JPS6340416B2 - - Google Patents

Info

Publication number
JPS6340416B2
JPS6340416B2 JP55126977A JP12697780A JPS6340416B2 JP S6340416 B2 JPS6340416 B2 JP S6340416B2 JP 55126977 A JP55126977 A JP 55126977A JP 12697780 A JP12697780 A JP 12697780A JP S6340416 B2 JPS6340416 B2 JP S6340416B2
Authority
JP
Japan
Prior art keywords
reaction
palladium
catalyst
concentration
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55126977A
Other languages
Japanese (ja)
Other versions
JPS5750941A (en
Inventor
Akira Iio
Toshio Oohara
Itsuo Nishiwaki
Masatoshi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP55126977A priority Critical patent/JPS5750941A/en
Publication of JPS5750941A publication Critical patent/JPS5750941A/en
Publication of JPS6340416B2 publication Critical patent/JPS6340416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は枩和な条件でアルデヒドずアルコヌル
を分子状酞玠存圚䞋反応させおカルボン酞゚ステ
ルを補造する方法に関する。 さらに詳しくは、アルデヒドずアルコヌルを癜
金及び又はパラゞりムを含む觊媒を甚い、垌釈
された分子状酞玠含有ガス存圚䞋で反応するこず
によりカルボン酞゚ステルを遞択率良く補造する
方法に関する。 埓来ケむ゜り土、掻性炭などの担䜓に癜金又は
パラゞりムを担持させた觊媒をアルデヒドずアル
コヌルの混合物䞭に懞濁させ、これに分子状酞玠
含有ガスを加圧䞋に吹き蟌みアルデヒドを液盞酞
化し、同時にテステル化をも行な぀おカルボン酞
゚ステルを補造する事は知られおいる特公昭45
−34368号。しかしこの方法ではカルボン酞゚ス
テル生成反応ず䞊行しおアセタヌル生成反応、ア
ルコヌル自身の酞化反応及びその生成物であるア
ルデヒドずアルコヌルずの反応等非垞に耇雑な副
反応が起こり目的ずするカルボン酞゚ステルの遞
択率、特にアルコヌル基準の遞択率が䜎いずいう
欠点をも぀おいる。これらの欠点は単に生成物ぞ
の遞択率の䜎䞋による原料原単䜍の増加のみなら
ず、副生物ず目的生成物ずの分離に倚倧な蚭備ず
゚ネルギヌを必芁ずし、工業的には極めお䞍利で
ある。 これを解決する䞀぀の詊みが特開昭54−73715
〜73717、特開昭54−73723〜73725に瀺されおお
り、ここではこれらのアルコヌル自䜓の酞化によ
る副生成物の生成を抌え、目的生成物を高い遞択
率で䞎える觊媒が提案されおいる。しかしこれら
の提案による觊媒を甚いおも、ただアルコヌル自
䜓の酞化による副生物、䟋えばメタノヌル系での
反応ではギ酞メチルが倚量に生成し、特に目的生
成物を高収率で䞎えるPd―Pb系觊媒ではこの副
生成物の生成量は特に倚い。 本発明者らは、これらの欠点を解決すべく鋭意
怜蚎を進めた結果、意倖にも反応に䜿甚する分子
状酞玠含有ガス䞭の酞玠濃床がアルコヌル自䜓の
酞化に起因する副生成物の生成量に倧きく関係す
るのに察し、アルデヒドずアルコヌルの反応によ
る目的ずするカルボン酞゚ステルの生成量にはあ
たり関係しない事、すなわち分子状酞玠濃床を䞋
げるずこの副生成物の生成が極端に少くなるのに
察し、目的ずするカルボン酞゚ステルの生成はほ
ずんど倉らない事を発芋し本発明を完成した。 しかも本発明の酞玠濃床の限定による効果は癜
金あるいは癜金化合物及びパラゞりムあるいはパ
ラゞりム化合物の皮以䞊を含む觊媒の存圚䞋で
反応を行なうずき最も顕著である。 本発明の方法における分子状酞玠含有ガス䞭の
酞玠濃床は、18モル以䞋モル以䞊にある事
が必芁で、奜たしくは14モル以䞋モル以
䞊、さらに奜たしくは10モル以䞋モル以䞊
である。酞玠濃床が増加するずアルコヌル自䜓の
酞化に起因する副生物、䟋えばメタノヌル系では
ギ酞メチルの生成が倚くなり奜たしくなく、又、
逆に酞玠濃床が小さくなりすぎるず目的生成物の
カルボン酞゚ステルの生成速床の䜎䞋がみられる
のみならず、反応系に䟛絊する酞玠含有ガス量が
増倧するため装眮の巚倧化や、酞玠含有ガスを䟛
絊する動力費甚が増倧し奜たしくない。酞玠含有
ガスは、玔酞玠を反応に䞍掻性な垌釈ガス、䟋え
ば窒玠、炭酞ガス、反応の排ガス等で垌釈したも
のでも、又空気を反応に䞍掻性な垌釈ガスで垌釈
したもので良い。 䜿甚する酞玠含有ガス量は、酞玠含有率により
圓然倉぀おくるが、玔酞玠ずしお反応に必芁な化
孊量論量以䞊、奜たしくは化孊量論の1.5倍以䞊
あれば十分である。 本発明の方法におけるアルデヒドずアルコヌル
は目的ずする゚ステルにより遞択䜿甚しなければ
ならない。その䞀䟋を挙げるず、先ずアルデヒド
はHCHO、CH3CHO、C2H5CHO、―
C3H7CHO、―C3H7CHO等の脂肪族飜和アル
デヒドCH2CH―CHO、
The present invention relates to a method for producing a carboxylic acid ester by reacting an aldehyde and an alcohol in the presence of molecular oxygen under mild conditions. More specifically, the present invention relates to a method for producing a carboxylic acid ester with high selectivity by reacting an aldehyde and an alcohol using a catalyst containing platinum and/or palladium in the presence of a diluted molecular oxygen-containing gas. Conventionally, a catalyst in which platinum or palladium is supported on a carrier such as diatomaceous earth or activated carbon is suspended in a mixture of aldehyde and alcohol, and molecular oxygen-containing gas is blown into this under pressure to oxidize the aldehyde in the liquid phase. It is known that carboxylic acid esters can also be produced by
−34368). However, in this method, very complicated side reactions occur in parallel with the carboxylic ester production reaction, such as an acetal production reaction, an oxidation reaction of the alcohol itself, and a reaction between the alcohol and the aldehyde product, which produces the desired carboxylic ester. It has the disadvantage of low selectivity, especially selectivity based on alcohol. These disadvantages not only increase the raw material consumption rate due to a decrease in selectivity to the product, but also require a large amount of equipment and energy to separate by-products from the desired product, which is extremely disadvantageous from an industrial perspective. . One attempt to solve this problem was published in Japanese Unexamined Patent Publication No. 54-73715.
-73717 and JP-A-54-73723-73725, in which a catalyst is proposed that suppresses the formation of by-products due to oxidation of these alcohols themselves and provides the desired product with high selectivity. However, even when these proposed catalysts are used, large amounts of by-products from the oxidation of the alcohol itself, such as methyl formate, are produced in methanol-based reactions, and Pd--Pb-based catalysts, which produce the desired product in high yields, still produce large amounts of by-products. In this case, the amount of this by-product produced is particularly large. As a result of intensive studies aimed at solving these shortcomings, the present inventors found that the oxygen concentration in the molecular oxygen-containing gas used for the reaction was surprisingly low in the amount of by-products produced due to the oxidation of the alcohol itself. On the other hand, it has little to do with the amount of the desired carboxylic acid ester produced by the reaction between aldehyde and alcohol; in other words, lowering the molecular oxygen concentration dramatically reduces the production of this byproduct. However, the present invention was completed by discovering that the production of the target carboxylic acid ester was almost unchanged. Moreover, the effect of limiting the oxygen concentration of the present invention is most remarkable when the reaction is carried out in the presence of a catalyst containing one or more of platinum or a platinum compound and palladium or a palladium compound. The oxygen concentration in the molecular oxygen-containing gas in the method of the present invention must be 18 mol% or less and 1 mol% or more, preferably 14 mol% or more and 2 mol% or more, more preferably 10 mol% or less. It is mol% or more. When the oxygen concentration increases, by-products resulting from the oxidation of the alcohol itself, such as methyl formate in methanol systems, increase, which is not desirable.
On the other hand, if the oxygen concentration becomes too low, not only will the production rate of the target product, carboxylic ester, decrease, but the amount of oxygen-containing gas supplied to the reaction system will increase, resulting in an enlargement of the equipment and This is undesirable because the cost of power supply increases. The oxygen-containing gas may be pure oxygen diluted with a diluent gas inert to the reaction, such as nitrogen, carbon dioxide, or exhaust gas from the reaction, or air diluted with a diluent gas inert to the reaction. The amount of oxygen-containing gas used naturally varies depending on the oxygen content, but it is sufficient that it is at least the stoichiometric amount of pure oxygen necessary for the reaction, preferably at least 1.5 times the stoichiometric amount. The aldehyde and alcohol used in the method of the present invention must be selected depending on the desired ester. To give an example, aldehydes are HCHO, CH 3 CHO, C 2 H 5 CHO, n-
Aliphatic saturated aldehydes such as C 3 H 7 CHO, i-C 3 H 7 CHO; CH 2 =CH-CHO,

【匏】CH3 ―CHCH―CHO等の脂肪族䞍飜和アルデヒ
ドC6H5CHO、CH3C6H4CHO、
C6H5CH2CHO、C6H4CHO2等の芳銙族アルデ
ヒド又はこれらの誘導䜓が甚いられるが、本発明
の方法はその高重合性のため通垞の自動酞化反応
を適甚しにくい䞍飜和アルデヒドの酞化に特に奜
適に適甚出来る。 䞀方アルコヌルずしおはCH3OH、C2H5OH、
C3H7OH、C4H9OH、C8H17OH等の脂肪族飜和
アルコヌル゚チレングリコヌル、ブタンゞオヌ
ル等のゞオヌル類アリルアルコヌル等の脂肪族
䞍飜和アルコヌルベンゞルアルコヌル等の芳銙
族アルコヌル等が甚いられる。 又アルデヒドずアルコヌルの割合はアルデヒ
ドアルコヌルのモル比で10〜100の範囲が
奜たしく、〜50の範囲が特に奜たしい。 前蚘モル比が10を超えるずアルデヒドの分解等
副反応、䟋えば䞍飜和アルデヒドでは二量化、倚
量化等重合反応が顕著になり、反応の遞択性が䜎
䞋するので奜たしくない。逆に100未満では
アルコヌル自䜓の酞化に起因する副生成物の生成
が顕著にな぀おアルコヌル基準の遞択率が䜎䞋す
る。 本発明の垌釈酞玠を甚いる方法で最も顕著な効
果を瀺す觊媒は、癜金及び又はパラゞりムを含
んだ觊媒であり特に(i)癜金、パラゞりム及びそれ
らの化合物から遞らばれた䞀皮ず(ii)テルル、鉛、
氎銀、タリりム及びそれらの化合物から遞らばれ
た䞀皮以䞊から構成されるものが奜適に䜿甚出
来、さらにこれらに加えおRb、Cs、Mn、As、
Sb、Se及びこれらの化合物からなる矀から遞ら
ばれた䞀皮以䞊を構成成分に加えた觊媒も奜適に
䜿甚出来る。 癜金化合物ずしおは、塩化癜金、塩化癜
金、塩化癜金酞、酞化癜金等が甚いられる
が、反応系䞭では少くずもその䞀郚が金属癜金に
な぀おいる事が奜たしい。 パラゞりム化合物ずしおは、硝酞パラゞりム、
塩化パラゞりム、硫酞パラゞりム等のパラゞりム
塩、酞化パラゞりム及び、パラゞりムフタロシア
ニン等のパラゞりム錯䜓が甚いられるが、反応系
䞭では少くずもその䞀郚が金属パラゞりムにな぀
おいる事が奜たしい。 テルル化合物ずしは、酞化テルル、酞化
テルル等の酞化物、テルル酞ナトリりム、
テルル酞カリりム等のテルル酞塩、亜テルル酞ナ
トリりム、亜テルル酞カリりム等の亜テルル酞
塩、亜テルル酞、オルトテルル酞が挙げられ、鉛
化合物ずしおは酢酞鉛、ギ酞鉛等のカルボン酞
塩、硝酞鉛等の無機鉛、化合物、酞化
鉛、酞化塩、氎酞化鉛、等
が挙げられ、又氎銀化合物ずしお䟋えば酢酞氎
銀、塩化第䞀氎銀、酞化氎銀、硝酞氎銀等の氎銀
化合物、が挙げられ、曎にタリりム化
合物ずしおは、酢酞タリりム、硝酞タリりム、硫
酞タリりム、塩化タリりム、酞化タリりム等のタ
リりム化合物、を甚いる事が出来る。 これらの觊媒金属成分は反応系䞭にそれぞれ別
個に存圚しおもかたわないが、盞互に䜕らかの䜜
甚をもたらしうる圢態で反応系䞭に存圚するのが
奜たしい。䟋えばこれらの金属成分を掻性炭、シ
リカ、アルミナ、チタニア、ゞルコニア、ケむ゜
り土、シリコンカヌバむド、シリカ―アルミナ、
硫酞バリりム、炭酞カルシりム等䞀般的な担䜓に
担持したものが取扱䞊や反応掻性の点から奜適に
䜿甚出来るが、特に比衚面積が70m2/g以䞋の担
䜓を甚いる事が奜たしい。 これらの觊媒の各構成成分の比は、反応原料の
皮類、量、反応条件及び觊媒の調補法等によ぀お
広い範囲で任意に遞択出来、特に制限はないが、
䞀般に担持觊媒では觊媒重量圓り、癜金、パラゞ
りムもしくはそれらの化合物が癜金又はパラゞり
ム金属ずしお0.05〜20重量、奜たしくは0.2〜
10重量、テルル、鉛、氎銀、タリりム及びそれ
らの化合物がそれぞれの金属圓り0.01〜30重量
奜たしくは0.02〜20重量の範囲にあるのが望た
しい。 原料アルデヒドに察する觊媒の䜿甚量は特に制
限はないが、通垞重量比で100〜10倍皋床で
ある。䜆し本発明はこの範囲に限定されるもので
なく、特に本発明を流通系で実斜する堎合䞊蚘範
囲に限定されない。 担持觊媒は垞法に埓぀お調補するこずが出来
る。䟋えば、パラゞりムおよび鉛化合物をアルミ
ナ担䜓に担持させた觊媒を調補する堎合にはアル
ミナにパラゞりム塩氎溶液を含浞させた埌適圓な
還元剀で還元し、それを䟋えば酢酞鉛の氎溶液に
浞挬し、蒞発也固させ十分也燥しお反応に䟛する
事が出来る。 反応は通垞℃以䞊120℃以䞋の枩床で行なわ
れるが、反応速床及び副生物の生成などを考慮す
るず、反応枩床範囲は20〜80゜が奜適である。反
応は枛圧䞋、倧気圧䞋又は加圧䞋のいずれでも実
斜出来る。たた、本反応は回分匏、連続匏いずれ
でも実斜出来る。 次に実斜䟋によ぀お本発明方法を具䜓的に説明
する。 尚、実斜䟋、比范䟋䞭のカルボン酞゚ステル収
率及び遞択率は党おアルデヒド基準であり、転化
率、遞択率及び収率はモル基準による。 又、空気―窒玠混合ガス䞭のO2濃床は、モル
で衚瀺した。 実斜䟋  垂販の重量パラゞりム―α―アルミナ日
本゚ンゲルハルド瀟補10gを、酢酞鉛
〔CH3CO22Pb・3H2O〕0.25gを蒞留氎20mlに溶
かした氎溶液に加え、湯济䞊でゆ぀くり蒞発也固
させる。その埌100℃で充分に枛圧也燥させ觊媒
を調補した。 この觊媒4gを、䞊郚にガス吹蟌口、還流冷华
噚及び枩床蚈の぀いた200c.c.の぀口フラスコに
入れ、さらにメタクロレむン3.3g、メタノヌル
79gを入れ、反応枩床40℃でガス吹き蟌み口より
空気―窒玠混合ガスO2濃床11を30N―
時の速床で吹き蟌みながら反応を行な぀た。
尚この時反応混合物はマグネチツクスタラヌで撹
拌を行な぀た。 反応を2.5時間行ない、結果を衚―に瀺す。
この結果から埌述の比范䟋、にくらべ副生す
るギ酞メチルの量が少いこずが明らかである。 実斜䟋  実斜䟋ず同䞀の觊媒4gを甚い、空気―窒玠
混合ガスのO2濃床をに倉え、吹き蟌み速床
を45N―時に倉えた他は実斜䟋の方法を繰
返した。反応結果を衚―に瀺す。 比范䟋 〜 実斜䟋ず同䞀の觊媒4gを甚い、吹き蟌みガ
スをそれぞれ玔酞玠3N―時、空気15N―
時に倉えた以倖は実斜䟋の方法を繰返し
た。反応結果を衚―に瀺す。 実斜䟋〜、比范䟋〜 実斜䟋ず同様な方法で、重量パラゞりム
―α―アルミナに倉え重量パラゞりム―
CaCO3を甚いお觊媒を調補した。 この觊媒4gを甚い、吹き蟌みガスをそれぞれ
空気―窒玠混合ガスO2濃床1130N―
時、空気―窒玠混合ガスO2濃床45N―
時、玔酞玠3N―時、空気15N―時
にする以倖は実斜䟋の方法を繰返した。反応結
果を衚―に瀺す。 実斜䟋〜、比范䟋〜 重量パラゞりム―CaCO3ず亜テルル酞を
甚い実斜䟋ず同様に調補した觊媒2gを䜿甚し、
吹き蟌みガスをそれぞれ、空気―窒玠混合ガス
O2濃床1130N―時、空気―窒玠混合ガ
スO2濃床45N―時、玔酞玠3N―
時、空気15N―時にする以倖は実斜䟋
の方法を繰返した。反応結果を衚―に瀺す。 実斜䟋、比范䟋 重量パラゞりム―Al2O3及び酢酞氎銀を甚
いお実斜䟋ず同様に調補した觊媒4gを䜿甚し、
吹き蟌みガスをそれぞれ空気―窒玠混合ガス
O2濃床45N―時、玔酞玠3N―時
にする以倖は実斜䟋の方法を繰返した。 反応結果を衚―に瀺す。 実斜䟋、比范䟋 重量パラゞりム―SiO2及び硝酞タリりム
を甚いお実斜䟋ず同様に調補した觊媒4gを䜿
甚し、吹き蟌みガスをそれぞれ空気―窒玠混合ガ
スO2濃床45N―時、玔酞玠3N―
時を甚いる以倖は実斜䟋の方法を繰返し
た。反応結果を衚―に瀺す。 実斜䟋、比范䟋 垂販の重量癜金―アルミナず酢酞氎銀を甚
いお実斜䟋ず同様にしお調補した觊媒4gを甚
い、反応枩床を58℃に倉え、吹き蟌みガスをそれ
ぞれ空気―窒玠混合ガスO2濃床45N―
時、玔酞玠3N―時ずする以倖は実斜䟋
の方法を繰返した。 反応結果を衚―に瀺す。 比范䟋10―、比范䟋10― 垂販の重量パラゞりム―アルミナ觊媒日
本゚ンゲルハルド瀟補4gを甚い、吹き蟌みガ
スをそれぞれ空気―窒玠混合ガスO2濃床
45N―時、玔酞玠3N―時ずする以倖は
実斜䟋の方法を繰返した。 反応結果を衚―に瀺す。 実斜䟋10、比范䟋11 実斜䟋ず同䞀の觊媒4gを甚い、メタクロレ
むンに倉えおアクロレむン3.3gをメタノヌルに倉
えお゚タノヌル79gを甚い、吹き蟌みガスをそれ
ぞれ空気―窒玠混合ガスO2濃床45N―
時、玔酞玠3N―時ずする以倖は実斜䟋
の方法を繰返し2.5時間反応を行な぀た。反応
結果を衚―に瀺す。 実斜䟋11、比范䟋12 実斜䟋ず同䞀の觊媒4gを甚い、メタクロレ
むンに倉えアセトアルデヒド3.1gを甚い、吹き蟌
みガスをそれぞれ空気―窒玠混合ガスO2濃床
45N―時、玔酞玠3N―時ずする
以倖は実斜䟋の方法を繰返し2.5時間反応を行
な぀た。 反応結果を衚―に瀺す。
[Formula] CH 3 - CH= CH - Aliphatic unsaturated aldehydes such as CHO; C 6 H 5 CHO, CH 3 C 6 H 4 CHO,
Aromatic aldehydes such as C 6 H 5 CH 2 CHO and C 6 H 4 (CHO) 2 or their derivatives are used, but the method of the present invention is difficult to apply ordinary autoxidation reactions due to their high polymerizability. It can be particularly suitably applied to the oxidation of unsaturated aldehydes. On the other hand, alcohols include CH 3 OH, C 2 H 5 OH,
Aliphatic saturated alcohols such as C 3 H 7 OH, C 4 H 9 OH, and C 8 H 17 OH; Diols such as ethylene glycol and butanediol; Aliphatic unsaturated alcohols such as allyl alcohol; Aromatics such as benzyl alcohol Alcohol etc. are used. The molar ratio of aldehyde to alcohol is preferably in the range of 10 to 1/100, particularly preferably in the range of 2 to 1/50. If the molar ratio exceeds 10, side reactions such as decomposition of aldehydes, for example, polymerization reactions such as dimerization and multimerization in the case of unsaturated aldehydes, become significant, and the selectivity of the reaction decreases, which is not preferable. On the other hand, if it is less than 1/100, by-products due to oxidation of the alcohol itself will be produced significantly, and the selectivity based on alcohol will decrease. The catalyst that exhibits the most remarkable effect in the method of the present invention using diluted oxygen is a catalyst containing platinum and/or palladium, particularly (i) one selected from platinum, palladium and their compounds and (ii) tellurium. ,lead,
Those consisting of one or more selected from mercury, thallium, and their compounds can be suitably used, and in addition to these, Rb, Cs, Mn, As,
A catalyst containing one or more components selected from the group consisting of Sb, Se, and these compounds can also be suitably used. As the platinum compound, platinum chloride (2), platinum chloride (2), chloroplatinic acid, platinum oxide, etc. are used, but it is preferable that at least a part of it becomes metallic platinum in the reaction system. Palladium compounds include palladium nitrate,
Palladium salts such as palladium chloride and palladium sulfate, palladium oxide, and palladium complexes such as palladium phthalocyanine are used, but it is preferable that at least a part of them be converted to metallic palladium in the reaction system. Tellurium compounds include tellurium oxide (), oxides such as tellurium oxide (), sodium tellurate,
Examples include tellurates such as potassium tellurate, tellurites such as sodium tellurite and potassium tellurite, tellurite, and orthotelluric acid; examples of lead compounds include carboxylates such as lead acetate and lead formate; Examples include inorganic lead (), () compounds such as lead nitrate, lead oxide (), oxide salts (), lead hydroxide (), (), etc., and mercury compounds such as mercury acetate, mercurous chloride, oxidized Examples include mercury compounds (), () such as mercury and mercury nitrate, and as thallium compounds, thallium compounds () and () such as thallium acetate, thallium nitrate, thallium sulfate, thallium chloride, and thallium oxide can be used. I can do it. Although these catalytic metal components may be present separately in the reaction system, they are preferably present in the reaction system in a form that allows them to have some effect on each other. For example, these metal components can be activated carbon, silica, alumina, titania, zirconia, diatomaceous earth, silicon carbide, silica-alumina,
A carrier supported on a general carrier such as barium sulfate or calcium carbonate can be suitably used from the viewpoint of handling and reaction activity, but it is particularly preferable to use a carrier having a specific surface area of 70 m 2 /g or less. The ratio of each component of these catalysts can be arbitrarily selected within a wide range depending on the type and amount of reaction raw materials, reaction conditions, catalyst preparation method, etc., and is not particularly limited.
Generally, supported catalysts contain 0.05 to 20% by weight of platinum or palladium metal, preferably 0.2 to 20% by weight of platinum or palladium metal, based on the weight of the catalyst.
10% by weight, tellurium, lead, mercury, thallium and their compounds from 0.01 to 30% by weight for each metal.
Preferably, it is in the range of 0.02 to 20% by weight. There is no particular restriction on the amount of catalyst used relative to the raw material aldehyde, but it is usually about 1/100 to 10 times the weight ratio. However, the present invention is not limited to this range, and particularly when the present invention is implemented in a distribution system, it is not limited to the above range. Supported catalysts can be prepared according to conventional methods. For example, when preparing a catalyst in which palladium and lead compounds are supported on an alumina carrier, alumina is impregnated with an aqueous palladium salt solution, reduced with an appropriate reducing agent, immersed in an aqueous solution of lead acetate, and evaporated. It can be dried to dryness and used for reaction. The reaction is usually carried out at a temperature of 0 DEG C. or higher and 120 DEG C. or lower, but in consideration of the reaction rate and the formation of by-products, the reaction temperature range is preferably 20 DEG to 80 DEG C. The reaction can be carried out under reduced pressure, atmospheric pressure or increased pressure. Moreover, this reaction can be carried out either batchwise or continuously. Next, the method of the present invention will be specifically explained with reference to Examples. In addition, the carboxylic acid ester yield and selectivity in Examples and Comparative Examples are all based on aldehyde, and the conversion rate, selectivity, and yield are based on molar basis. Further, the O 2 concentration in the air-nitrogen mixed gas was expressed in mol%. Example 1 10 g of commercially available 5% by weight palladium-α-alumina (manufactured by Engelhard Japan) was added to an aqueous solution of 0.25 g of lead acetate [(CH 3 CO 2 ) 2 Pb・3H 2 O] dissolved in 20 ml of distilled water. Add and evaporate to dryness slowly on a hot water bath. Thereafter, it was thoroughly dried under reduced pressure at 100°C to prepare a catalyst. 4 g of this catalyst was placed in a 200 cc.
Add 79g of air-nitrogen mixed gas (O 2 concentration 11%) at 30N through the gas inlet at a reaction temperature of 40℃.
The reaction was carried out while blowing at a rate of l/h.
At this time, the reaction mixture was stirred using a magnetic stirrer. The reaction was carried out for 2.5 hours and the results are shown in Table 1.
From this result, it is clear that the amount of methyl formate produced as a by-product was smaller than in Comparative Examples 1 and 2, which will be described later. Example 2 The method of Example 1 was repeated using 4 g of the same catalyst as in Example 1, except that the O 2 concentration of the air-nitrogen mixture was changed to 7%, and the blowing rate was changed to 45 N-l/h. The reaction results are shown in Table-1. Comparative Examples 1 to 2 Using 4 g of the same catalyst as in Example 1, the blown gases were 3 N-l/h of pure oxygen and 15 N-l/h of air, respectively.
The method of Example 1 was repeated except that the l/h was changed. The reaction results are shown in Table-1. Examples 3 to 4, Comparative Examples 3 to 4 In the same manner as in Example 1, 5 weight % palladium-α-alumina was replaced with 5 weight % palladium.
The catalyst was prepared using CaCO3 . Using 4g of this catalyst, the blowing gas was 30N-l/air-nitrogen mixed gas ( O2 concentration 11%).
time, air-nitrogen mixed gas (O 2 concentration 7%) 45N-
The procedure of Example 1 was repeated, except that the flow rate was 3 N-l/h, pure oxygen 3 N-l/h, and 15 N-l/h air. The reaction results are shown in Table-1. Examples 5-6, Comparative Examples 5-6 Using 2 g of a catalyst prepared in the same manner as in Example 1 using 5% by weight palladium-CaCO 3 and tellurite,
The blowing gases were air-nitrogen mixed gas (O 2 concentration 11%) 30N-l/hr, air-nitrogen mixed gas (O 2 concentration 7%) 45N-l/hr, and pure oxygen 3N-l/hr.
Example 1 except that air was used at 15 N-l/hr.
The method was repeated. The reaction results are shown in Table-1. Example 7, Comparative Example 7 Using 4 g of a catalyst prepared in the same manner as in Example 1 using 5% by weight palladium-Al 2 O 3 and mercury acetate,
The procedure of Example 1 was repeated, except that the blowing gases were 45 N-l/h of air-nitrogen mixture (7% O 2 concentration) and 3 N-l/h of pure oxygen, respectively. The reaction results are shown in Table-1. Example 8, Comparative Example 8 Using 4 g of a catalyst prepared in the same manner as in Example 1 using 5% by weight palladium-SiO 2 and thallium nitrate, the blowing gas was air-nitrogen mixed gas (O 2 concentration 7%). 45N-l/hour, pure oxygen 3N-
The method of Example 1 was repeated except that l/h was used. The reaction results are shown in Table-1. Example 9, Comparative Example 9 Using 4 g of a catalyst prepared in the same manner as in Example 1 using commercially available 5% by weight platinum-alumina and mercury acetate, the reaction temperature was changed to 58°C, and the blowing gas was changed to air-nitrogen, respectively. Mixed gas (O 2 concentration 7%) 45N -
The method of Example 1 was repeated, except that 3N-l/h of pure oxygen was used. The reaction results are shown in Table-1. Comparative Example 10-1, Comparative Example 10-2 Using 4 g of a commercially available 5% by weight palladium-alumina catalyst (manufactured by Engelhard Japan), the blowing gas was air-nitrogen mixed gas (O 2 concentration 7%).
The method of Example 1 was repeated, except that 45 N-l/h and pure oxygen were used at 3 N-l/h. The reaction results are shown in Table-1. Example 10, Comparative Example 11 Using 4 g of the same catalyst as in Example 1, replacing 3.3 g of acrolein with methacrolein and using 79 g of ethanol with methanol, the blowing gas was air-nitrogen mixed gas (O 2 concentration 7 %) 45N―
The reaction was carried out for 2.5 hours by repeating the method of Example 1 except that the amount of pure oxygen was 3N-l/hour. The reaction results are shown in Table-1. Example 11, Comparative Example 12 Using 4 g of the same catalyst as in Example 1, using 3.1 g of acetaldehyde instead of methacrolein, and blowing gas with air-nitrogen mixed gas (O 2 concentration 7%) at 45 N-l/hour, The reaction was carried out for 2.5 hours by repeating the method of Example 1 except that the amount of pure oxygen was 3 N-l/hour. The reaction results are shown in Table-1.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  分子状酞玠の存圚䞋、アルデヒドずアルコヌ
ルの反応によりカルボン酞゚ステルを補造する方
法においお、(ã‚€)癜金、癜金化合物、パラゞりムお
よびパラゞりム化合物から遞ばれた少なくずも
皮ならびに(ロ)テルル、鉛、氎銀、タリりムおよび
それらの化合物から遞ばれた少なくずも皮ずを
含む觊媒の存圚䞋で、濃床18モル以䞋の垌釈酞
玠ガスを甚い、〜120℃で反応を行なうこずを
特城ずするカルボン酞゚ステルの補造法。  垌釈酞玠ガスの濃床がモル以䞊である特
蚱請求の範囲第項蚘茉の方法。  垌釈酞玠ガスが反応に䞍掻性なガスで酞玠、
たたは空気を垌釈しおなる特蚱請求の範囲第あ
るいは項蚘茉の方法。
[Scope of Claims] 1. A method for producing a carboxylic acid ester by reacting an aldehyde with an alcohol in the presence of molecular oxygen, comprising: (a) at least one selected from platinum, platinum compounds, palladium, and palladium compounds;
The reaction is carried out at 0 to 120°C using diluted oxygen gas with a concentration of 18 mol% or less in the presence of a catalyst containing a species and at least one selected from (ro)tellurium, lead, mercury, thallium, and their compounds. A method for producing a carboxylic acid ester, characterized by carrying out the following steps. 2. The method according to claim 1, wherein the concentration of the diluted oxygen gas is 1 mol% or more. 3 Diluted oxygen gas is an inert gas for the reaction,
Alternatively, the method according to claim 1 or 2, wherein air is diluted.
JP55126977A 1980-09-12 1980-09-12 Preparation of carboxylic ester Granted JPS5750941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55126977A JPS5750941A (en) 1980-09-12 1980-09-12 Preparation of carboxylic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55126977A JPS5750941A (en) 1980-09-12 1980-09-12 Preparation of carboxylic ester

Publications (2)

Publication Number Publication Date
JPS5750941A JPS5750941A (en) 1982-03-25
JPS6340416B2 true JPS6340416B2 (en) 1988-08-11

Family

ID=14948578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55126977A Granted JPS5750941A (en) 1980-09-12 1980-09-12 Preparation of carboxylic ester

Country Status (1)

Country Link
JP (1) JPS5750941A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185540A (en) * 1982-04-23 1983-10-29 Asahi Chem Ind Co Ltd Preparation of unsaturated carboxylic ester
JPS58198442A (en) * 1982-05-14 1983-11-18 Asahi Chem Ind Co Ltd Improved method for preparation of methyl methacrylate or methyl acrylate
US10590062B1 (en) * 2018-11-13 2020-03-17 Eastman Chemical Company Iron-catalyzed selective production of methyl esters from aldehydes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473717A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
JPS5473716A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
JPS5473723A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of alpha,beta-unsaturated carboxylic ester
JPS5473724A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of alpha,beta-unsaturated carboxylic ester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5473717A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
JPS5473716A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of carboxylic ester
JPS5473723A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of alpha,beta-unsaturated carboxylic ester
JPS5473724A (en) * 1977-11-17 1979-06-13 Asahi Chem Ind Co Ltd Production of alpha,beta-unsaturated carboxylic ester

Also Published As

Publication number Publication date
JPS5750941A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
US4249019A (en) Process for producing carboxylic esters
US6852877B1 (en) Process for the production of vinyl acetate
US4518796A (en) Method for preparing carboxylic esters
US4520125A (en) Catalyst for the preparation of methyl methacrylate
US20030187297A1 (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
EP1996534B1 (en) Process for producing alkenyl alcohols
US20010049335A1 (en) Catalyst and use thereof in the production of vinyl acetate
JPS627902B2 (en)
UA75329C2 (en) A method for oxidation of c2-c4 alkane, a method for obtaining alkylcarboxylate and a method for obtaining alkenylcarboxylate
JP2005526855A (en) Process for producing ethylenically unsaturated acids and esters
US4638085A (en) Preparation of methyl methacrylate from methacrolein
JP4235202B2 (en) Catalyst for producing carboxylic acid ester and method for producing carboxylic acid ester using the catalyst
JPS6340416B2 (en)
JP2021120333A (en) Method of producing heteropolyacid compound, heteropolyacid compound, and method of producing methacrylic acid
JP3258354B2 (en) Method for producing carboxylic acid ester
JPH0213653B2 (en)
EP0013578A2 (en) Process for producing methacrylic acid
JPH1028865A (en) Improved preparation method of catalyst for production of carboxylic acid ester
CA1226585A (en) Process for producing acetaldehyde
US3637818A (en) Process for preparing mixtures of acetaldehyde acetic acid and vinyl acetate
JP3989226B2 (en) Method for producing pyruvic acid
JP3036938B2 (en) Method for oxidizing saturated hydrocarbons
JP2001220367A (en) Method and catalyst for producing carboxylic acid ester
JPS584704B2 (en) Method for producing methyl methacrylate
JP3921788B2 (en) Method for producing 1,6-hexanediol