JPS6239144B2 - - Google Patents

Info

Publication number
JPS6239144B2
JPS6239144B2 JP54158824A JP15882479A JPS6239144B2 JP S6239144 B2 JPS6239144 B2 JP S6239144B2 JP 54158824 A JP54158824 A JP 54158824A JP 15882479 A JP15882479 A JP 15882479A JP S6239144 B2 JPS6239144 B2 JP S6239144B2
Authority
JP
Japan
Prior art keywords
catalyst
yield
reaction
lead
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158824A
Other languages
Japanese (ja)
Other versions
JPS5681528A (en
Inventor
Takashi Shimodaira
Kenji Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP15882479A priority Critical patent/JPS5681528A/en
Publication of JPS5681528A publication Critical patent/JPS5681528A/en
Publication of JPS6239144B2 publication Critical patent/JPS6239144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、芳香族アルコールを酸素含有ガスで
酸化して、芳香族アルデヒドを製造する方法に関
するものである。 芳香族アルデヒドは、香料、農薬、樹脂、染料
などの原料として、またその他の有機合成中間体
として、非常に有用な化合物である。 芳香族アルデヒドを得る方法としては、従来、
トルエン誘導体のハロゲン化により得られるベン
ジルハライド類を酸化する方法、トルエン誘導体
に、ハロゲン化リンの存在下、ハロゲンを反応さ
せて得られるベンザルハライド類を加水分解する
方法などが工業的に行なわれている。しかし、こ
れらの方法は高価な試薬が化学量論的に消費され
ること、収率が低いこと、廃水処理が煩雑である
ことなどの問題点を有している。 また、ベンジルハライドの加水分解により得ら
れるベンジルアルコールを白金触媒の存在下、酸
素含有ガスで酸化してベンズアルデヒドを得る方
法も知られている(例えば、R.P.A.Sneeden、J.
Am.Chem.Soc.、77.190(1955))。しかし、この
方法によつても、収率は高々72%にすぎない。パ
ラジウム触媒を用いた場合には、置換基の脱離が
おこり、選択性が低く、実用に供することが困難
である。 一方、特開昭54−138886号公報には、貴金属触
媒に、鉛、錫、インジウムおよびテルルを助触媒
成分として添加した酸化反応用触媒組成物が開示
されているが、実施例に示される一級アルコール
の酸化反応の主生成物は対応する酸であり、対応
するアルデヒドの生成については記載がなく、生
成が認められていないか又は僅かである。 従つて、芳香族アルデヒドを収率よく得る方法
が強く望まれている。 本発明は上記の問題点に解決を与えることを目
的とし、パラジウムに鉛および/または銅を添加
した触媒を用いることによつて、その目的を達成
しようとするものである。 即ち、本発明は、下記一般式 (nは1〜3の整数、Rは水素、アルキル基また
はアリール基を示す。) で表わされる芳香族アルコールを、パラジウムお
よび鉛と銅の少なくとも1つを主要成分とする触
媒の存在下、溶媒中で酸素含有ガスで酸化するこ
とを特徴とする芳香族アルデヒドの製造法であ
る。 本発明によれば、従来法に比し、高収率で芳香
族アルデヒドを製造することができ、また高価な
試薬が消費されることもなく、従つて排水処理の
問題を生じることもない。 本発明の原料となる芳香族アルコールは、 一般式 (nは1〜3の整数、Rは水素、アルキル基また
はアリール基を示す。) で表わされる1価ないし3価のアルコールであ
り、具体的には、ベンジルアルコール、メチルベ
ンジルアルコール、エチルベンジルアルコール、
イソプロピルベンジルアルコール、ターシヤリー
ブチルベンジルアルコール、ジメチルベンジルア
ルコール、トリメチルベンジルアルコール、フエ
ニルベンジルアルコール、ベンゼンジメタノー
ル、ベンゼントリメタノールなどである。 本発明に用いられる触媒は、活性成分としてパ
ラジウムが必須であり、そのほかに鉛と銅の少な
くとも一方が含まれる。 これらの活性成分は、通常担体に担持して用い
られる。 パラジウム成分の担体に対する担持率は、金属
として0.1〜20重量%程度であり、好ましくは0.2
〜10重量%程度である。また、鉛および/または
銅成分の担体に対する担持率は金属として0.05〜
25重量%程度であり、好ましくは0.1〜20重量%
程度である。 担体としては、アルミナ(γ−アルミナ、α−
アルミナなど)、シリカ、シリカ−アルミナ、炭
酸カルシウム、硫酸バリウム、マグネシア、活性
炭など、通常、白金属触媒の担体として用いられ
る担体が使用される。 本発明に用いられる触媒は、担体を硝酸パラジ
ウム、塩化パラジウム、酢酸パラジウム、パラジ
ウムアセチルアセトナトなどのパラジウム化合物
の水溶液中に浸漬させるなどの通常の方法によつ
て、パラジウム成分を担体上に担持させ、その後
に、鉛および/または銅の化合物、例えば、酢酸
鉛、硝酸鉛、硫酸鉛、酸化鉛、水酸化鉛、金属状
鉛、酢酸銅、硫酸銅などの水溶液中に、パラジウ
ム担持担体を浸漬させ、鉛および/または銅成分
を担持させ、さらに、乾燥させることによつて得
ることができる。 また、鉛および/または銅の化合物とパラジウ
ム化合物をいつしよに添加、混合して、浸漬など
の方法で担体に担持し、乾燥させて得ることもで
きる。 また、予め鉛および/または銅の化合物を担体
に担持させた後、パラジウム化合物を担持し、乾
燥させて得ることもできる。 触媒の活性化処理として、乾燥の前または後
に、ホルマリン、ヒドラジン、メタノール飽和窒
素ガス、水素などによつて還元処理を行なうのが
普通である。この還元処理は、全部の活性成分を
担持した後に行なうことに限定されるものではな
く、各成分を担持したたびに行なつてもよいこと
はもちんろである。 また、市販のパラジウム−活性炭、パラジウム
−炭酸カルシウムなどの触媒に、浸漬などの方法
によつて、鉛および/または銅成分を担持させ、
乾燥させた触媒、または耐持後、酸化、還元など
の処理を行ない、必要に応じて乾燥させた触媒な
ども同様に本発明の方法に使用することができ
る。 本発明の酸化反応は、原料によつては、溶媒を
用いずに行なうことも可能であるが、通常は、原
料の芳香族アルコールを溶媒に溶解または分散さ
せて行なうことが好ましい。 反応溶媒としては、ベンゼン、トルエン、エチ
ルベンゼン、キユメン、ターシヤリーブチルトル
エン、キシレン、トリメチルベンゼン、テトラメ
チルベンゼン、フエニルトルエンなどの芳香族炭
化水素類;n−ヘキサン、n−ヘプタン、n−オ
クタンなどの脂肪族炭化水素類;シクロヘキサン
などの脂環式炭化水素類;クロルベンゼンなどの
ハロゲン化炭化水素類;酢酸メチル、酢酸エチル
などのエステル類;ジエチレングリコールジメチ
ルエーテル、ジオキサンなどのエーテル類;メチ
ルエチルケトンなどのケトン類など、原料および
生成物を溶解または分散させるものが用いられ
る。 芳香族アルコールの濃度は0.1〜100重量%が適
当であり、特に0.5〜50重量%程度が好ましい。 反応に用いられる酸素含有ガスとしては、空気
を用いるのが一般的である。 なお、本発明の酸素含有ガスとは、酸素と他の
ガスとの混合ガスのみを意味するものではなく、
酸素のみからなるガスも含むものである。 反応器の型式としては、撹拌槽、気泡塔、固定
床など、何れを用いることも可能であり、また、
回分式でも連続式でも行なうことができる。 反応温度は、常温〜150℃が適当であり、好ま
しくは40〜130℃である。 また、反応圧力は、常圧〜10Kg/cm2G程度であ
るが、通常は、常圧で反応させるのが有利であ
る。 反応によつて得られた芳香族アルデヒドは、蒸
留などの常法によつて分離され、また、触媒は、
過、傾瀉などの方法によつて分離、繰り返し使
用される。 得られる芳香族アルデヒドは、原料の芳香族ア
ルコールのヒドロキシメチル基の少なくとも1つ
がホルミル基に置換された構造を有するものであ
る。 例えば、ベンゼンジメタノールを原料とした場
合には、テレフタルアルデヒドおよびヒドロキシ
メチルベンズアルデヒド、パラ・ターシヤリーブ
チルベンジルアルコールを原料とした場合には、
パラ・ターシヤリーブチルベンズアルデヒドなど
である。 次に、実施例により本発明を更に具体的に説明
するが、本願発明はこれら実施例によつて何等限
定されるものではない。 実施例 1 1・4ベンゼンジメタノール6.3gをp−キシ
レン116gに溶解させ、5%pd活性炭触媒(エン
ゲルハルド社製)に金属として5重量%の酢酸鉛
を担持、乾燥させた触媒を触媒濃度3.2重量%に
なるようガス吹きこみ口、撹拌器、冷却器および
温度計を備えた四ツ口フラスコに仕こみ空気を導
入し80℃で、5時間反応させた。 反応終了後ガスクロマトグラフイーにより分析
するとベンゼンジメタノール転換率100%、テレ
フタルアルデヒド収率80.4%、ヒドロキシメチル
ベンズアルデヒド収率8.9%が得られた。副生物
はベンズアルデヒド、エステル、酸類であり、ベ
ンズアルデヒドは3.2%(収率)副生した。 比較例 1 金属成分を担持せずに、5%pd活性炭触媒
(エンゲルハルド社製)を用いることのほかは実
施例1と同一条件で反応させた結果、ベンゼンジ
メタノール転換率97.4%、テレフタルアルデヒド
収率14.9%、ヒドロキシメチルベンズアルデヒド
収率7.9%であり、ベンズアルデヒドは60.5%
(収率)副生した。 実施例 2 酢酸鉛の代りに硝酸鉛を使用し金属として1重
量%となるよう担持した触媒を用い、反応時間を
3時間としたことのほかは実施例1と同様に反応
させた結果、ベンゼンジメタノール転換率97.2
%、テレフタルアルデヒド収率66.1%、ヒドロキ
シメチルベンズアルデヒド収率13.9%であり、ベ
ンズアルデヒド収率は12.5%であつた。 実施例 3〜6 市販のリンドラー触媒(pd−pb/CaCO3、エ
ンゲルハルド社製)を用い、触媒濃度、反応温
度、反応時間を変えたことのほかは実施例1と同
様に反応させた結果を表1に示す。
The present invention relates to a method for producing aromatic aldehydes by oxidizing aromatic alcohols with oxygen-containing gas. Aromatic aldehydes are very useful compounds as raw materials for perfumes, agricultural chemicals, resins, dyes, etc., and as intermediates for other organic synthesis. Conventionally, methods for obtaining aromatic aldehydes include
Industrial methods include oxidizing benzyl halides obtained by halogenating toluene derivatives, and hydrolyzing benzyl halides obtained by reacting toluene derivatives with halogens in the presence of phosphorus halide. ing. However, these methods have problems such as stoichiometric consumption of expensive reagents, low yields, and complicated wastewater treatment. It is also known to obtain benzaldehyde by oxidizing benzyl alcohol obtained by hydrolysis of benzyl halide with oxygen-containing gas in the presence of a platinum catalyst (for example, RPASneeden, J.
Am.Chem.Soc., 77.190 (1955)). However, even with this method, the yield is only 72% at most. When a palladium catalyst is used, elimination of substituents occurs and selectivity is low, making it difficult to put it to practical use. On the other hand, JP-A-54-138886 discloses a catalyst composition for oxidation reactions in which lead, tin, indium, and tellurium are added as promoter components to a noble metal catalyst. The main product of the oxidation reaction of alcohol is the corresponding acid, and there is no description of the production of the corresponding aldehyde, and the production is either not recognized or is minimal. Therefore, a method for obtaining aromatic aldehydes in good yield is strongly desired. The present invention aims to provide a solution to the above-mentioned problems, and attempts to achieve this purpose by using a catalyst in which lead and/or copper are added to palladium. That is, the present invention provides the following general formula (n is an integer of 1 to 3, R represents hydrogen, an alkyl group, or an aryl group.) This is a method for producing aromatic aldehydes, which is characterized by oxidizing them with an oxygen-containing gas in a reactor. According to the present invention, aromatic aldehydes can be produced in higher yields than conventional methods, and expensive reagents are not consumed, so there are no problems with wastewater treatment. The aromatic alcohol that is the raw material of the present invention has the general formula (n is an integer of 1 to 3, R is hydrogen, an alkyl group, or an aryl group.) It is a monohydric to trihydric alcohol represented by, specifically, benzyl alcohol, methylbenzyl alcohol, ethylbenzyl alcohol. ,
These include isopropylbenzyl alcohol, tert-butylbenzyl alcohol, dimethylbenzyl alcohol, trimethylbenzyl alcohol, phenylbenzyl alcohol, benzenedimethanol, and benzenedrimethanol. The catalyst used in the present invention essentially contains palladium as an active component, and also contains at least one of lead and copper. These active ingredients are usually supported on a carrier. The supporting ratio of the palladium component to the carrier is about 0.1 to 20% by weight as metal, preferably 0.2% by weight.
~10% by weight. In addition, the loading rate of lead and/or copper components on the carrier is 0.05 to 0.05 as metals.
About 25% by weight, preferably 0.1 to 20% by weight
That's about it. As a carrier, alumina (γ-alumina, α-
Alumina, etc.), silica, silica-alumina, calcium carbonate, barium sulfate, magnesia, activated carbon, and the like, which are commonly used as supports for platinum metal catalysts, are used. In the catalyst used in the present invention, the palladium component is supported on the carrier by a conventional method such as immersing the carrier in an aqueous solution of a palladium compound such as palladium nitrate, palladium chloride, palladium acetate, or palladium acetylacetonate. , followed by immersing the palladium-loaded support in an aqueous solution of lead and/or copper compounds, such as lead acetate, lead nitrate, lead sulfate, lead oxide, lead hydroxide, metallic lead, copper acetate, copper sulfate, etc. It can be obtained by allowing lead and/or copper components to be supported thereon, and further drying. Alternatively, it can also be obtained by adding and mixing a lead and/or copper compound and a palladium compound at any time, supporting it on a carrier by a method such as dipping, and drying it. Alternatively, it can be obtained by first supporting a lead and/or copper compound on a carrier, then supporting a palladium compound thereon, and drying the support. As a catalyst activation treatment, a reduction treatment using formalin, hydrazine, methanol-saturated nitrogen gas, hydrogen, etc. is usually performed before or after drying. It goes without saying that this reduction treatment is not limited to being carried out after all active ingredients have been supported, but may be carried out each time each ingredient has been supported. In addition, lead and/or copper components are supported on a commercially available catalyst such as palladium-activated carbon or palladium-calcium carbonate by a method such as dipping,
A dried catalyst, or a catalyst that has been subjected to a treatment such as oxidation or reduction after durability and dried as necessary, can be similarly used in the method of the present invention. Although the oxidation reaction of the present invention can be carried out without using a solvent depending on the raw material, it is usually preferable to dissolve or disperse the aromatic alcohol as a raw material in a solvent. As a reaction solvent, aromatic hydrocarbons such as benzene, toluene, ethylbenzene, kyumene, tert-butyltoluene, xylene, trimethylbenzene, tetramethylbenzene, phenyltoluene; n-hexane, n-heptane, n-octane, etc. aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as chlorobenzene; esters such as methyl acetate and ethyl acetate; ethers such as diethylene glycol dimethyl ether and dioxane; ketones such as methyl ethyl ketone A substance that dissolves or disperses raw materials and products, such as the following, is used. The concentration of aromatic alcohol is suitably 0.1 to 100% by weight, particularly preferably about 0.5 to 50% by weight. Air is generally used as the oxygen-containing gas used in the reaction. Note that the oxygen-containing gas of the present invention does not mean only a mixed gas of oxygen and other gases;
It also includes a gas consisting only of oxygen. Any type of reactor can be used, such as a stirred tank, bubble column, fixed bed, etc.
It can be carried out either batchwise or continuously. The reaction temperature is suitably from room temperature to 150°C, preferably from 40 to 130°C. Further, the reaction pressure is about normal pressure to 10 kg/cm 2 G, but it is usually advantageous to carry out the reaction at normal pressure. The aromatic aldehyde obtained by the reaction is separated by a conventional method such as distillation, and the catalyst is
Separated by filtration, decanting, etc., and used repeatedly. The resulting aromatic aldehyde has a structure in which at least one hydroxymethyl group of the aromatic alcohol as a raw material is substituted with a formyl group. For example, when benzenedimethanol is used as a raw material, when terephthalaldehyde and hydroxymethylbenzaldehyde are used as raw materials, and when para-tertiary butylbenzyl alcohol is used as raw materials,
Examples include para-tert-butylbenzaldehyde. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 6.3 g of 1,4-benzenedimethanol was dissolved in 116 g of p-xylene, 5% by weight of lead acetate was supported as a metal on a 5% PD activated carbon catalyst (manufactured by Engelhard), and the dried catalyst was prepared at a catalyst concentration. A four-necked flask equipped with a gas inlet, a stirrer, a condenser, and a thermometer was charged to a concentration of 3.2% by weight, air was introduced, and the reaction was carried out at 80°C for 5 hours. After completion of the reaction, analysis by gas chromatography showed that the conversion rate of benzenedimethanol was 100%, the yield of terephthalaldehyde was 80.4%, and the yield of hydroxymethylbenzaldehyde was 8.9%. By-products were benzaldehyde, esters, and acids, and benzaldehyde was produced as a by-product at a yield of 3.2%. Comparative Example 1 The reaction was carried out under the same conditions as in Example 1 except that a 5% PD activated carbon catalyst (manufactured by Engelhard) was used without supporting a metal component. As a result, the benzenedimethanol conversion rate was 97.4%, and terephthalaldehyde was Yield 14.9%, hydroxymethylbenzaldehyde yield 7.9%, benzaldehyde 60.5%
(Yield) As a by-product. Example 2 The reaction was carried out in the same manner as in Example 1, except that lead nitrate was used instead of lead acetate and a catalyst supported at 1% by weight as metal was used, and the reaction time was 3 hours. As a result, benzene was produced. Dimethanol conversion rate 97.2
%, terephthalaldehyde yield was 66.1%, hydroxymethylbenzaldehyde yield was 13.9%, and benzaldehyde yield was 12.5%. Examples 3 to 6 Using a commercially available Lindlar catalyst (pd-pb/CaCO 3 , manufactured by Engelhard), the reaction was carried out in the same manner as in Example 1, except that the catalyst concentration, reaction temperature, and reaction time were changed. are shown in Table 1.

【表】 ここでジメタノール、ジアルデヒド、モノアル
デヒド、アルデヒドはそれぞれベンゼンジメタノ
ール、テレフタルアルデヒド、ヒドロキシメチル
ベンズアルデヒド、テレフタルアルデヒド+ヒド
ロキシメチルベンズアルデヒドを示す。 またベンズアルデヒド収率は実施例3では1.6
%、4および5では痕跡程度であり6では0.7%
であつた。 比較例 2 触媒として市販の5%pd触媒(担体CaCO3
エンゲルハルド社製)を使用し触媒濃度3.2重量
%、反応温度を80℃に、反応時間を3時間にした
以外は実施例1の条件で反応させた結果、 ベンゼンジメタノール転換率 85.6% テレフタルアルデヒド選択率 29.4% 同 収 率 25.2% ヒドロキシメチルベンズアルデヒド選択率 9.2% 同 収 率 7.9% であり、ベンズアルデヒド収率は31.5%であつ
た。 実施例 7 触媒として5%pd活性炭触媒(エンゲルハル
ド社製)に金属として1重量%の硝酸銅を担持、
乾燥後分解し、銅成分を酸化物にした触媒を、触
媒濃度1.6重量%として用い、反応時間を3時間
としたことの他は実施例1と同じ条件で反応させ
た結果、ベンゼンジメタノール転換率100%、テ
レフタルアルデヒド収率56.4%、ヒドロキシメチ
ルベンズアルデヒド収率21.4%であり、またベン
ズアルデヒド収率は9.3%であつた。 さらに反応時間を4時間延長し合わせて7時間
反応させたところテレフタルアルデヒド収率は
63.2%になつた。 実施例 8 パラ・ターシヤリーブチルベンジルアルコール
10.4g、溶媒としてパラ・ターシヤリーブチルト
ルエン120.0g、触媒として実施例3の触媒4.0g
を仕こみ、85℃、7時間反応させたことのほかは
実施例1と同じ条件で反応させたところパラ・タ
ーシヤリーブチルベンズアルデヒド収率93・3%
を得た。パラ・ターシヤリーブチルベンゼンをは
じめ副生物は極めて少なかつた。 比較例 3 触媒として、市販の5%pd触媒(担体は活性
炭、エンゲルハルド社製)の触媒4.0gを使用
し、反応時間を5時間としたことのほかは実施例
8と同様にして反応させた。その結果パラ・ター
シヤリーブチルベンズアルデヒド収率53.5%を得
たが、パラ・ターシヤリーブチルベンゼンが41.5
%(収率)副生した。
[Table] Here, dimethanol, dialdehyde, monoaldehyde, and aldehyde refer to benzenedimethanol, terephthalaldehyde, hydroxymethylbenzaldehyde, and terephthalaldehyde+hydroxymethylbenzaldehyde, respectively. In addition, the benzaldehyde yield was 1.6 in Example 3.
%, 4 and 5 are only traces, and 6 is 0.7%
It was hot. Comparative Example 2 A commercially available 5% PD catalyst (supported by CaCO 3 ,
The reaction was carried out under the conditions of Example 1, except that the catalyst concentration was 3.2% by weight, the reaction temperature was 80°C, and the reaction time was 3 hours. The conversion rate of benzenedimethanol was 85.6%. The selectivity was 29.4%, the same yield was 25.2%, the hydroxymethylbenzaldehyde selectivity was 9.2%, the same yield was 7.9%, and the benzaldehyde yield was 31.5%. Example 7 As a catalyst, 1% by weight of copper nitrate was supported as a metal on a 5% PD activated carbon catalyst (manufactured by Engelhard),
The reaction was carried out under the same conditions as in Example 1, except that a catalyst in which the copper component was made into an oxide by decomposition after drying was used at a catalyst concentration of 1.6% by weight, and the reaction time was 3 hours. As a result, benzenedimethanol conversion was achieved. The yield of terephthalaldehyde was 56.4%, the yield of hydroxymethylbenzaldehyde was 21.4%, and the benzaldehyde yield was 9.3%. When the reaction time was further extended for 4 hours and the reaction was continued for a total of 7 hours, the yield of terephthalaldehyde was
It became 63.2%. Example 8 Para-tertiary butylbenzyl alcohol
10.4 g, 120.0 g of para-tert-butyltoluene as a solvent, and 4.0 g of the catalyst of Example 3 as a catalyst.
When the reaction was carried out under the same conditions as in Example 1 except that the reaction was carried out at 85°C for 7 hours, the yield of para-tert-butylbenzaldehyde was 93.3%.
I got it. There were very few by-products including para-tert-butylbenzene. Comparative Example 3 The reaction was carried out in the same manner as in Example 8, except that 4.0 g of a commercially available 5% PD catalyst (the carrier was activated carbon, manufactured by Engelhard) was used as a catalyst, and the reaction time was 5 hours. Ta. As a result, the yield of para-tertiary butylbenzaldehyde was 53.5%, but the yield of para-tertiary butylbenzene was 41.5%.
% (yield) was produced as a by-product.

Claims (1)

【特許請求の範囲】 1 下記一般式 (nは1〜3の整数、Rは水素、アルキル基また
はアリール基を示す。) で表わされる芳香族アルコールを、パラジウムお
よび鉛と銅の少なくとも1つを主要成分とする触
媒の存在下、有機溶媒中で酸素含有ガスで酸化す
ることを特徴とする芳香族アルデヒドの製造法。
[Claims] 1. The following general formula (n is an integer of 1 to 3, R is hydrogen, an alkyl group, or an aryl group.) An aromatic alcohol represented by A method for producing an aromatic aldehyde, which is characterized by oxidation with an oxygen-containing gas in a solvent.
JP15882479A 1979-12-07 1979-12-07 Preparation of aromatic aldehyde Granted JPS5681528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15882479A JPS5681528A (en) 1979-12-07 1979-12-07 Preparation of aromatic aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15882479A JPS5681528A (en) 1979-12-07 1979-12-07 Preparation of aromatic aldehyde

Publications (2)

Publication Number Publication Date
JPS5681528A JPS5681528A (en) 1981-07-03
JPS6239144B2 true JPS6239144B2 (en) 1987-08-21

Family

ID=15680175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15882479A Granted JPS5681528A (en) 1979-12-07 1979-12-07 Preparation of aromatic aldehyde

Country Status (1)

Country Link
JP (1) JPS5681528A (en)

Also Published As

Publication number Publication date
JPS5681528A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
US4096156A (en) Process for the catalytic manufacture of γ-butyrolactone
US5698749A (en) Catalysts for the hydrogenation of aqueous maleic acid to 1,4-butanediol
JPH04505321A (en) Production of lactones from diols
KR100676117B1 (en) Improved process for the hydrogenation of maleic acid to 1,4-butanediol
US4121039A (en) Process for producing an unsaturated glycol diester using a catalyst comprising palladium containing thorium as a promotor
JPS61151154A (en) Manufacture of glyoxlic acid hemiacetal ester
JPS6239144B2 (en)
JPS595570B2 (en) Method for producing cinnamic acid esters
EP0160721A1 (en) An oxidation process for the manufacture of aryl esters
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
CA1055519A (en) Manufacture of butenediol diacetates
KR100403417B1 (en) Process for Preparing Malonate Derivatives or β-ketoester
JPS6239146B2 (en)
US4256645A (en) Process for producing glucona-delta-lactone from glucose
JPS628113B2 (en)
US4456555A (en) Manufacture of aryl esters
US4319054A (en) Process for producing pyrogallol
EP1043304B1 (en) Method for producing (hydroxyalkyl)alicyclic carboxylic acids and intermediates therefor
JPH06247954A (en) Production of lactone
JPH08217771A (en) Production of 3-methyltetrahydrofuran
KR101633074B1 (en) Preparation method of acetophenone
JPS5976037A (en) Preparation of benzoquinone compound
JP4575371B2 (en) Method for preparing α, β-unsaturated cyclic ketone by dehydrogenation of secondary allylic cyclic alcohol
KR101642960B1 (en) Preparation method of benzoic acid
JPS6340416B2 (en)