JPH08217771A - Production of 3-methyltetrahydrofuran - Google Patents

Production of 3-methyltetrahydrofuran

Info

Publication number
JPH08217771A
JPH08217771A JP7022810A JP2281095A JPH08217771A JP H08217771 A JPH08217771 A JP H08217771A JP 7022810 A JP7022810 A JP 7022810A JP 2281095 A JP2281095 A JP 2281095A JP H08217771 A JPH08217771 A JP H08217771A
Authority
JP
Japan
Prior art keywords
alcohol
catalyst
methyltetrahydrofuran
reaction
citraconic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022810A
Other languages
Japanese (ja)
Inventor
Takafumi Abe
崇文 阿部
Masanori Takemoto
眞規 竹本
Hiroyuki Nitobe
浩行 二藤部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7022810A priority Critical patent/JPH08217771A/en
Publication of JPH08217771A publication Critical patent/JPH08217771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To obtain the subject compound suitably useful as a raw material component, etc., for spandex fiber in good selectivity at a low cost by producing an alkyl citraconate from citraconic anhydride and an alcohol and successively catalytically hydrogenating the resultant ester. CONSTITUTION: Citraconic anhydride of formula I and an alcohol (e.g. methanol) in amounts at 1/7 ratio (molar ratio) of the citraconic anhydride/alcohol are added to a reactional tube made of stainless steel and reacted in the presence of a heat-resistant ion exchange resin as a catalyst at 120 deg.C under <=5kg/cm<2> (gauge pressure) to provide a dialkyl citraconate, which is then catalytically hydrogenated in the presence of a CuO-Cr2 O3 -MnO-BaO catalyst at 210 deg.C reactional temperature under 160kg/cm<2> reactional pressure (gauge pressure) while supplying hydrogen to afford the objective 3-methyltetrahydrofuran of formula II useful as a comonomer, etc., for polyether fibers which are raw materials for spandex fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3−メチルテトラヒドロ
フランの新規製造方法に関する。3−メチルテトラヒド
ロフランはスパンデックスファイバーの原料であるポリ
エーテルファイバーのコモノマーとして利用される。
FIELD OF THE INVENTION The present invention relates to a novel method for producing 3-methyltetrahydrofuran. 3-Methyltetrahydrofuran is used as a comonomer of polyether fiber which is a raw material of spandex fiber.

【従来の技術】3−メチルテトラヒドロフランは種々の
方法により製造可能である。特開昭63−218669
号によればクエン酸の水素添加により,3−メチルテト
ラヒドロフランは,3−及び4−メチルブチロラクトン
と共に生成するがその選択率は約70% である。米国特
許第3956318号によれば液相, プロトン酸の存在
下エポキサイドを接触水素化すると生成するが,その原
料エポキサイドは高価である。特開平2−62835号
によればアルデヒドの存在下4−ヒドロキシ−ブチルア
ルデヒドまたは2−ヒドロキシ−テトラヒドロフランの
接触水素化で得られるジオールを環化すると生成するが
その原料は高価であり, テトラヒドロフランの副生を伴
う。また、メチルマレイン酸またはメチルコハク酸の水
素化による方法(特開昭49−9463号)も開示され
ているが、出発原料の入手が困難であるばかりでなく水
素化条件も過酷であり工業的実施が困難なことは明白で
ある。
2. Description of the Related Art 3-Methyltetrahydrofuran can be produced by various methods. JP-A-63-218669
According to the publication, hydrogenation of citric acid produces 3-methyltetrahydrofuran with 3- and 4-methylbutyrolactone, the selectivity of which is about 70%. According to US Pat. No. 3,956,318, it is produced by catalytic hydrogenation of epoxide in the liquid phase in the presence of a protonic acid, but the raw material epoxide is expensive. According to JP-A-2-62835, the diol obtained by catalytic hydrogenation of 4-hydroxy-butyraldehyde or 2-hydroxy-tetrahydrofuran in the presence of an aldehyde is produced by cyclization, but the starting material is expensive, and the Accompanied by raw. Further, a method by hydrogenation of methylmaleic acid or methylsuccinic acid (JP-A-49-9463) is also disclosed. However, not only is it difficult to obtain starting materials, but also the hydrogenation conditions are harsh, so that industrial implementation Is obviously difficult.

【0002】特開昭48−22405号によれば1,4
−ブテンジオールをヒドロホルミル化し, 触媒分離後そ
のヒドロホルミル化された生成物(2−ホルミル−1,
4−ブタンジオールと推定される) の水溶液を接触水素
化し,得られた2−メチル−1,4−ブタンジオールを
環化し3−メチルテトラヒドロフランを得ている。また
特開平5−117258号及び特公平4−55179号
によればアルデヒドの存在下1,4−ブチンジオールま
たは1,4−ブテンジオールを接触水素化し得られたジ
オールを環化し3−メチルテトラヒドロフランを得てい
る。しかしこれらの方法で原料として用いている1,4
−ブテンジオールおよび1,4−ブチンジオールは,ア
セチレンから得られるものであるため高価であり, また
テトラヒドロフランの副生を伴う。特開平6−2199
81号によれば,イタコン酸,3−ホルミル−2−メチ
ルプロピオン酸またはこれらのエステルを接触水素化す
ると2−メチル−1,4−ブタンジオールと共に生成す
るが,その原料イタコン酸および3−ホルミル−2−メ
チルプロピオン酸は高価である。以上既往の3−メチル
テトラヒドロフランの製造方法は原料が高価であるとか
3−メチルテトラヒドロフランへの選択性が低い等, 工
業的に満足すべきものではない。
According to Japanese Patent Laid-Open No. 48-22405, 1,4
-Butenediol is hydroformylated, and after the catalyst is separated, the hydroformylated product (2-formyl-1,
(Estimated to be 4-butanediol) is catalytically hydrogenated, and the obtained 2-methyl-1,4-butanediol is cyclized to obtain 3-methyltetrahydrofuran. According to JP-A-5-117258 and JP-B-4-55179, 1,4-butynediol or 1,4-butenediol is catalytically hydrogenated in the presence of an aldehyde, and the obtained diol is cyclized to give 3-methyltetrahydrofuran. It has gained. However, 1,4 used as a raw material in these methods
-Butenediol and 1,4-butynediol are expensive because they are obtained from acetylene, and they are also accompanied by the by-product of tetrahydrofuran. JP-A-6-2199
According to No. 81, catalytic hydrogenation of itaconic acid, 3-formyl-2-methylpropionic acid or their esters produces with 2-methyl-1,4-butanediol. 2-Methylpropionic acid is expensive. As described above, the conventional method for producing 3-methyltetrahydrofuran is not industrially satisfactory because the raw material is expensive and the selectivity to 3-methyltetrahydrofuran is low.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は前記の
欠点を有しない安価な原料を用い, 選択性の高い3−メ
チルテトラヒドロフランの製造方法を提供することであ
る。
An object of the present invention is to provide a method for producing 3-methyltetrahydrofuran having high selectivity by using an inexpensive raw material which does not have the above-mentioned drawbacks.

【0004】[0004]

【問題点を解決するための手段】本発明者は前記の課題
を解決するため鋭意検討を行った結果,(1)無水シト
ラコン酸とアルコールからシトラコン酸のアルキルエス
テルを製造する第一工程および(2)前記第一工程で得
られたアルキルエステルを接触水素化して3−メチルテ
トラヒドロフランを製造する第二工程よりなる3−メチ
ルテトラヒドロフランの製造法を見いだした。化1に本
発明の製造法の全工程を概略的に示す。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, (1) a first step for producing an alkyl ester of citraconic acid from anhydrous citraconic acid and an alcohol, and ( 2) A method for producing 3-methyltetrahydrofuran, which comprises a second step of producing 3-methyltetrahydrofuran by catalytically hydrogenating the alkyl ester obtained in the first step, was found. Chemical formula 1 schematically shows all steps of the production method of the present invention.

【0005】[0005]

【化1】 Embedded image

【0006】本製造方法における原料無水シトラコン酸
はo−キシレンの酸化によるフタル酸製造時,通常は廃
棄される高沸中に無水マレイン酸と共に存在する。即ち
無水マレイン酸回収のため蒸留精製する際にその蒸留釜
残に濃縮され, 通常は廃棄されるが簡単な蒸留精製を行
えば純度の高い, 安価な無水シトラコン酸が回収され
る。本製造法は安価な原料を用い, 高選択的に3−メチ
ルテトラヒドロフランを製造できるので工業的に極めて
高い意義を持つ。
The raw material citraconic acid in the present production method is present together with maleic anhydride in the high boiling point which is usually discarded during the production of phthalic acid by the oxidation of o-xylene. That is, when distilling and refining to recover maleic anhydride, it is concentrated in the distillation bottoms and is usually discarded, but simple distillative refining yields highly pure and inexpensive citraconic anhydride. This production method has extremely high industrial significance because it can inexpensively produce 3-methyltetrahydrofuran using inexpensive raw materials.

【0007】以下に本発明の方法を詳細に説明する。本
発明に於けるシトラコン酸のアルキルエステルを製造す
る第一工程は無水シトラコン酸と,無水シトラコン酸に
対して2倍モル以上のアルコール, 通常2−20倍モル
好ましくは3−8倍モルのアルコールとの混合物を触媒
の存在下あるいは触媒を使用しないで加熱反応により行
われる。反応温度はアルコールの種類によって変わるが
通常80−180℃,好ましくは100−150℃であ
る。180℃以上だとアルコールの脱水によりエーテル
が副生し,80℃以下だと反応速度が遅く実用的でな
い。本反応は減圧, 常圧, 加圧いずれの圧力下でも行え
るが, 安価な装置で実施できる5kg/cm2(ゲージ圧)以
下が好ましい。
The method of the present invention will be described in detail below. The first step for producing an alkyl ester of citraconic acid in the present invention is citraconic anhydride and an alcohol in an amount of 2 times or more moles, usually 2 to 20 times moles, preferably 3 to 8 times moles of alcohol with respect to citraconic acid anhydride. Is carried out by heating reaction in the presence or absence of a catalyst. The reaction temperature varies depending on the type of alcohol, but is usually 80-180 ° C, preferably 100-150 ° C. Above 180 ° C, ether is by-produced by dehydration of alcohol, and below 80 ° C, the reaction rate is slow and not practical. This reaction can be carried out under any of reduced pressure, normal pressure and increased pressure, but it is preferably 5 kg / cm 2 (gauge pressure) or less which can be carried out by an inexpensive apparatus.

【0008】本反応は触媒を用いなくとも進行するが,
効率良く行うために通常触媒を使用する。触媒を使用す
る場合には, その触媒は公知のものでよく,例えばp−
トルエンスルホン酸,メタンスルホン酸,イオン交換樹
脂および硫酸等の酸性触媒,テトライソプロピルチタネ
ート,テトラブチルチタネートやこれらの重合物などの
チタン化合物,シュウ酸錫,錫テトラブチレート等の錫
化合物等が使用されるが, 一般的には次工程の接触水素
化触媒に対する影響を考え,ハロゲン, 硫黄元素を含ま
ない触媒の使用が好ましく, また触媒の分離除去の容易
な強酸性イオン交換樹脂の使用が好適である。
Although this reaction proceeds without using a catalyst,
A catalyst is usually used in order to perform efficiently. When a catalyst is used, the catalyst may be a known one, for example p-
Toluene sulfonic acid, methane sulfonic acid, ion exchange resins and acidic catalysts such as sulfuric acid, titanium compounds such as tetraisopropyl titanate, tetrabutyl titanate and their polymers, tin compounds such as tin oxalate and tin tetrabutyrate are used. However, considering the effect on the catalytic hydrogenation catalyst in the next step, it is generally preferable to use a catalyst that does not contain halogen and sulfur elements, and it is preferable to use a strongly acidic ion exchange resin that is easy to separate and remove the catalyst. Is.

【0009】通常強酸性イオン交換樹脂はスチレンとジ
ビニルベンゼンの共重合体からなる三次元の高分子基体
にスルホン酸基を導入した化学構造を持つもので, その
スルホン酸基はベンゼン核と結びついている。このため
耐熱性に問題があり短時間なら150℃程度でも使用可
能ではあるが,長時間安定した成績の必要な時は100
℃程度以下にする事が望ましい。ポリシロキ酸の高分子
基体にアルキレン基を介してスルホン酸基を導入した耐
熱性イオン交換樹脂は200℃程度まで長時間, 安定的
に使用できるので本発明において, その使用が最適であ
る。
[0009] Normally, a strongly acidic ion exchange resin has a chemical structure in which a sulfonic acid group is introduced into a three-dimensional polymer substrate composed of a copolymer of styrene and divinylbenzene, and the sulfonic acid group is linked to the benzene nucleus. There is. For this reason, there is a problem with heat resistance, and it can be used at about 150 ° C for a short time, but if stable performance is required for a long time, 100
It is desirable to keep the temperature below about ℃. The heat-resistant ion-exchange resin in which a sulfonic acid group is introduced into a polymer substrate of polysiloxy acid through an alkylene group can be stably used for up to about 200 ° C. for a long time, so that the use thereof is optimal in the present invention.

【0010】本エステル化工程に用いられるアルコール
としては炭素数8以下のアルコールが使用され,一般的
にエステル製造の容易な1級の脂肪族アルコ−ルの使用
が好ましい。 特に単位容積当たりの生産量を考慮すると
分子量の小さいメタノールの使用が好適である。
As the alcohol used in the present esterification step, an alcohol having a carbon number of 8 or less is used, and it is generally preferred to use a primary aliphatic alcohol which is easy to produce an ester. Especially, considering the production amount per unit volume, it is preferable to use methanol having a small molecular weight.

【0011】アルコールとしてメタノール, 強酸性イオ
ン交換樹脂を触媒とする場合, 反応は固定床方式が好ま
しい。また反応圧力は低ければ低いほど高収率を与える
が,経済性の観点から5kg/cm2(ゲージ圧)以下,特に
常圧付近が好ましい。本発明に於けるエステルの水素化
はバッチ形式によっても行い得るが,さらに好ましくは
固定床触媒を用いた流通形式の反応を行うのが良く,そ
の際の触媒の使用量はエステルの単位時間当り供給量に
対して重量で0.5−50倍程度である。
When methanol is used as the alcohol and a strongly acidic ion exchange resin is used as the catalyst, the reaction is preferably a fixed bed system. The lower the reaction pressure is, the higher the yield is. However, from the viewpoint of economy, it is preferably 5 kg / cm 2 (gauge pressure) or less, particularly around normal pressure. The hydrogenation of the ester in the present invention can be carried out in a batch system, but it is more preferable to carry out the reaction in a flow system using a fixed bed catalyst, in which case the amount of the catalyst used is per unit time of the ester. It is about 0.5 to 50 times the weight of the supplied amount.

【0012】本発明の第二工程である接触水素化反応の
条件は原料エステルおよび触媒の種類によっても変わる
が一般的に100−300℃の温度で20kg/cm2
(ゲージ圧)以上の圧力下で実施される。本反応に用い
る水素ガスは必ずしも高純度である必要はなく,接触水
素化反応に悪影響を与えない窒素,メタン等のイナート
分を含む物でも良い。
The conditions of the catalytic hydrogenation reaction, which is the second step of the present invention, are generally 20 kg / cm 2 at a temperature of 100-300 ° C., although it varies depending on the kinds of the starting ester and the catalyst.
(Gauge pressure) It is carried out under the above pressure. The hydrogen gas used in this reaction does not necessarily have to be of high purity and may be a substance containing an inert component such as nitrogen or methane, which does not adversely affect the catalytic hydrogenation reaction.

【0013】本発明における第二工程の水素化反応に用
いる触媒は,主成分として銅,または周期律表第7aお
よび8族に属する元素を含有する。更に詳しくは,銅,
コバルト,ニッケル,鉄,レニウム,パラジウム,ルテ
ニウム,白金,ロジウムが本反応の触媒の主成分として
有効である。また,助触媒をなす成分として,クロム,
モリブデン,マンガン,バリウム,マグネシウム,およ
び珪素,アルミニウムを含有する固体酸成分等が有効で
ある。本反応の触媒として,特に好適なのは銅を主成分
とした,一般に銅−クロマイトと称するものであり,マ
ンガン,バリウム等を助触媒成分として含有したものな
どがある。本反応の触媒として,特に好適な銅−クロマ
イトの場合では,反応温度は150〜280℃,また反
応圧は50〜200kg/cm2(ゲージ圧)の範囲が好適で
ある。
The catalyst used in the hydrogenation reaction of the second step in the present invention contains copper as a main component or an element belonging to Groups 7a and 8 of the periodic table. More specifically, copper,
Cobalt, nickel, iron, rhenium, palladium, ruthenium, platinum, and rhodium are effective as the main components of the catalyst for this reaction. In addition, as a component forming the promoter, chromium,
Solid acid components containing molybdenum, manganese, barium, magnesium, and silicon and aluminum are effective. A particularly suitable catalyst for this reaction is one containing copper as a main component and generally called copper-chromite, and one containing manganese, barium or the like as a promoter component. In the case of copper-chromite which is particularly suitable as the catalyst for this reaction, the reaction temperature is preferably 150 to 280 ° C., and the reaction pressure is preferably 50 to 200 kg / cm 2 (gauge pressure).

【0014】本接触水素化反応に用いる触媒としては銅
−クロム−バリウム(またはマンガン)触媒が好まし
く, 例えば次のような方法で調製される。 (1)固体状の酸化第二銅(CuO) ,酸化第二クロム(Cr2
O3) 及び二酸化マンガン(MnO2)(または酸化バリウム(B
aO) )を混ぜ,更に滑材としてグラファイト等を添加し
て良く混合した後,一般的な方法で成形し,高温焼成後
成形物を破砕して適当な大きさにして使用する。 (2)重クロム酸アンモニウムを溶かした水溶液にアン
モニア水を加え,この水溶液に別途調製した硝酸第二銅
(または硫酸第二銅等)と,硝酸マンガン(または硫酸
マンガン等)或は硝酸バリウムとを溶かした水溶液を撹
伴しながら滴下する。生成する沈澱を水洗乾燥後,例え
ば空気中で350℃付近の温度で焼成する。この様にし
て得た粉末状の焼成物をそのまま反応に用いることもで
きるが,この焼成物に適当な粘結剤や滑剤を加えて充分
に混合した後成形して使用することもできる。
The catalyst used in the catalytic hydrogenation reaction is preferably a copper-chromium-barium (or manganese) catalyst, which is prepared, for example, by the following method. (1) Solid cupric oxide (CuO), chromic oxide (Cr 2
O 3 ) and manganese dioxide (MnO 2 ) (or barium oxide (B
aO)) is mixed, and graphite etc. are added as a lubricant and mixed well, followed by molding by a general method, crushing the molded product after high temperature firing and using it in an appropriate size. (2) Ammonia water is added to an aqueous solution in which ammonium dichromate is dissolved, and cupric nitrate (or cupric sulfate, etc.) and manganese nitrate (or manganese sulfate, etc.) or barium nitrate prepared separately are added to this aqueous solution. Is added dropwise with stirring. The precipitate formed is washed with water and dried, and then calcined in the air, for example, at a temperature of around 350 ° C. The powdery fired product thus obtained can be used for the reaction as it is, but it is also possible to add an appropriate binder and a lubricant to the fired product, mix them sufficiently, and use them after molding.

【0015】上記(1),(2)等の方法により得られ
た銅−クロム−バリウム(またはマンガン)触媒に含ま
れる各成分の重量比はCuO:Cr2O3:MnO2(またはBaO )の
比率に換算してそれぞれ20-85:15-75:1-15の範囲内にあ
ることが好ましい。触媒の形態としては粉末状またはタ
ブレット状等何れのものでも良く,その使用形態に最適
なものが使用される。これらの触媒は使用する前に例え
ば水素雰囲気で200℃付近で処理される等の適当な活
性化処理をした後で反応に供せられる。使用する水素の
量はエステル1モル当たり5モル以上, 好ましくは7.
5−75モルが適当である。
The weight ratio of each component contained in the copper-chromium-barium (or manganese) catalyst obtained by the above-mentioned methods (1), (2), etc. is CuO: Cr 2 O 3 : MnO 2 (or BaO 2 ). It is preferable that they are in the range of 20-85: 15-75: 1-15, respectively. The catalyst may be in the form of powder, tablet, or the like, and the most suitable one is used. Before being used, these catalysts are subjected to an appropriate activation treatment such as treatment in a hydrogen atmosphere at about 200 ° C. and then subjected to the reaction. The amount of hydrogen used is at least 5 mol per mol of ester, preferably 7.
5-75 mol is suitable.

【0016】また本反応は溶媒を用いなくとも実施でき
るが,好ましくは溶媒を使用する。本反応に悪影響を与
えないものはいずれも溶媒として使用できる。アルコー
ル類, 炭化水素類等が例示される。接触水素化反応液は
通常蒸留にかけられ,製品の3−メチルテトラヒドロフ
ランを分離する。
The reaction can be carried out without using a solvent, but preferably a solvent is used. Any solvent that does not adversely affect this reaction can be used as the solvent. Examples thereof include alcohols and hydrocarbons. The catalytic hydrogenation reaction solution is usually subjected to distillation to separate the product 3-methyltetrahydrofuran.

【0017】[0017]

【実施例】【Example】

実施例1 (1) 第一工程(無水シトラコン酸とアルコールからのシ
トラコン酸エステルの合成) 内径10mm, 長さ150mmのステンレス製反応管に
市販の触媒,DELOXAN ASP 1/9(DEG
USSA社製,含水率70−80%)3gを充填し, こ
れに無水シトラコン酸/1−ブタノール=1/3(モル
比) の原料を常圧,120℃で毎時6gの速度で供給し
た。無水シトラコン酸の転化率は78.4%であり, 反
応した無水シトラコン酸に対して定量的にシトラコン酸
ジブチルが得られた。本反応液を蒸留し, シトラコン酸
ジブチルを得た。
Example 1 (1) First Step (Synthesis of Citraconic Acid Ester from Citraconic Anhydride and Alcohol) A stainless steel reaction tube having an inner diameter of 10 mm and a length of 150 mm, a commercially available catalyst, DELOXAN ASP 1/9 (DEG
3 g of USSA, water content 70-80%) was charged, and a raw material of citraconic anhydride / 1-butanol = 1/3 (molar ratio) was fed to this at atmospheric pressure and 120 g at a rate of 6 g / h. The conversion rate of citraconic anhydride was 78.4%, and dibutyl citraconic acid was obtained quantitatively with respect to the reacted citraconic anhydride. The reaction solution was distilled to obtain dibutyl citraconic acid.

【0018】(2) 第二工程(シトラコン酸エステルの水
素化) 市販の触媒である日産ガードラー社製G99C(重量組
成 CuO 36%, Cr2O3 32%, MnO 2.4%, BaO 2.2%, 形状
1/4インチ×1/4インチ ペレット)を1/8の大
きさに分割し,内径15mm 長さ300mmの反応管
に20.0g充填し(触媒層高97mm),通常の水素
還元による活性化処理(1−10%水素含有の窒素気流
中,200℃以下で還元する)を行った後反応に供し
た。反応温度210℃, 反応圧力160kg/cm
2 (ゲージ圧),水素の供給量は反応管出口で10 l
/hrとし,原料の10wt%シトラコン酸ジブチルの
メシチレン溶液を15g/hrの速度(原料供給重量速
度を触媒重量で割ったWHSVは0.075hr-1)で
反応管の上部から水素と共に供給した。得られた反応液
を分析した結果, 未反応シトラコン酸ジブチルは認めら
れず3−メチルテトラヒドロフランの収率は供給したシ
トラコン酸ジブチルに対して94.7%であった。
(2) Second step (hydrogenation of citraconic acid ester) A commercially available catalyst manufactured by Nissan Gardler G99C (weight composition CuO 36%, Cr 2 O 3 32%, MnO 2.4%, BaO 2.2%, shape)
1/4 inch x 1/4 inch pellet) is divided into 1/8 size, and 20.0 g is filled in a reaction tube with an inner diameter of 15 mm and a length of 300 mm (catalyst layer height is 97 mm) and activation by ordinary hydrogen reduction is performed. After treatment (reducing at 200 ° C. or lower in a nitrogen stream containing 1-10% hydrogen), it was subjected to a reaction. Reaction temperature 210 ℃, Reaction pressure 160kg / cm
2 (gauge pressure), supply amount of hydrogen is 10 l at the reaction tube outlet
/ Hr, and a mesitylene solution of 10 wt% dibutyl citraconic acid as a raw material was supplied together with hydrogen from the upper part of the reaction tube at a rate of 15 g / hr (WHSV obtained by dividing the raw material supply weight rate by the catalyst weight was 0.075 hr −1 ). As a result of analyzing the obtained reaction liquid, unreacted dibutyl citraconic acid was not observed, and the yield of 3-methyltetrahydrofuran was 94.7% based on the supplied dibutyl citraconic acid.

【0019】実施例2 第一工程において1−ブタノールの代わりにメタノール
を用い, 無水シトラコン酸/メタノール=1/7(モル
比)としたほかは実施例1と同様に行った。無水シトラ
コン酸の転化率は96.6%であり, 反応した無水シト
ラコン酸に対して定量的にシトラコン酸ジメチルが得ら
れた。
Example 2 Example 1 was repeated except that methanol was used in place of 1-butanol in the first step and citraconic anhydride / methanol = 1/7 (molar ratio). The conversion rate of citraconic anhydride was 96.6%, and dimethyl citraconic acid was quantitatively obtained from the reacted citraconic anhydride.

【0020】実施例3 第一工程における反応圧力を5kg/cm2 (ゲージ
圧)としたほかは実施例2と同様に反応を行った。無水
シトラコン酸の転化率は88%であり, 反応した無水シ
トラコン酸に対して定量的にシトラコン酸ジメチルが得
られた。
Example 3 The reaction was carried out in the same manner as in Example 2 except that the reaction pressure in the first step was 5 kg / cm 2 (gauge pressure). The conversion rate of citraconic anhydride was 88%, and dimethyl citraconic acid was obtained quantitatively with respect to the reacted citraconic anhydride.

【0021】[0021]

【発明の効果】本発明によれば各工程とも高い選択率で
進行し, 安価な無水シトラコン酸を原料として使用する
ため工業的に極めて高い価値を持つ。
INDUSTRIAL APPLICABILITY According to the present invention, each step proceeds with high selectivity, and since inexpensive citraconic anhydride is used as a raw material, it has an extremely high industrial value.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (1)無水シトラコン酸とアルコールか
らシトラコン酸のアルキルエステルを製造する第一工程
および(2)前記第一工程で得られたアルキルエステル
を接触水素化して3−メチルテトラヒドロフランを製造
する第二工程よりなる3−メチルテトラヒドロフランの
製造法。
1. A first step for producing an alkyl ester of citraconic acid from citraconic anhydride and an alcohol, and (2) catalytic hydrogenation of the alkyl ester obtained in the first step to produce 3-methyltetrahydrofuran. A method for producing 3-methyltetrahydrofuran, which comprises the second step.
【請求項2】 イオン交換樹脂の存在下,炭素数1乃至
8のアルコールを用い第一工程を行う請求項1記載の製
造法。
2. The production method according to claim 1, wherein the first step is carried out using an alcohol having 1 to 8 carbon atoms in the presence of an ion exchange resin.
【請求項3】 イオン交換樹脂として耐熱性イオン交換
樹脂を用いる請求項2記載の製造法。
3. The method according to claim 2, wherein a heat resistant ion exchange resin is used as the ion exchange resin.
【請求項4】 アルコールとしてメタノールを用い, 5
kg/cm2(ゲージ圧)以下で第一工程を行う請求項2また
は3記載の製造法。
4. Methanol is used as alcohol, 5
The manufacturing method according to claim 2 or 3, wherein the first step is performed at a pressure of not more than kg / cm 2 (gauge pressure).
JP7022810A 1995-02-10 1995-02-10 Production of 3-methyltetrahydrofuran Pending JPH08217771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022810A JPH08217771A (en) 1995-02-10 1995-02-10 Production of 3-methyltetrahydrofuran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022810A JPH08217771A (en) 1995-02-10 1995-02-10 Production of 3-methyltetrahydrofuran

Publications (1)

Publication Number Publication Date
JPH08217771A true JPH08217771A (en) 1996-08-27

Family

ID=12093055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022810A Pending JPH08217771A (en) 1995-02-10 1995-02-10 Production of 3-methyltetrahydrofuran

Country Status (1)

Country Link
JP (1) JPH08217771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017658A1 (en) * 1996-10-21 1998-04-30 Eastman Chemical Company Preparation of 3-methyltetrahydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6147233A (en) * 2000-01-20 2000-11-14 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6521765B1 (en) 2002-04-18 2003-02-18 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017658A1 (en) * 1996-10-21 1998-04-30 Eastman Chemical Company Preparation of 3-methyltetrahydrofuran from 2,3-dihydrofuran
US5856531A (en) * 1996-10-21 1999-01-05 Eastman Chemical Company Preparation of 3-methytetra-hydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6147233A (en) * 2000-01-20 2000-11-14 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6521765B1 (en) 2002-04-18 2003-02-18 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran

Similar Documents

Publication Publication Date Title
US5905159A (en) Method of producing 1,4-butanediol and tetrahydrofuran from furan
JP5566450B2 (en) Process for producing 1,6-hexanediol and caprolactone
US6426438B1 (en) Method for producing 1,6-hexanediol and 6-hydroxycaproic acid or their esters
KR101103512B1 (en) Process for preparing of n-methyl pyrrolidone from 1,4-butanediol
US5030771A (en) Method of producing aliphatic and cycloaliphatic diols by catalytic hydrogenation of dicarboxylic acid esters
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
JPH0337545B2 (en)
JPS63418B2 (en)
KR101013318B1 (en) Method for Hydrogenating Methylol Alkanals
JP5478504B2 (en) Method for producing N-methylpyrrolidone
JP3400501B2 (en) Method for producing 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran
JP3095293B2 (en) Method for producing gamma-butyrolactone
JPH08217771A (en) Production of 3-methyltetrahydrofuran
CN100436389C (en) Method for the production of butanediol
JP2792986B2 (en) Production method of alkanol
US5536854A (en) Preparation of 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran
JPH02233630A (en) Production of 1,4-butanediol and tetrahydrofuran
JP3741155B2 (en) Method for producing 3-methyltetrahydrofuran
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
KR20160056208A (en) Method of direct conversion to trans-1,4-cyclohexanedimethanol
JPH08217770A (en) New production of 3-methyltetrahydrofuran
JP4625219B2 (en) Production method of gamma-butyrolactone
JP2004002395A (en) Method for producing 3-methyltetrahydrofuran
US4239910A (en) Manufacture of butenediol diesters
JPH08217708A (en) Production of 3-methyltetrahydrofuran and neopentyl glycol

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050817