference to FIG. FIG. 7A is a block diagram showing an outline of a conventional apparatus, and FIG. 7B is a block diagram showing an outline of a state in which the conventional apparatus is arranged on the flaw detection surface 105.

図7(a)を用いて従来の装置の構成について説明する。探傷プローブ111の枠体101内に複数個の振動子102が1列に配置され、この振動子102の各々はそれぞれ弾性体103によって下方に押されて上下方向に移動可能に支持されている。振動子102の各々を支持する各弾性体103はそれぞれ上側に配置された振動子移動量検出器104に接続されている。   A configuration of a conventional apparatus will be described with reference to FIG. A plurality of transducers 102 are arranged in a row within the frame body 101 of the flaw detection probe 111, and each of the transducers 102 is pressed downward by an elastic body 103 and supported so as to be movable in the vertical direction. Each elastic body 103 that supports each of the vibrators 102 is connected to a vibrator movement amount detector 104 disposed on the upper side.

図7(b)を用いてこの装置の作用について説明する。図7(b)に示すように接触媒質106を介して探傷面105に探傷プローブ111を配置させる。ここでは探傷面105は曲面をなしており、振動子102の各々は弾性体103によって探傷面105に押し付けられる。各振動子102を探傷面105に押し付けることにより、探傷面105の表面形状に応じて弾性体103が圧縮され、これを振動子移動量検出器104が検出して各振動子102の上下方向の位相情報を得る。この位相情報を用いて振動子102各々の駆動タイミングを補正することによって探傷面の表面形状に起因するターゲットへの収束誤差を解消し、探傷精度を向上させている。
特開2001−305115号公報
The operation of this apparatus will be described with reference to FIG. As shown in FIG. 7B, the flaw detection probe 111 is arranged on the flaw detection surface 105 through the contact medium 106. Here, the flaw detection surface 105 has a curved surface, and each of the vibrators 102 is pressed against the flaw detection surface 105 by the elastic body 103. By pressing each transducer 102 against the flaw detection surface 105, the elastic body 103 is compressed according to the surface shape of the flaw detection surface 105, and this is detected by the transducer movement amount detector 104 to detect the vertical direction of each transducer 102. Get phase information. By correcting the drive timing of each transducer 102 using this phase information, the convergence error to the target due to the surface shape of the flaw detection surface is eliminated, and the flaw detection accuracy is improved.
JP 2001-305115 A

上述した装置は各振動子が上下方向のみに可動である。そのため、探傷面が大きい曲率を有する場合、超音波センサーが探傷面に対して十分な密着性を得ることができない。大きい曲率を有する探傷面に超音波センサーを配置した例を図8に示す。図8においては検査対象である構造物が円形状の断面を有しており、探傷面が大きい曲率を有している。図8に示した検査対象物においては探傷面105へ配置された振動子102の一部が探傷面105に対して大きく傾いてしまっている。そのため、密着性が悪く、振動子102各々から探傷面105に対して出力した超音波が収束せず、所望の角度の超音波ビームが合成されない可能性がある。また、接触媒質106の膜が振動子102と探傷面106の間において均一に形成されないために探傷精度が低下してしまう可能性があった。   In the apparatus described above, each vibrator is movable only in the vertical direction. Therefore, when the flaw detection surface has a large curvature, the ultrasonic sensor cannot obtain sufficient adhesion to the flaw detection surface. An example in which an ultrasonic sensor is arranged on a flaw detection surface having a large curvature is shown in FIG. In FIG. 8, the structure to be inspected has a circular cross section, and the flaw detection surface has a large curvature. In the inspection object shown in FIG. 8, a part of the vibrator 102 arranged on the flaw detection surface 105 is greatly inclined with respect to the flaw detection surface 105. For this reason, the adhesion is poor, and the ultrasonic waves output from the transducers 102 to the flaw detection surface 105 may not converge, and an ultrasonic beam having a desired angle may not be synthesized. Further, since the film of the contact medium 106 is not uniformly formed between the vibrator 102 and the flaw detection surface 106, there is a possibility that the flaw detection accuracy may be lowered.

本発明は上述した課題を解決するためになされたものであり、SH波を用いた超音波探傷において、検査対象の表面形状に起因した接触媒質の偏在と振動子駆動タイミングの誤差を防止して探傷精度を向上させることのできる超音波探傷装置の提供を目的とする。   The present invention has been made to solve the above-described problems, and in ultrasonic flaw detection using SH waves, prevents the uneven distribution of the contact medium and the vibrator drive timing error caused by the surface shape of the inspection object. An object of the present invention is to provide an ultrasonic flaw detector capable of improving flaw detection accuracy.

上記目的を達成するため、本発明による超音波探傷装置は、SH波を発生させる複数の振動子を1次元アレイ状または2次元アレイ状に配列し、隣接する前記複数の振動子を弾性体によって互いに接続してなる超音波センサーと、前記超音波センサーの探傷面と前記探傷面と対向する面のそれぞれに、前記複数の振動子のうち隣接する振動子間にわたって設けられ、検査対象への配置にともなう前記超音波センサーの変形に応じて歪量を出力する複数の歪検出器と、前記歪検出器の各々から出力された歪量を用いて隣接する振動子間の相対位置関係情報を計算する第1の演算機と、前記検査対象へ入射する超音波ビームの入射角度と隣接する振動子間の相対位置関係情報を用いて前記複数の振動子の駆動タイミングを計算する第2の演算機と、この第2の演算機が計算した前記駆動タイミングに基づいて前記複数の振動子を駆動させる探傷器とを備えることを特徴とする。   In order to achieve the above object, an ultrasonic flaw detector according to the present invention includes a plurality of transducers that generate SH waves arranged in a one-dimensional array or a two-dimensional array, and the adjacent transducers are elastically formed. An ultrasonic sensor that is connected to each other, and a flaw detection surface of the ultrasonic sensor and a surface that faces the flaw detection surface are provided between adjacent vibrators among the plurality of vibrators, and are arranged on an inspection target. A plurality of strain detectors that output strain amounts according to the deformation of the ultrasonic sensor, and the relative positional relationship information between adjacent transducers using the strain amounts output from each of the strain detectors. And a second computing unit that calculates driving timings of the plurality of transducers by using an incident angle of the ultrasonic beam incident on the inspection target and relative positional relationship information between adjacent transducers. When The second on the basis of the drive timing calculating unit has calculated, characterized in that it comprises a flaw detector to drive the plurality of vibrators.

また、本発明による超音波探傷方法は、SH波を発生させる複数の振動子を1次元アレイ状または2次元アレイ状に配列し、隣接する前記複数の振動子を弾性体によって互いに接続してなる超音波センサーを検査対象に配置するセンサー配置ステップと、それぞれ隣接した前記複数の振動子間の相対的な位置関係を計測する隣接振動子相対位置関係計測ステップと、この隣接振動子相対位置関係計測ステップによって計測した隣接振動子相対位置関係と前記超音波センサーから前記検査対象へ入射する超音波ビームの入射角度情報を用いて前記複数の振動子の駆動タイミングを計算する振動子駆動タイミング計算ステップと、
この振動子駆動タイミング計算ステップによって得た前記複数の振動子駆動タイミング情報に基づいて前記複数の振動子を駆動する振動子駆動ステップとを備えることを特徴とする。
In the ultrasonic flaw detection method according to the present invention, a plurality of transducers that generate SH waves are arranged in a one-dimensional array or a two-dimensional array, and the adjacent transducers are connected to each other by an elastic body. A sensor placement step for placing an ultrasonic sensor on a test object, an adjacent transducer relative positional relationship measurement step for measuring a relative positional relationship between the plurality of adjacent transducers, and an adjacent transducer relative positional relationship measurement A transducer drive timing calculation step of calculating drive timings of the plurality of transducers using the relative positional relationship between adjacent transducers measured in steps and incident angle information of an ultrasonic beam incident on the inspection object from the ultrasonic sensor; ,
A vibrator driving step of driving the plurality of vibrators based on the plurality of vibrator driving timing information obtained by the vibrator driving timing calculation step.

本発明によれば、SH波を用いた超音波探傷において、探傷面の表面形状に起因する各振動子の駆動タイミング計算結果と実際の超音波の誤差を解消するとともに、各振動子が検査対象の探傷面に良好に密着して配置可能であり、接触媒質の膜を薄く均一に形成することによって探傷精度を向上させることができる。   According to the present invention, in ultrasonic flaw detection using SH waves, an error between the drive timing calculation result of each vibrator and the actual ultrasonic wave caused by the surface shape of the flaw detection surface is eliminated, and each vibrator is inspected. The flaw detection surface can be arranged in good contact with each other, and the flaw detection accuracy can be improved by forming a thin film of the contact medium uniformly.

以下本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1から図3はそれぞれ本実施例の超音波探傷装置10のセンサー1を検査対象に配置した状態の概略を示す断面図である。図1ではセンサー1を配置した探傷面が平面である場合、図2では傾斜した探傷面が含まれる場合、図3では円形状の断面を有する構造物52cの円周方向に沿ってセンサー1を配置した場合をそれぞれ示す。また、図4は本実施例の超音波探傷装置10の動作を示すフローチャートである。   FIGS. 1 to 3 are cross-sectional views each showing an outline of a state in which the sensor 1 of the ultrasonic flaw detector 10 according to the present embodiment is disposed on an inspection target. In FIG. 1, when the flaw detection surface on which the sensor 1 is arranged is a flat surface, in FIG. 2, when the flaw detection surface is included, in FIG. 3, the sensor 1 is moved along the circumferential direction of the structure 52c having a circular cross section. Each case is shown. FIG. 4 is a flowchart showing the operation of the ultrasonic flaw detector 10 of this embodiment.

本実施例の超音波探傷装置10の構成について、図1〜3を用いて以下説明する。   The configuration of the ultrasonic flaw detector 10 of this embodiment will be described below with reference to FIGS.

本実施例の超音波探傷装置10はセンサー1、演算機3、探傷器4から構成される。   The ultrasonic flaw detector 10 according to this embodiment includes a sensor 1, a calculator 3, and a flaw detector 4.

センサー1は、1次元アレイ状に配列されたSH波を発生させる振動子V1〜V8、隣接した各振動子V1〜V8の各々を接続する合成樹脂から成る弾性体5、隣接した振動子V1〜V8の各々の間に取り付けられた歪量を出力する歪検出器である歪ゲージG1a〜G7a、G1b〜G7bから構成されている。歪ゲージG1a〜G7aはそれぞれセンサー1の上側に、歪ゲージG1b〜G7bはそれぞれセンサー1の下側に設けられている。   The sensor 1 includes vibrators V1 to V8 that generate SH waves arranged in a one-dimensional array, an elastic body 5 made of a synthetic resin that connects each of the adjacent vibrators V1 to V8, and adjacent vibrators V1 to V1. It is comprised from the strain gauges G1a-G7a and G1b-G7b which are the strain detectors which output the distortion amount attached between each of V8. The strain gauges G1a to G7a are respectively provided on the upper side of the sensor 1, and the strain gauges G1b to G7b are respectively provided on the lower side of the sensor 1.

演算機3と歪ゲージG1a〜G7a、G1b〜G7bの各々を結ぶ破線は、演算機3と歪ゲージG1a〜G7a、G1b〜G7bの各々が通信可能に接続されていることを示しており、図1〜3中においては一部を省略して図示している。また、演算機3は探傷器4と通信可能に接続されており、歪ゲージG1a〜G7a、G1b〜G7bの各々の出力情報や検査対象へ入射する超音波ビームの入射角度などの情報に基づいて振動子V1〜V8各々の駆動タイミングを計算する。   The broken lines connecting the computing unit 3 and each of the strain gauges G1a to G7a, G1b to G7b indicate that the computing unit 3 and each of the strain gauges G1a to G7a, G1b to G7b are communicably connected. In FIG. 1 to FIG. The computing unit 3 is communicably connected to the flaw detector 4 and is based on output information of each of the strain gauges G1a to G7a and G1b to G7b and information such as an incident angle of an ultrasonic beam incident on an inspection object. The drive timing of each of the vibrators V1 to V8 is calculated.

探傷器4と各振動子V1〜V8を結ぶ破線は、探傷器4と各振動子V1〜V8が通信可能に接続されていることを示し、図1〜3中においては一部を省略して図示している。探傷器4各振動子V1〜V8各々を演算機3が計算した駆動タイミングに基づいて駆動させる。   A broken line connecting the flaw detector 4 and each transducer V1 to V8 indicates that the flaw detector 4 and each transducer V1 to V8 are connected so as to be communicable, and a part of them is omitted in FIGS. It is shown. Flaw detector 4 Each vibrator V1-V8 is driven based on the drive timing calculated by the calculator 3.

センサー1は検査対象となる構造物51a〜51cに接触媒質2を介して配置されている。構造物51a〜51cの内部にはそれぞれき裂52が発生している。   The sensor 1 is arranged via the contact medium 2 on the structures 51a to 51c to be inspected. A crack 52 is generated in each of the structures 51a to 51c.

本実施例による超音波探傷装置の作用について、以下説明する。   The operation of the ultrasonic flaw detector according to this embodiment will be described below.

センサー1は、弾性機能を有している合成樹脂から成る弾性体5の伸縮により、図2、図3のように探傷面が曲面を有する場合でも探傷面の形状に対して柔軟に設置可能であり、良好な密着性を得ることができる。また、各振動子V1〜V8が構造物51a〜51cの表面に沿って配置されるため、接触媒質2の膜を薄く均一に形成することができる(図4、ステップS1)。   The sensor 1 can be installed flexibly with respect to the shape of the flaw detection surface even when the flaw detection surface has a curved surface as shown in FIGS. 2 and 3 by the expansion and contraction of the elastic body 5 made of a synthetic resin having an elastic function. Yes, good adhesion can be obtained. Moreover, since each vibrator V1-V8 is arrange | positioned along the surface of the structures 51a-51c, the film | membrane of the contact medium 2 can be formed thinly and uniformly (FIG. 4, step S1).

センサー1が探傷面へ配置されたとき、探傷面形状に応じてセンサー1が変形すると、それにともなって歪ゲージG1a〜G7a、G1b〜G7bの各々が変形し、歪量を出力する。この歪ゲージG1a〜G7a、G1b〜G7bの各々の出力値は演算機3へ送信される(図4、ステップS2)。   When the sensor 1 is arranged on the flaw detection surface, if the sensor 1 is deformed according to the flaw detection surface shape, each of the strain gauges G1a to G7a and G1b to G7b is deformed and outputs a strain amount. Output values of the strain gauges G1a to G7a and G1b to G7b are transmitted to the calculator 3 (FIG. 4, step S2).

歪ゲージG1a〜G7a、G1b〜G7bの各々の出力値について、以下説明する。   The output values of the strain gauges G1a to G7a and G1b to G7b will be described below.

図1のように探傷面が平面である場合、センサー1は変形せず、歪ゲージG1a〜G7a、1b〜G7bの出力値は全て0である。   When the flaw detection surface is a flat surface as shown in FIG. 1, the sensor 1 is not deformed, and the output values of the strain gauges G1a to G7a and 1b to G7b are all zero.

図2においては振動子V2、V3間、及び振動子V6、V7間で弾性体5が伸縮してセンサー1が変形しており、振動子V3〜V6が傾斜した探傷面に沿って配置されている。センサー1の変形にともなって、歪ゲージG2a、G2b、G6a、G6bがそれぞれ歪量を出力する。他の歪ゲージは伸縮しないため、出力値は0となる。   In FIG. 2, the elastic body 5 is expanded and contracted between the transducers V2 and V3 and between the transducers V6 and V7, and the sensor 1 is deformed. The transducers V3 to V6 are arranged along the inclined flaw detection surface. Yes. As the sensor 1 is deformed, the strain gauges G2a, G2b, G6a, and G6b each output strain amounts. Since the other strain gauges do not expand and contract, the output value is zero.

図3においては各振動子V1〜V8間の弾性体5がそれぞれ伸縮してセンサー1が変形しており、振動子V1〜V8の各々が探傷面に沿って配置されている。センサー1の変形にともなって歪ゲージG1a〜G7a、G1b〜G7bがそれぞれ歪量を出力する。   In FIG. 3, the elastic body 5 between the transducers V1 to V8 is expanded and contracted to deform the sensor 1, and each of the transducers V1 to V8 is disposed along the flaw detection surface. As the sensor 1 is deformed, the strain gauges G1a to G7a and G1b to G7b output strain amounts.

演算機3は歪ゲージG1a〜G7a、G1b〜G7bの各々の出力値から、隣接振動子相対位置関係情報を計算する(図4、ステップS3)。   The computing unit 3 calculates adjacent transducer relative positional relationship information from the output values of the strain gauges G1a to G7a and G1b to G7b (FIG. 4, step S3).

隣接振動子相対位置情報について、図5を用いて以下説明する。図5はセンサー1が変形した状態の一例について、振動子V1と振動子V2を例として拡大して示しており、振動子V1に対して振動子V2が下方へ移動して傾いている。   The adjacent transducer relative position information will be described below with reference to FIG. FIG. 5 shows an example of a state in which the sensor 1 is deformed by enlarging the vibrator V1 and the vibrator V2 as an example, and the vibrator V2 moves downward and tilts with respect to the vibrator V1.

隣接振動子相対位置情報とは、隣接した各振動子間の距離や相対的な傾斜角度などの情報であり、隣接振動子相対位置関係情報を用いることによって、隣接した振動子の一方の位置を基準とした他方の振動子の位置を計算で求めることができる。   The adjacent transducer relative position information is information such as the distance between adjacent transducers and the relative inclination angle. By using the adjacent transducer relative positional information, the position of one of the adjacent transducers can be determined. The position of the other vibrator as a reference can be obtained by calculation.

なお、相対的な傾斜角度とは、基準となる一方の振動子に対しての他方の振動子の傾きを意味している。図5においては、θが振動子V1に対する振動子V2の相対角度を示す。   The relative inclination angle means the inclination of the other vibrator relative to the reference vibrator. In FIG. 5, θ represents the relative angle of the vibrator V2 with respect to the vibrator V1.

振動子V1〜V8の各々について隣接振動子相対位置関係情報が分かれば、振動子V1〜V8の各々の位置関係を計算することができる。例えば、振動子V1と振動子V3の位置関係は、振動子V1を基準にした振動子V2の位置の計算結果と、振動子V2を基準にして振動子V3の位置の計算結果を加算することで求めることができる。また、各振動子V1〜V8の位置関係が分かるため、隣接振動子相対位置関係情報によってセンサー1の形状を求めることができる。   If the adjacent transducer relative positional relationship information is known for each of the transducers V1 to V8, the positional relationship of each of the transducers V1 to V8 can be calculated. For example, the positional relationship between the vibrator V1 and the vibrator V3 is obtained by adding the calculation result of the position of the vibrator V2 with respect to the vibrator V1 and the calculation result of the position of the vibrator V3 with reference to the vibrator V2. Can be obtained. Further, since the positional relationship between the transducers V1 to V8 is known, the shape of the sensor 1 can be obtained from the adjacent transducer relative positional relationship information.

次に、歪ゲージG1a〜G7a、G1b〜G7bと隣接振動子相対位置関係情報との出力値の関係について以下説明する。   Next, the relationship between the output values of the strain gauges G1a to G7a, G1b to G7b and the adjacent transducer relative positional relationship information will be described below.

例えば、歪ゲージG1aの出力値をX、歪ゲージG1bの出力値をYとし、センサー1が変形していない状態での出力値をX=Y=0とする。   For example, the output value of the strain gauge G1a is X, the output value of the strain gauge G1b is Y, and the output value when the sensor 1 is not deformed is X = Y = 0.

出力値がX>Yの場合は、図4に示すように、振動子V2が初期位置よりも歪ゲージG1b側へ移動して傾いており、X<Yの場合は振動子V2が初期位置よりも歪ゲージG1a側へ移動して傾いている。また、XとYの差が大きいほど、振動子V1に対する振動子V2の相対的な傾斜角度は大きくなる。   When the output value is X> Y, as shown in FIG. 4, the vibrator V2 is moved and tilted toward the strain gauge G1b from the initial position, and when X <Y, the vibrator V2 is moved from the initial position. Is also inclined to move toward the strain gauge G1a. Further, the greater the difference between X and Y, the greater the relative inclination angle of the vibrator V2 with respect to the vibrator V1.

以上説明したように、歪ゲージG1a〜G7a、G1b〜G7bの出力値から隣接振動子相対位置関係情報を求めることができる。   As described above, the adjacent transducer relative positional relationship information can be obtained from the output values of the strain gauges G1a to G7a and G1b to G7b.

次に、演算機3は検査対象へ入射する超音波ビームの入射角度と隣接振動子相対位置関係情報を用いて振動子V1〜V8の各々の駆動タイミングを計算する(図4、ステップS4)。   Next, the computing unit 3 calculates the drive timing of each of the transducers V1 to V8 using the incident angle of the ultrasonic beam incident on the inspection object and the relative positional relationship information of the adjacent transducers (FIG. 4, step S4).

次に、演算機3はステップS4で計算した振動子V1〜V8の各々の駆動タイミング情報を探傷器4へ送信する(図4、ステップS5)。   Next, the calculator 3 transmits the drive timing information of each of the vibrators V1 to V8 calculated in step S4 to the flaw detector 4 (FIG. 4, step S5).

探傷器4は振動子V1〜V8の各々の駆動タイミング情報に基づいて振動子V1〜V8の各々を駆動させて超音波ビームを入射する(図4、ステップS6)。   The flaw detector 4 drives each of the transducers V1 to V8 based on the drive timing information of each of the transducers V1 to V8, and makes an ultrasonic beam incident (FIG. 4, step S6).

振動子V1〜V8の各々の駆動によって入射された超音波ビームがき裂52へ達すると反射波が発生する。振動子V1〜V8の各々がこの反射波を受信すると、探傷器4が超音波入射タイミングと反射波受信タイミングの時間差と超音波の速度に基づいてき裂の位置を計算し、特定する(図4、ステップS7)。   When the ultrasonic beam incident upon driving of the vibrators V1 to V8 reaches the crack 52, a reflected wave is generated. When each of the transducers V1 to V8 receives this reflected wave, the flaw detector 4 calculates and specifies the crack position based on the time difference between the ultrasonic wave incident timing and the reflected wave reception timing, and the ultrasonic velocity (FIG. 4). Step S7).

このような一連の動作によって、探傷面が大きい曲率を有する場合であっても、センサー1を良好な密着性で探傷面に配置し、接触媒質2膜を均一に形成させ、かつ探傷面の形状によって生じる振動子駆動タイミングの誤差を防止し、SH波を用いた高精度な超音波探傷を行うことが可能である。   By such a series of operations, even if the flaw detection surface has a large curvature, the sensor 1 is arranged on the flaw detection surface with good adhesion, the contact medium 2 film is formed uniformly, and the shape of the flaw detection surface It is possible to prevent an error in the vibrator drive timing caused by the above-mentioned, and to perform highly accurate ultrasonic flaw detection using SH waves.

なお、本実施例においてはセンサー1を複数の振動子V1〜V8を1次元アレイ状に配列したものとして説明したが、例えば複数の振動子を2次元アレイ状に配列してセンサー1を構成するものとしても同様の効果を得ることができる。   In the present embodiment, the sensor 1 is described as having a plurality of transducers V1 to V8 arranged in a one-dimensional array. For example, the sensor 1 is configured by arranging a plurality of transducers in a two-dimensional array. Similar effects can be obtained.

また、本実施例において弾性体5を合成樹脂として説明したが、天然樹脂、バネ、ゴム、ゲル状物質に代えても同様の作用が得られ、それに伴って本発明の効果を得ることができるのはもちろんである。   Moreover, although the elastic body 5 was demonstrated as a synthetic resin in the present Example, the same effect | action will be acquired even if it replaces with a natural resin, a spring, rubber | gum, and a gel-like substance, and the effect of this invention can be acquired in connection with it. Of course.

以上本発明の実施例について図を参照して説明してきたが、本発明は上記実施例に限定されるものでなく、発明の趣旨を逸脱しない範囲でいろいろの変形を採ることができる。当業者にあっては、具体的な実施例において本発明の技術思想および技術範囲から逸脱せずに種種の変形・変更を加えることが可能である。   Although the embodiments of the present invention have been described with reference to the drawings, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention. Those skilled in the art can make various modifications and changes in specific embodiments without departing from the technical idea and scope of the present invention.

実施例1の超音波探傷装置のセンサーを、水平な探傷面に配置した状態の概要を示すブロック図。The block diagram which shows the outline | summary of the state which has arrange | positioned the sensor of the ultrasonic flaw detector of Example 1 in the horizontal flaw detection surface. 実施例1の超音波探傷装置のセンサーを、傾斜面した部分を有する探傷面に配置した状態の概要を示すブロック図。The block diagram which shows the outline | summary of the state which has arrange | positioned the sensor of the ultrasonic flaw detector of Example 1 in the flaw detection surface which has the inclined part. 実施例1の超音波探傷装置のセンサーを、円形断面を有する構造物の円周方向に沿って配置した状態の概要を示すブロック図。The block diagram which shows the outline | summary of the state which has arrange | positioned the sensor of the ultrasonic flaw detector of Example 1 along the circumferential direction of the structure which has a circular cross section. 実施例1の超音波探傷装置の動作を示すフローチャート。3 is a flowchart showing the operation of the ultrasonic flaw detector according to Embodiment 1. 実施例1の超音波探傷装置のセンサーについて、変形した状態の一部分を拡大して示したブロック図。The block diagram which expanded and showed a part of the state which changed about the sensor of the ultrasonic flaw detector of Example 1. FIG. フェイズドアレイ技術の概要を示すブロック図。The block diagram which shows the outline | summary of a phased array technique. (a)は従来の超音波探傷装置の概要を示すブロック図、(b)は(a)に示した装置を探傷面に配置した状態を示すブロック図。(A) is a block diagram which shows the outline | summary of the conventional ultrasonic flaw detector, (b) is a block diagram which shows the state which has arrange | positioned the apparatus shown to (a) on the flaw detection surface. 従来の超音波探傷装置を、曲率の大きい探傷面に配置した状態の概略を示すブロック図。The block diagram which shows the outline of the state which has arrange | positioned the conventional ultrasonic flaw detector to the flaw detection surface with a large curvature.

符号の説明Explanation of symbols

1 センサー
2 接触媒質
3 演算機
4 探傷器
5 弾性体
10 超音波探傷装置
51a〜c 構造物
52 き裂
V1〜V8 振動子
G1a〜G7a、G1b〜G7b 歪ゲージ
101 枠体
102 振動子
103 弾性体
104 振動子移動量検出器
105 探傷面
106 接触媒質
107 センサー
108 検査対象物
109 超音波
110 超音波ビーム
111 探傷プローブ
DESCRIPTION OF SYMBOLS 1 Sensor 2 Contact medium 3 Calculator 4 Flaw detector 5 Elastic body 10 Ultrasonic flaw detector 51a-c Structure 52 Crack V1-V8 Vibrator G1a-G7a, G1b-G7b Strain gauge 101 Frame body 102 Vibrator 103 Elastic body 104 vibrator movement amount detector 105 flaw detection surface 106 contact medium 107 sensor 108 inspection object 109 ultrasonic wave 110 ultrasonic beam 111 flaw detection probe

Claims (3)

SH波を発生させる複数の振動子を1次元アレイ状または2次元アレイ状に配列し、隣接する前記複数の振動子を弾性体によって互いに接続してなる超音波センサーと、
前記超音波センサーの探傷面と前記探傷面と対向する面のそれぞれに、前記複数の振動子のうち隣接する振動子間にわたって設けられ、検査対象への配置にともなう前記超音波センサーの変形に応じて歪量を出力する複数の歪検出器と、
前記歪検出器の各々から出力された歪量を用いて隣接する振動子間の相対位置関係情報を計算する第1の演算機と、
前記検査対象へ入射する超音波ビームの入射角度と隣接する振動子間の相対位置関係情報を用いて前記複数の振動子の駆動タイミングを計算する第2の演算機と、
この第2の演算機が計算した前記駆動タイミングに基づいて前記複数の振動子を駆動させる探傷器と、
を備えることを特徴とする超音波探傷装置。
An ultrasonic sensor in which a plurality of transducers for generating SH waves are arranged in a one-dimensional array or a two-dimensional array, and the adjacent transducers are connected to each other by an elastic body;
The ultrasonic sensor is provided on each of the flaw detection surface and the surface facing the flaw detection surface between adjacent transducers of the plurality of transducers, and according to the deformation of the ultrasonic sensor due to the arrangement on the inspection object. A plurality of distortion detectors that output distortion amounts,
A first computing unit that calculates relative positional relationship information between adjacent vibrators using a strain amount output from each of the strain detectors;
A second computing unit that calculates drive timings of the plurality of transducers using an incident angle of an ultrasonic beam incident on the inspection target and relative positional relationship information between adjacent transducers;
A flaw detector that drives the plurality of vibrators based on the drive timing calculated by the second arithmetic unit;
An ultrasonic flaw detector characterized by comprising:
前記弾性体は合成樹脂、天然樹脂、バネ、ゴム、ゲル状物質から選択された一部材であることを特徴とする請求項1に記載の超音波探傷装置。   2. The ultrasonic flaw detector according to claim 1, wherein the elastic body is one member selected from a synthetic resin, a natural resin, a spring, rubber, and a gel substance. SH波を発生させる複数の振動子を1次元アレイ状または2次元アレイ状に配列し、隣接する前記複数の振動子を弾性体によって互いに接続してなる超音波センサーを検査対象に配置するセンサー配置ステップと、
それぞれ隣接した前記複数の振動子間の相対的な位置関係を計測する隣接振動子相対位置関係計測ステップと、
この隣接振動子相対位置関係計測ステップによって計測した隣接振動子相対位置関係と前記超音波センサーから前記検査対象へ入射する超音波ビームの入射角度情報を用いて前記複数の振動子の駆動タイミングを計算する振動子駆動タイミング計算ステップと、
この振動子駆動タイミング計算ステップによって得た前記複数の振動子駆動タイミング情報に基づいて前記複数の振動子を駆動する振動子駆動ステップと、
を備えることを特徴とする超音波探傷方法。
A sensor arrangement in which a plurality of transducers that generate SH waves are arranged in a one-dimensional array or a two-dimensional array, and an ultrasonic sensor formed by connecting adjacent transducers to each other by an elastic body is disposed on an inspection target Steps,
An adjacent transducer relative positional relationship measuring step for measuring a relative positional relationship between the plurality of adjacent transducers;
The drive timing of the plurality of transducers is calculated using the adjacent transducer relative positional relationship measured in the adjacent transducer relative positional relationship measurement step and the incident angle information of the ultrasonic beam incident on the inspection object from the ultrasonic sensor. A vibrator driving timing calculation step,
A vibrator driving step for driving the plurality of vibrators based on the plurality of vibrator driving timing information obtained by the vibrator driving timing calculation step;
An ultrasonic flaw detection method comprising:
JP2007209839A 2007-08-10 2007-08-10 Device and method for ultrasonic inspection Pending JP2009042173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209839A JP2009042173A (en) 2007-08-10 2007-08-10 Device and method for ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209839A JP2009042173A (en) 2007-08-10 2007-08-10 Device and method for ultrasonic inspection

Publications (1)

Publication Number Publication Date
JP2009042173A true JP2009042173A (en) 2009-02-26

Family

ID=40443049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209839A Pending JP2009042173A (en) 2007-08-10 2007-08-10 Device and method for ultrasonic inspection

Country Status (1)

Country Link
JP (1) JP2009042173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543670A (en) * 2010-09-20 2013-12-05 ビー−ケー メディカル エーピーエス Imaging transducer array
JP2018155582A (en) * 2017-03-17 2018-10-04 三菱日立パワーシステムズ株式会社 Ultrasonic probe, ultrasonic flaw detection device, and ultrasonic flaw detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296706A (en) * 1992-03-06 1993-11-09 Nissan Motor Co Ltd Shape measurement sensor
JPH1042395A (en) * 1996-07-19 1998-02-13 Kanda Tsushin Kogyo Co Ltd Ultrasonic probe and ultrasonic inspection device
JP2000146922A (en) * 1998-11-06 2000-05-26 Hitachi Eng Co Ltd Method and device for ultrasonic crack detection of wheel set
JP2001305115A (en) * 2000-04-20 2001-10-31 Mitsubishi Heavy Ind Ltd Phased array type ultrasonic flaw detector
JP2005195495A (en) * 2004-01-08 2005-07-21 Hitachi Ltd Ultrasonic flaw scanning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296706A (en) * 1992-03-06 1993-11-09 Nissan Motor Co Ltd Shape measurement sensor
JPH1042395A (en) * 1996-07-19 1998-02-13 Kanda Tsushin Kogyo Co Ltd Ultrasonic probe and ultrasonic inspection device
JP2000146922A (en) * 1998-11-06 2000-05-26 Hitachi Eng Co Ltd Method and device for ultrasonic crack detection of wheel set
JP2001305115A (en) * 2000-04-20 2001-10-31 Mitsubishi Heavy Ind Ltd Phased array type ultrasonic flaw detector
JP2005195495A (en) * 2004-01-08 2005-07-21 Hitachi Ltd Ultrasonic flaw scanning apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543670A (en) * 2010-09-20 2013-12-05 ビー−ケー メディカル エーピーエス Imaging transducer array
US9638798B2 (en) 2010-09-20 2017-05-02 B-K Medical Aps Imaging transducer array
JP2018155582A (en) * 2017-03-17 2018-10-04 三菱日立パワーシステムズ株式会社 Ultrasonic probe, ultrasonic flaw detection device, and ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
RU2381497C2 (en) Method for ultrasonic flaw detection
US10401328B2 (en) Synthetic data collection method for full matrix capture using an ultrasound array
EP0263475B1 (en) Ultrasonic flaw detecting method and apparatus
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
KR101225244B1 (en) Auto beam focusing device and nondestructive evaluation method using the same
JP2009268622A (en) Ultrasonic measurement apparatus
CN101943680A (en) Array ultrasonic flaw detection method and system with temperature compensation
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
JP2009276085A (en) Ultrasonic flaw detector following curved surface
JP2004333497A (en) Ultrasonic inspection method
US6823737B2 (en) Non-contact inspection system for large concrete structures
JP2009042173A (en) Device and method for ultrasonic inspection
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2012002781A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JPH09243343A (en) Device and method for visualizing ultrasonic
RU176015U1 (en) DEVICE FOR DETECTING AND MONITORING INHOMOGENEITIES OF SOLID MATERIALS
RU2695950C1 (en) Ultrasonic inspection method of metal products defectiveness
Kang et al. An Experimental Platform for Electromagnetic Ultrasonic Guided Wave Tomography Technique
KR100543736B1 (en) Ultrasonic imaging method
Cosarinsky et al. Fast and automatic array tilt compensation for 1.5 D array transducers
JPH0440360A (en) Ultrasonic flaw detecting method for composite material
CN114675233A (en) Acoustic emission source positioning method based on enhanced guided wave phased array technology
JPS597260A (en) Method and device for ultrasonic flaw detection
JPS61253458A (en) Ultrasonic flaw detection
JPH07174741A (en) Measuring equipment of acoustic velocity of ultrasonic wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091030

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Effective date: 20110902

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A02 Decision of refusal

Effective date: 20120106

Free format text: JAPANESE INTERMEDIATE CODE: A02