JPH0635404B2 - Purification method of crude 1,4-butanediol - Google Patents

Purification method of crude 1,4-butanediol

Info

Publication number
JPH0635404B2
JPH0635404B2 JP60038594A JP3859485A JPH0635404B2 JP H0635404 B2 JPH0635404 B2 JP H0635404B2 JP 60038594 A JP60038594 A JP 60038594A JP 3859485 A JP3859485 A JP 3859485A JP H0635404 B2 JPH0635404 B2 JP H0635404B2
Authority
JP
Japan
Prior art keywords
butanediol
crude
tetrahydrofuran
column
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60038594A
Other languages
Japanese (ja)
Other versions
JPS61197534A (en
Inventor
真人 佐藤
研 白神
信行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60038594A priority Critical patent/JPH0635404B2/en
Publication of JPS61197534A publication Critical patent/JPS61197534A/en
Publication of JPH0635404B2 publication Critical patent/JPH0635404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粗1,4−ブタンジオール(以下、粗1,4−BG
と略す)の精製方法に係る。更に詳しくは、粗1,4−B
Gの精製工程に於て水素添加処理することにより、高純
度の1,4−ブタンジオール(以下、1,4−BGと略す)を
取得する方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a crude 1,4-butanediol (hereinafter, referred to as a crude 1,4-BG).
Abbreviated). More specifically, coarse 1,4-B
The present invention relates to a method for obtaining highly pure 1,4-butanediol (hereinafter abbreviated as 1,4-BG) by hydrogenation treatment in the G purification step.

1,4−BGは、ポリエステル、ポリウレタン等の原料と
して用いた場合、樹脂、繊維に特徴ある物性が得られ、
需要が増大している。又、1,4−BGは脱水環化により
テトラヒドロフラン(以下、THFと略す)が得られる
が、THFは溶剤或はポリテトラメチレンエーテルグリ
コールの原料として重要である。
When 1,4-BG is used as a raw material for polyester, polyurethane, etc., physical properties characteristic of resins and fibers are obtained,
The demand is increasing. Tetrahydrofuran (hereinafter abbreviated as THF) can be obtained from 1,4-BG by dehydration cyclization, and THF is important as a solvent or a raw material for polytetramethylene ether glycol.

〔従来技術〕[Prior art]

従来、1,4−BGの製造方法としては種々の方法が知ら
れており、アセチレンを原料としたレッペ反応により製
造する方法、ブタジエンのジハロゲン化合物を原料とす
る方法、γ−ブチロラクトンを原料とする方法、ブタン
ジオールジエステルを原料とする方法等がある。これら
の方法で得られた1,4−BG中には製造法によつても異
なるが、種々の不純物が含まれている。特に、アセチレ
ンのレッペ反応により得られる1,4−ブタンジオールを
水添する方法、あるいはブタンジオールのジエステルを
加水分解する方法で得られた1,4−BG中には、アルデ
ヒド類及びアセタール類が不純物として製品中に含ま
れ、これらの副生物の存在は、微量であつても1,4−B
Gを原料として樹脂或は繊維に加工した場合に着色、糸
切れ等の原因となり、1,4−BGの製品価値を著しく低
下させてしまう。これらの副生物を通常の分離手段、例
えば蒸留で分離すると、高段数及び高い還流比が必要で
あり、高価な設備と多量の熱を必要とし、経済的ではな
い。更に、蒸留分離中に塔底に蓄積する高沸物のアセタ
ール或はアルデヒドから熱分解反応或は不均化反応によ
つて1,4−BGと分離困難なアルデヒド、アセタールが
生成するために、実質的には1,4−BGの精製が不可能
となる。
Conventionally, various methods have been known as a method for producing 1,4-BG, such as a method by a Reppe reaction using acetylene as a raw material, a method using a dihalogen compound of butadiene as a raw material, and a method using γ-butyrolactone as a raw material. And a method using butanediol diester as a raw material. Various impurities are contained in the 1,4-BG obtained by these methods, although it varies depending on the production method. In particular, aldehydes and acetals are contained in 1,4-BG obtained by a method of hydrogenating 1,4-butanediol obtained by the Reppe reaction of acetylene or a method of hydrolyzing a diester of butanediol. The presence of these by-products contained in the product as impurities is 1,4-B even in trace amounts.
When G is used as a raw material and processed into a resin or fiber, it causes coloring, yarn breakage, etc., and significantly reduces the product value of 1,4-BG. Separation of these by-products by a conventional separation means such as distillation requires a high number of plates and a high reflux ratio, requires expensive equipment and a large amount of heat, and is not economical. Further, since high-boiling acetals or aldehydes accumulated at the bottom of the column during distillation separation generate 1,4-BG and aldehydes or acetals which are difficult to separate from thermal decomposition reaction or disproportionation reaction, Purification of 1,4-BG is virtually impossible.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は、上記実状に鑑み、蒸留分離の困難な副生
物を含有する粗1,4−BGの精製法について検討した結
果、粗1,4−BGを水添処理することにより、粗1,4−B
G中に含まれる不純物を1,4−BG或は1,4−BGと容易
に蒸留分離可能な化合物に転換することにより、高純度
の1,4−BGを取得しうることを見い出し本発明に到達
した。
In view of the above situation, the present inventors have examined a method for purifying crude 1,4-BG containing a by-product that is difficult to separate by distillation, and as a result, by hydrotreating the crude 1,4-BG, 1,4-B
It was found that highly pure 1,4-BG can be obtained by converting impurities contained in G into 1,4-BG or 1,4-BG and a compound that can be easily separated by distillation. Reached

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、 (1)2−(4′−ヒドロキシ)テトラヒドロフラン、2
−(4′−オキソブトキシ)テトラヒドロフラン及び
1,4−ジ−(2′−テトラヒドロフロキシ)ブタンの
少くとも1種を含有する粗1,4−ブタンジオールを活
性炭に担持された金属パラジウム触媒の存在下、水素添
加することを特徴とする粗1,4−ブタンジオールの精
製方法、並びに (2)粗1,4−ブタンジオールを精製するにあたり、 (a)活性炭に金属パラジウムを担持させた触媒よりなる
反応域に該粗1,4−ブタンジオールと水素分圧5〜2
0kg/cm2で水素を供給して2−(4′−ヒドロキシ)テ
トラヒドロフラン、2−(4′−オキソブトキシ)テト
ラヒドロフラン及び/又は1,4−ジ−(2′−テトラ
ヒドロフロキシ)ブタンを水素添加して、テトラヒドロ
フラン、1,4−ブタンジオール及び/又はブタノール
とし、 (b)反応生成液を第1蒸留塔に供給し、水、テトラヒド
ロフラン及びブタノール含有軽沸物を留去し、1,4−
ブタンジオールを主成分とする残部を缶出し、 (c)該缶出液を第2蒸留塔に供給して軽沸物を含む1,
4−ブタンジオールを塔頂より留出し、高沸物を含む
1,4−ブタンジオールを塔底より抜き出し塔側より精
製された高純度1,4−ブタンジオールを取得する ことを特徴とする特許請求の範囲第1項記載の方法に存
する。
The gist of the present invention is (1) 2- (4'-hydroxy) tetrahydrofuran, 2
Of a metal palladium catalyst supported on activated carbon with crude 1,4-butanediol containing at least one of-(4'-oxobutoxy) tetrahydrofuran and 1,4-di- (2'-tetrahydrofuroxy) butane. In the presence of hydrogen, the method for purifying crude 1,4-butanediol, characterized in that (2) in purifying the crude 1,4-butanediol, (a) a catalyst having metallic palladium supported on activated carbon In the reaction zone consisting of the crude 1,4-butanediol and hydrogen partial pressure of 5 to 2
Hydrogen is supplied to 2- (4'-hydroxy) tetrahydrofuran, 2- (4'-oxobutoxy) tetrahydrofuran and / or 1,4-di- (2'-tetrahydrofuroxy) butane by supplying hydrogen at 0 kg / cm 2. Tetrahydrofuran, 1,4-butanediol and / or butanol are added to the mixture, (b) the reaction product liquid is supplied to the first distillation column, water, tetrahydrofuran and a butanol-containing light boiling substance are distilled off, and 1,4 −
The remainder containing butanediol as a main component is discharged into a can, and (c) the bottom liquid is supplied to a second distillation column to contain a light boiling substance.
A patent characterized by distilling 4-butanediol from the top of the column and extracting 1,4-butanediol containing high-boiling substances from the bottom of the column to obtain highly pure 1,4-butanediol purified from the column side. A method according to claim 1 is present.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

粗1,4−BGはその製法にもよるが、主成分である1,4−
BGの他に種々のアルデヒド類及びアセタール類を含有
するものである。これらアルデヒド類及びアセタール類
の構造は、すべてについては明らかではないが、1,4−
BGのモノ又はジアルデヒド体である4−ヒドロキシ−
1−ブタナール及び1,4−ブタンジアール、4−ヒドロ
キシ−1−ブタナールの脱水環化生成物であるジヒドロ
フランと1,4−BGの付加物である2−(4′−ヒドロ
キシブトキシ)テトラヒドロフラン(以下、BGTFと
略す)、他にジヒドロフランと4−ヒドロキシ−1−ブ
タナールの付加物である2−(4′−オキソブトキシ)
テトラヒドロフラン(以下、BDTFと略す)、1,4−
ジ−(2′−テトラヒドロフロキシ)ブタン(以下、BG
DTFと略す)等が挙げられる。本発明方法で精製される
粗1,4−BGは、1,4−BGを主成分とし、BGTF、BDTF及
びBGDTFの少なくとも1種を含有するものであれば、特
に限定されるものではなく、アセチレンのレッペ反応及
び水素化により得られたもの、あるいは1,4−BGのジ
エステルを加水分解して得られたもの等いずれも可能で
ある。本発明で精製される粗1,4−BGは、更に4−ヒ
ドロキシ−1−ブタナール、1,4−ブタンジアール等の
アルデヒド及びこれらのアルデヒドに由来するアセター
ル類を含んでいても良い。
Crude 1,4-BG depends on the manufacturing method, but the main component is 1,4-
In addition to BG, it contains various aldehydes and acetals. The structures of these aldehydes and acetals are not clear, but 1,4-
4-hydroxy-, which is the mono- or di-aldehyde form of BG
1-Butanal, 1,4-butanedial, 2- (4'-hydroxybutoxy) tetrahydrofuran (hereinafter referred to as an adduct of dihydrofuran, which is a dehydration cyclization product of 4-hydroxy-1-butanal, and 1,4-BG) , Abbreviated as BGTF), and 2- (4'-oxobutoxy) which is an addition product of dihydrofuran and 4-hydroxy-1-butanal.
Tetrahydrofuran (hereinafter abbreviated as BDTF), 1,4-
Di- (2'-tetrahydrofuroxy) butane (hereinafter BG
Abbreviated as DTF). The crude 1,4-BG purified by the method of the present invention is not particularly limited as long as it contains 1,4-BG as a main component and contains at least one of BGTF, BDTF and BGDTF. Any of those obtained by the Reppe reaction of acetylene and hydrogenation, those obtained by hydrolyzing the diester of 1,4-BG, and the like are possible. The crude 1,4-BG purified in the present invention may further contain aldehydes such as 4-hydroxy-1-butanal and 1,4-butanedial, and acetals derived from these aldehydes.

以下に、粗1,4−BGの製造の一方法として、ブタジエ
ンのアセトキシ化で得られた1,4−ジアセトキシブテン
を水素化及び加水分解して製造する場合について概略説
明する。1,4−ジアセトキシブタンは、ブタジエン、酢
酸、酸素又は酸素含有ガスをパラジウム系触媒の存在
下、固定床、流動床など、任意の方式で反応させる。本
反応に使用される触媒としては、パラジウム塩と銅塩の
如きレドツクス剤とからなる均一液相触媒、パラジウ
ム、白金、ロジウム、イリジウム、ルテニウムの金属又
は金属塩及び助触媒からなる固体触媒等が挙げられる
が、パラジウム金属とビスマス,セレン,アンチモン及
びテルルから選ばれた少なくとも1種の助触媒金属とを
担体に担持した触媒が好適である。かくして得られたア
セトキシ化反応物から1,4−ジアセトキシブテン−2、
3,4−ジアセトキシブテン−1等のジアセトキシブテン
類を混合物として蒸留分離し、そのまま水素化反応の原
料に使用することができるが、場合によつては、ジアセ
トキシブテンを更に異性体相互に分離してから使用して
もよい。ジアセトキシブタン類は、かくして得られるジ
アセトキシブテン類をパラジウム系或はニツケル系触媒
の存在下、水素化することにより取得することができ、
1,4−、1,2-又は1,3−ジアセトキシブタン等の異性体を
相互に分離したもの、或はこれらの混合物は、次いで強
酸性陽イオン交換樹脂の存在下、加水分解することによ
り1,4−BGを主成分とする反応生成物が得られる。該
生成物は、蒸留により、水、酢酸分離し、更に1,2−ブ
タンジオール等の異性体及び未反応物を分離することに
より、本発明の原料となる粗1,4−BGが得られる。
尚、要すれば、更に高沸物を分離したものを本発明原料
の粗1,4−BGとすることも可能である。
Hereinafter, as a method for producing crude 1,4-BG, a case where 1,4-diacetoxybutene obtained by acetoxylation of butadiene is produced by hydrogenation and hydrolysis will be schematically described. With 1,4-diacetoxybutane, butadiene, acetic acid, oxygen or an oxygen-containing gas is reacted in the presence of a palladium catalyst in any manner such as a fixed bed or fluidized bed. Examples of the catalyst used in this reaction include a homogeneous liquid phase catalyst composed of a palladium salt and a redox agent such as a copper salt, a solid catalyst composed of a metal or metal salt of palladium, platinum, rhodium, iridium, ruthenium and a cocatalyst. A catalyst in which palladium metal and at least one promoter metal selected from bismuth, selenium, antimony and tellurium are supported on a carrier is preferable. 1,4-diacetoxybutene-2 from the acetoxylation reaction product thus obtained,
Diacetoxybutenes such as 3,4-diacetoxybutene-1 can be distilled and separated as a mixture and used as a raw material for the hydrogenation reaction as it is. It may be used after being separated into Diacetoxybutanes can be obtained by hydrogenating the thus obtained diacetoxybutenes in the presence of a palladium-based or nickel-based catalyst,
Isolation of isomers such as 1,4-, 1,2- or 1,3-diacetoxybutane from each other, or a mixture thereof, is then hydrolyzed in the presence of a strongly acidic cation exchange resin. As a result, a reaction product containing 1,4-BG as a main component is obtained. The product is distilled to separate water and acetic acid, and further, isomers such as 1,2-butanediol and unreacted substances are separated to obtain crude 1,4-BG as a raw material of the present invention. .
Incidentally, if necessary, it is also possible to use the crude 1,4-BG as the raw material of the present invention by further separating the high boiling substances.

かくして得られた粗1,4−BGは、純度90wt%以上、好
適には95wt%以上であり、このままでも工業原料とし
て使用可能ではあるが、本発明では、より製品価値の高
い1,4−BGを得るため、水素添加することにより、よ
り高純度の1,4−BGを取得するものである。
The crude 1,4-BG thus obtained has a purity of 90 wt% or more, preferably 95 wt% or more, and can be used as an industrial raw material as it is, but in the present invention, 1,4- In order to obtain BG, hydrogenation is performed to obtain 1,4-BG of higher purity.

本発明で精製される粗1,4−BG中に含まれるBGT
F、BDTF及びBGDTFの量は特に限定されるものでは
なく、公知の種々の方法に従つて製造された粗1,4−B
G中に含まれている程度の量であり、通常夫々0〜1.0w
t%程度である。尚、BGTF、BDTF、BGDTF及びそ
の他のアルデヒド及びアセタール類総含有量の指標とし
てカルボニル価を使用することも可能である。以下、カ
ルボニル価は、アルデヒド及びアセタール類と塩酸ヒド
ロキシルアミンとの反応で生成したイミン塩酸塩のKOH
による電位差滴定値(mg・KOH/g)で表わすが、本発明の
粗1,4−BGは、カルボニル価0.5〜2.0mg・KOH/g程度を
有する。
BGT contained in crude 1,4-BG purified by the present invention
The amounts of F, BDTF and BGDTF are not particularly limited, and crude 1,4-B produced by various known methods can be used.
It is the amount contained in G, and is usually 0 to 1.0w each.
It is about t%. Incidentally, it is also possible to use the carbonyl number as an index of the total content of BGTF, BDTF, BGDTF and other aldehydes and acetals. Below, the carbonyl value is the KOH of imine hydrochloride produced by the reaction of aldehydes and acetals with hydroxylamine hydrochloride.
The crude 1,4-BG of the present invention has a carbonyl value of about 0.5 to 2.0 mg · KOH / g, which is represented by the potentiometric titration value (mg · KOH / g).

本発明の水素添加反応には、金属パラジウムが活性炭に
担持された触媒が使用される。水素は必ずしも純粋なも
のである必要はなく、不活性ガス、飽和炭化水素等で希
釈されたものでもよい。水素圧力は、5〜20kg/cm2
水素分圧で行われるが、高すぎる場合には高価な設備が
必要となり好ましくなく、又、低すぎる場合には多量の
触媒が必要となるため好ましくない。反応温度は、40
〜250℃の範囲で実施されるが、温度が高すぎると1,
4−BGが分解反応を受け、ブタン、ブタノール、TH
F等の軽沸物を生成し又、低温すぎると多量の触媒が必
要となるため、80〜180℃が好ましい。
In the hydrogenation reaction of the present invention, a catalyst in which metallic palladium is supported on activated carbon is used. Hydrogen does not necessarily have to be pure, and may be diluted with an inert gas, saturated hydrocarbon or the like. The hydrogen pressure is 5 to 20 kg / cm 2 of hydrogen partial pressure, but if it is too high, expensive equipment is required, which is not preferable, and if it is too low, a large amount of catalyst is required, which is not preferable. . The reaction temperature is 40
~ 250 ℃, but if the temperature is too high,
4-BG undergoes decomposition reaction, butane, butanol, TH
A light boiling substance such as F is generated, and when the temperature is too low, a large amount of catalyst is required.

水素添加反応によつて粗1,4−BG中のアルデヒド、ア
セタール類は、1,4−BGと容易に分離できる化合物に
変換される。即ち、BGTF、BDTF及びBGDTFは、
水添によつてTHF、1,4−BG、ブタノール、ジテト
ラメチレングリコール等に変換される。
By the hydrogenation reaction, the aldehydes and acetals in the crude 1,4-BG are converted into compounds that can be easily separated from 1,4-BG. That is, BGTF, BDTF and BGDTF are
It is converted into THF, 1,4-BG, butanol, ditetramethylene glycol or the like by hydrogenation.

該反応生成物は、常圧に保持された気液分離器に移送さ
れ、気相排ガスを分離後、液相部は軽沸分離塔である第
1蒸留塔に供給され、水、THF、ブタノールを含有す
る軽沸物を留去する。第1蒸留塔は、理論段数3〜1
0、圧力100〜760torr、還流比0.5〜2.0で操作される。
第1蒸留塔から缶出される1,4−BGを主成分とする液
相部は、更に製品塔である第2蒸留塔に供給され、塔頂
からは、若干の軽沸物を含む1,4−BGが抜き出され、
塔底からは高沸物を含む1,4−BGを抜き出す。塔側か
らは目的とする精製された高純度1,4−BGが取得され
る。精製1,4−BGの抜き出しは、第1蒸留塔から供給
される液相部の第2蒸留塔への供給位置より上部である
ことが好ましい。第2蒸留塔は、理論段数15〜30、
圧力20〜100torr、還流比0.1〜1.0で操作される。
尚、第2蒸留塔塔頂から抜き出される若干の軽沸物を含
む1,4−BGは粗1,4−BGに循環するか、又THF製造
原料としても使用可能である。かくして得られる精製1,
4−BGは、好適には純度99.8%以上を有し、カルボニ
ル価が0.4mg・KOH/g以下という極めて高純度のものであ
る。
The reaction product is transferred to a gas-liquid separator maintained at atmospheric pressure, and after separating the gas-phase exhaust gas, the liquid phase portion is supplied to the first distillation column which is a light-boiling separation column, and water, THF, butanol are used. The light boiling substance containing is distilled off. The first distillation column has 3 to 1 theoretical plates.
0, pressure 100-760 torr, reflux ratio 0.5-2.0.
The liquid phase portion containing 1,4-BG as a main component, which was discharged from the first distillation column, was further supplied to the second distillation column which was a product column, and from the top of the column, some light boiling substances were contained. 4-BG is extracted,
1,4-BG containing high-boiling substances is withdrawn from the bottom of the column. The desired purified high-purity 1,4-BG is obtained from the tower side. It is preferable that the purified 1,4-BG is extracted at a position higher than the position where the liquid phase portion supplied from the first distillation column is supplied to the second distillation column. The second distillation column has a theoretical plate number of 15 to 30,
It is operated at a pressure of 20 to 100 torr and a reflux ratio of 0.1 to 1.0.
In addition, 1,4-BG containing a slight amount of light boiling substances extracted from the top of the second distillation column may be recycled to crude 1,4-BG or used as a raw material for THF production. Purification 1, thus obtained
4-BG preferably has a purity of 99.8% or more and a carbonyl value of 0.4 mg · KOH / g or less, which is extremely high purity.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが、本
発明は以下の実施例により何等限定されるものではな
い。尚、以下「部」、「%」は夫々「重量部」、「重量
%」を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In the following, "parts" and "%" mean "parts by weight" and "% by weight", respectively.

実施例1 BGTF2.05%、BDTF、BGDTF及び高沸物を含む不
純物0.3%を含有し、カルボニル価6.2mg・KOH/g、純度9
7.55%の粗1,4−BG1874部/hrを0.5部/hrの水素と共
に水添反応器へ供給した。水添反応器を内径500mm、
高さ1300mmでパラジウムを活性炭に1.0%担持した触媒
が充填されており、圧力9.5kg/cm2、温度100℃で運
転した。反応液を抜き出し、気液分離器へ供給し過剰の
水素と反応液を分離した。反応液は水0.7%、THF2.9
%、ブタノール0.01%、BGTF0.24%、ジテトラメチ
レングリコール、BDTF、BGDTF及び高沸物を含む不
純物0.24%を含有しカルボニル価0.4mg・KOH/gであつ
た。気液分離後の反応液を1874部/hrで軽沸分離塔であ
る第1蒸留塔に供給し軽沸物を分離した。軽沸分離塔は
段数3段で還留比1、圧力150torr、塔底温度180
℃で運転した。塔頂からは水、THF、ブタノールの混
合物を96部/hrで留出させ、塔底からは高沸物を含む
1,4−BGを1778部/hrで缶出させ缶出液は製品塔であ
る第2蒸留塔へ供給した。製品塔は段数20段で還留比
0.6、圧力30torr、塔底温度150℃で運転し塔頂か
らは軽沸物を含む1,4−BGを55部/hrで留出させ、塔
底からは高沸物を含む1,4−BGを40部/hrで抜出
し、塔側より製品1,4−BG1683部/hrを得た。製品1,4
−BGのBGTF含有量は0.18%、BDTF、BGDTF及
び高沸物を含む不純物含有量は0.05%、カルボニル価0.
4mg・KOH/gで1,4−BG純度は99.7%であつた。
Example 1 BGTF 2.05%, BDTF, BGDTF and 0.3% of impurities including high boiling point were contained, and carbonyl value was 6.2 mg.KOH / g, purity 9
7.54% crude 1,4-BG 1874 parts / hr was fed to the hydrogenation reactor along with 0.5 part / hr hydrogen. 500mm inner diameter of hydrogenation reactor,
It was filled with a catalyst having a height of 1300 mm and 1.0% of palladium supported on activated carbon, and was operated at a pressure of 9.5 kg / cm 2 and a temperature of 100 ° C. The reaction liquid was extracted and supplied to a gas-liquid separator to separate excess hydrogen from the reaction liquid. The reaction solution is water 0.7%, THF2.9
%, Butanol 0.01%, BGTF 0.24%, ditetramethylene glycol, BDTF, BGDTF and 0.24% of impurities including high boiling substances, and the carbonyl value was 0.4 mg.KOH / g. The reaction liquid after gas-liquid separation was supplied at a rate of 1874 parts / hr to the first distillation column, which is a light-boiling separation column, to separate light-boiling substances. The light-boiling separation column has three stages, a distillation ratio of 1, a pressure of 150 torr, a bottom temperature of 180
It was operated at ℃. A mixture of water, THF and butanol was distilled out at a rate of 96 parts / hr from the top of the column, and a high boiling substance was contained at the bottom of the column.
1,4-BG was canned at 1778 parts / hr, and the canned liquid was supplied to the second distillation column which was a product column. The product tower has 20 stages and the return rate is
Operating at 0.6, pressure 30 torr, and column bottom temperature 150 ° C., 1,4-BG containing light-boiling substances was distilled at 55 parts / hr from the top of the column, and 1,4-BG containing high-boiling substances from the bottom of the column. BG was withdrawn at 40 parts / hr to obtain a product 1,4-BG1683 part / hr from the tower side. Product 1,4
The BGTF content of BG is 0.18%, the content of impurities including BDTF, BGDTF and high boiling substances is 0.05%, and the carbonyl value is 0.
At 4 mg · KOH / g, the 1,4-BG purity was 99.7%.

比較例1 BGTF2.05%、BDTF、BGDTF及び高沸物を含む不
純物0.3%を含有し、カルボニル価6.2mg・KOH/g、純度9
7.55%の粗1,4−BG1874部/hrを段数20段の製品塔
へ供給し、1,4−BGの精留を行なつた。蒸留は還留比
1.0、圧力30torr塔底温度150℃で運転し、塔頂か
らはBGTF2.5%を含む1,4−BGを200部/hrで留
出させ、塔底からはBGTF1.8%、BDTF、BGDTF及
び高沸不純物3.3%を含有する1,4−BGを150部/hrで
抜出し、塔側より製品1,4−BG1524部/hrを得た。製
品1,4−BGのBGTF含有量は、2.0%、BDTF、BG
DTF及び高沸物を含む不純物含有量は0.05%、カルボニ
ル価6.1mg・KOH/gで、1,4−BG純度は97.5%であつた。
Comparative Example 1 BGTF 2.05%, BDTF, BGDTF and 0.3% of impurities including high boiling point were contained, and carbonyl value was 6.2 mg · KOH / g, purity 9
7.54% of crude 1,4-BG (1874 parts / hr) was supplied to a product tower having 20 plates to rectify 1,4-BG. Distillation is the return rate
Operating at a pressure of 30 torr and a bottom temperature of 150 ° C, 1,4-BG containing 2.5% of BGTF is distilled at 200 parts / hr from the top of the tower, 1.8% of BGTF, BDTF and BGDTF from the bottom of the tower. And 1,4-BG containing 3.3% of high-boiling impurities at 150 parts / hr were extracted to obtain 1,24-BG1524 parts / hr as a product from the tower side. Product 1,4-BG has a BGTF content of 2.0%, BDTF, BG
The content of impurities including DTF and high boiling point was 0.05%, the carbonyl value was 6.1 mg · KOH / g, and the 1,4-BG purity was 97.5%.

〔発明の効果〕〔The invention's effect〕

本発明によれば、粗1,4−BGの精製工程に於て、水素
添加処理することにより、1,4−BGの分解を抑制しつ
つ、1,4−BGと蒸留で分離困難なアルデヒド及びアセ
タール類を1,4−BGと分離可能な化合物に変換するこ
とが可能であり、従つて蒸留等の通常の分離手段で高純
度の1,4−BGを取得することができる。
According to the present invention, hydrogenation treatment is carried out in the purification step of crude 1,4-BG to suppress the decomposition of 1,4-BG and to remove aldehyde which is difficult to separate from 1,4-BG by distillation. And acetals can be converted into a compound that can be separated from 1,4-BG, and therefore high-purity 1,4-BG can be obtained by an ordinary separation means such as distillation.

本発明方法で得られた1,4−BGは、好適には純度99.8
%以上、カルボニル価0.4mg・KOH/g以下という極めて高
純度を有するため、これを原料として得られた樹脂等の
製品は着色が認められず製品価値が高い。
The 1,4-BG obtained by the method of the present invention preferably has a purity of 99.8
%, The carbonyl value is 0.4 mg · KOH / g or less, so it has a very high purity, so products such as resins obtained from this as a raw material are not colored and have high product value.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−167532(JP,A) 特開 昭53−68709(JP,A) 特開 昭54−36207(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-167532 (JP, A) JP-A-53-68709 (JP, A) JP-A-54-36207 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2−(4′−ヒドロキシブトキシ)テトラ
ヒドロフラン、2−(4′−オキソブトキシ)テトラヒ
ドロフラン及び1,4−ジ−(2′−テトラヒドロフロ
キシ)ブタンの少なくとも1種を含有する粗1,4−ブ
タンジオールを活性炭に担持された金属パラジウム触媒
の存在下、5〜20kg/cm2の水素分圧で水素添加すること
を特徴とする粗1,4−ブタンジオールの精製方法。
1. A crude product containing at least one of 2- (4'-hydroxybutoxy) tetrahydrofuran, 2- (4'-oxobutoxy) tetrahydrofuran and 1,4-di- (2'-tetrahydrofuroxy) butane. A method for purifying crude 1,4-butanediol, which comprises hydrogenating 1,4-butanediol at a hydrogen partial pressure of 5 to 20 kg / cm 2 in the presence of a metal palladium catalyst supported on activated carbon.
【請求項2】粗1,4−ブタンジオールを精製するにあ
たり、 (a)活性炭に金属パラジウムを担持させた触媒よりなる
反応域に該粗1,4−ブタンジオールと水素分圧5〜20
kg/cm2で水素を供給して2−(4′−ヒドロキシブトキ
シ)テトラヒドロフラン、2−(4′−オキソブトキ
シ)テトラヒドロフラン及び/又は1,4−ジ−(2′
−テトラヒドロフロキシ)ブタンを水素添加して、テト
ラヒドロフラン、1,4−ブタンジオール及び/又はブ
タノールとし、 (b)反応生成液を第1蒸留塔に供給し、水、テトラヒド
ロフラン及びブタノール含有軽沸物を留去し、1,4−
ブタンジオールを主成分とする残部を缶出し、 (c)該缶出液を第2蒸留塔に供給して、軽沸物を含む
1,4−ブタンジオールを塔頂より留出し、高沸物を含
む1,4−ブタンジオールを塔底より抜き出し、塔側よ
り精製された高純度1,4−ブタンジオールを取得する
ことを特徴とする特許請求の範囲第1項記載の方法。
2. When purifying crude 1,4-butanediol, (a) the crude 1,4-butanediol and a hydrogen partial pressure of 5 to 20 are added to a reaction zone consisting of a catalyst in which metallic palladium is supported on activated carbon.
By supplying hydrogen at kg / cm 2 , 2- (4′-hydroxybutoxy) tetrahydrofuran, 2- (4′-oxobutoxy) tetrahydrofuran and / or 1,4-di- (2 ′)
-Tetrahydrofuroxy) butane is hydrogenated to tetrahydrofuran, 1,4-butanediol and / or butanol, and (b) the reaction product liquid is supplied to the first distillation column, and water, tetrahydrofuran and butanol-containing light boiling material Was distilled off and 1,4-
The balance containing butanediol as a main component is discharged into a can, and (c) the bottom liquid is supplied to a second distillation column to distill 1,4-butanediol containing a light boiling substance from the top of the column to obtain a high boiling substance. The 1,4-butanediol containing is extracted from the column bottom to obtain highly purified 1,4-butanediol purified from the column side.
JP60038594A 1985-02-27 1985-02-27 Purification method of crude 1,4-butanediol Expired - Lifetime JPH0635404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038594A JPH0635404B2 (en) 1985-02-27 1985-02-27 Purification method of crude 1,4-butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038594A JPH0635404B2 (en) 1985-02-27 1985-02-27 Purification method of crude 1,4-butanediol

Publications (2)

Publication Number Publication Date
JPS61197534A JPS61197534A (en) 1986-09-01
JPH0635404B2 true JPH0635404B2 (en) 1994-05-11

Family

ID=12529619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038594A Expired - Lifetime JPH0635404B2 (en) 1985-02-27 1985-02-27 Purification method of crude 1,4-butanediol

Country Status (1)

Country Link
JP (1) JPH0635404B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909485A1 (en) * 1989-03-22 1990-09-27 Basf Ag METHOD FOR PRODUCING BUTANDIOL-1,4 AND TETRAHYDROFURAN
JP3175360B2 (en) * 1992-12-10 2001-06-11 三菱化学株式会社 Purification method of 1,4-butanediol
ZA972614B (en) * 1996-03-29 1997-12-22 Kvaerner Process Tech Ltd Process for the production of butane-1,4-diol.
JPH10265418A (en) * 1997-01-23 1998-10-06 Mitsubishi Chem Corp Purification of crude 1, 4-butanediol
TW200418901A (en) 2003-02-25 2004-10-01 Du Pont Process for the manufacture of polyester via hydrogenation treatment of recycled diol
US7084311B2 (en) * 2003-05-06 2006-08-01 E. I. Du Pont De Nemours And Company Hydrogenation of chemically derived 1,3-propanediol
EP1620378B1 (en) * 2003-05-06 2016-03-09 E. I. du Pont de Nemours and Company Hydrogenation of biochemically derived 1,3-propanediol
JP2005010078A (en) 2003-06-20 2005-01-13 Surpass Kogyo Kk In-line type pressure sensor
US7129316B2 (en) 2004-01-07 2006-10-31 Invista North America S.A R.L. Process for the manufacture of polyester via hydrogenation treatment of recycled diol
JP4234024B2 (en) 2004-01-23 2009-03-04 サーパス工業株式会社 Inline pressure sensor
KR20090110879A (en) * 2007-02-15 2009-10-22 바스프 에스이 Method for the production of very pure 1,4-butanediol
WO2010053073A1 (en) * 2008-11-05 2010-05-14 三菱化学株式会社 Polyester manufacturing method, and a 1,4-butanediol heating device and steam generator
WO2013005749A1 (en) 2011-07-04 2013-01-10 三菱化学株式会社 Method for producing tetrahydrofuran
WO2013005748A1 (en) * 2011-07-04 2013-01-10 三菱化学株式会社 Method for producing 1,4-butanediol
JP5970998B2 (en) * 2011-07-20 2016-08-17 三菱化学株式会社 Method for producing 1,4-butanediol
WO2013012047A1 (en) 2011-07-20 2013-01-24 三菱化学株式会社 Method for producing hydride having unsaturated compound with four carbon atoms as starting material
GB201115617D0 (en) * 2011-09-09 2011-10-26 Davy Process Techn Ltd Proacess
CN103044198B (en) * 2011-10-17 2015-10-21 中国石油化工股份有限公司 A kind of method of BDO purifying co-producing tetrahydrofuran
AU2013272715B2 (en) * 2012-06-05 2017-11-02 Genomatica, Inc. Production method for 1, 4-butanediol
JP6241387B2 (en) * 2013-07-24 2017-12-06 三菱ケミカル株式会社 Method for producing aliphatic diol
KR102311925B1 (en) * 2013-10-23 2021-10-14 바스프 에스이 Method for the preparation of 1,4-butane diol having an apha color index of less than 30
WO2023033099A1 (en) * 2021-09-02 2023-03-09 Khネオケム株式会社 Method for producing product 1,3-butylene glycol
CN114853573B (en) * 2022-05-27 2023-06-13 辽宁石油化工大学 Separation and purification method and system for 1, 4-butanediol
CN114853571B (en) * 2022-05-27 2023-06-13 辽宁石油化工大学 Production process and system of 1, 4-butanediol
CN114874074B (en) * 2022-05-27 2023-06-13 辽宁石油化工大学 Separation and purification process and system for 1, 4-butanediol
CN117843444A (en) * 2023-12-26 2024-04-09 南京长江江宇环保科技股份有限公司 Process method for refining 1, 4-butanediol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368709A (en) * 1976-12-01 1978-06-19 Kuraray Co Ltd Preparation of butanediols
US4091041A (en) * 1977-06-13 1978-05-23 General Electric Company Preparation of 1,4-diols by hydrolysis-hydrogenation of 2-alkoxytetrahydrofurans
JPS58167532A (en) * 1982-03-29 1983-10-03 Daicel Chem Ind Ltd Separation method of butanediol

Also Published As

Publication number Publication date
JPS61197534A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
EP0601571B1 (en) Method for purifying 1,4-butanediol, by hydrogenation and distillation
EP0891315B1 (en) Process for the purification of butane-1,4-diol
KR101223949B1 (en) Process for the purification of 1,4-butanediol
US4656297A (en) Coproduction of butanediol and tetrahydrofuran and their subsequent separation from the reaction product mixture
AU761294B2 (en) Process for the preparation of butane-1,4-diol, gamma-butyrolactone and tetrahydrofuran
WO2023170409A1 (en) Process for producing a refined 1,4-butanediol stream
US4124600A (en) Preparation of tetrahydrofuran
JP3959993B2 (en) Method for producing 1,4-butanediol
EP0584408A2 (en) Process for the preparation of gamma-butyrolactone
JPH0629280B2 (en) Purification method of crude tetrahydrofuran
US20050215800A1 (en) Method for producing gamma-butyrolactone
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
JP3572636B2 (en) Method for producing butanediol
JP2737297B2 (en) Method for producing methyl isobutyl ketone
JP4483156B2 (en) Method for purifying gamma-butyrolactone
JP3463326B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JPS6115851A (en) Manufacture of 1,4-butandiol
JP3959793B2 (en) Method for producing butanediol
JPH10168031A (en) Production of diacetoxybutene
CA2215544A1 (en) Process for producing butanediol
JPH10158203A (en) Production of butanediol
JPH06321846A (en) Method for recovering acetic acid from waste oil mixture
JPH0113458B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term