JPH0629280B2 - Purification method of crude tetrahydrofuran - Google Patents

Purification method of crude tetrahydrofuran

Info

Publication number
JPH0629280B2
JPH0629280B2 JP60039680A JP3968085A JPH0629280B2 JP H0629280 B2 JPH0629280 B2 JP H0629280B2 JP 60039680 A JP60039680 A JP 60039680A JP 3968085 A JP3968085 A JP 3968085A JP H0629280 B2 JPH0629280 B2 JP H0629280B2
Authority
JP
Japan
Prior art keywords
tetrahydrofuran
water
thf
column
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60039680A
Other languages
Japanese (ja)
Other versions
JPS61200979A (en
Inventor
真人 佐藤
信行 村井
研 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60039680A priority Critical patent/JPH0629280B2/en
Publication of JPS61200979A publication Critical patent/JPS61200979A/en
Publication of JPH0629280B2 publication Critical patent/JPH0629280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粗テトラヒドロフラン(以下、粗THFと略
す)の精製方法に係る。
TECHNICAL FIELD The present invention relates to a method for purifying crude tetrahydrofuran (hereinafter, abbreviated as crude THF).

更に詳しくは、THFの精製工程に於て、粗THFを強
酸性陽イオン交換樹脂で処理した上で水素添加処理する
ことにより高純度テトラヒドロフラン(以下、THFと
略す)を取得する方法に係る。
More specifically, it relates to a method for obtaining high-purity tetrahydrofuran (hereinafter abbreviated as THF) by treating crude THF with a strongly acidic cation exchange resin and then hydrogenating it in the THF purification step.

THFは、有機溶剤、或はポリテトラメチレングリコー
ル(以下、PTMGと略す)等の高分子化合物製造の原
料として極めて有用な物質である。
THF is an extremely useful substance as an organic solvent or a raw material for producing a polymer compound such as polytetramethylene glycol (hereinafter abbreviated as PTMG).

〔従来の技術〕[Conventional technology]

従来、THFの製造方法としては種々提案されており、
例えば、フルフラールの脱カルボニル化で得られるフラ
ンを接触水素化する方法、1,4−ブタンジオールを脱水
環化する方法或いは1,4−ブタンジオールのジ酢酸エス
テルを酸触媒の存在下、水と反応させる方法等がある。
これらの方法で得られたTHFにはその製法にもよる
が、ジヒドロフラン(以下、DHFと略す)、ブチルア
ルデヒド(以下、NBDと略す)、プロピオンアルデヒ
ド、クロトンアルデヒド等、種々の不純物が含まれる。
これら不純物の存在は、微量であってもTHFの主用途
であるPTMGに使用する場合、酸価の上昇或は着色塔
により樹脂、繊維等の原料として使用不可能となるた
め、工業原料としての価値が著しく低下する。しかしな
がら、これらの不純物、特にDHF及びNBDは沸点が
THFと近接しているため、通常の分離手段、例えば蒸
留で分離すると高段数及び高い還流化が必要であり、高
価な設備と多量の熱を必要とし、経済的ではない。
Conventionally, various methods for producing THF have been proposed,
For example, a method of catalytically hydrogenating furan obtained by decarbonylation of furfural, a method of cyclodehydrating 1,4-butanediol, or a diacetic acid ester of 1,4-butanediol in the presence of an acid catalyst is treated with water. There is a method of reacting.
The THF obtained by these methods contains various impurities such as dihydrofuran (hereinafter abbreviated as DHF), butyraldehyde (hereinafter abbreviated as NBD), propionaldehyde, and crotonaldehyde, depending on the production method. .
The presence of these impurities, even in a small amount, makes them unusable as raw materials for resins, fibers, etc. when used in PTMG, which is the main use of THF, because of the increase in acid value or due to the coloring tower. Value is significantly reduced. However, since these impurities, especially DHF and NBD, have a boiling point close to that of THF, it requires a high number of stages and high reflux when separated by an ordinary separation means such as distillation, which requires expensive equipment and a large amount of heat. Needed and not economical.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は上記実情に鑑み蒸留分離の困難な不純物を
含有する粗THFの精製方法につき鋭意検討した結果、
粗THFを強酸性陽イオン交換樹脂にる処理及び水素添
加処理することにより粗THF中に含まれる不純物を、
THF或いはTHFと容易に蒸留分離可能な化合物に転
換することにより高純度のTHFを取得しうることを見
い出し、本発明に到達した。
In view of the above circumstances, the inventors of the present invention have made extensive studies on a method for purifying crude THF containing impurities that are difficult to separate by distillation, and as a result,
Impurities contained in the crude THF by treatment of the crude THF with a strongly acidic cation exchange resin and hydrogenation treatment,
The inventors have found that highly pure THF can be obtained by converting it into THF or a compound that can be easily distilled and separated from THF, and completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、 (1)ジヒドロフラン及びブチルアルデヒドの少くとも一
種を含有する粗テトラヒドロフランを、 (a)強酸性陽イオン交換樹脂よりなる反応域で水及び/
又は酢酸と共に接触させてジヒドロフランの少なくとも
1部をヒドロキシテトラヒドロフラン及び/又はアセト
キシテトラヒドロフランに変換し、 (b)上記(a)の反応域からの反応液を酢酸分離塔に供給
し、塔底よりヒドロキシテトラヒドロフラン及び/又は
アセトキシテトラヒドロフランを含有する水−酢酸缶出
液を抜出し、塔頂よりブチルアルデヒド及び/又はジヒ
ドロフランを含む水−テトラヒドロフラン混合物を留出
させ、 (c)該水−テトラヒドロフラン混合物を貴金属触媒の存
在下水素化してブチルアルデヒド及び/又はジヒドロフ
ランをn−ブタノール及び/又はテトラヒドロフランと
し、 (d)上記(c)の水素化反応生成液は気液分離後の液相部を
脱水塔に供給して、塔頂より水−テトラヒドロフランの
共沸混合物を留出させ、塔底より高沸物を含むテトラヒ
ドロフランを缶出させ、 (e)(d)の缶出液を製品塔に供給し、塔頂より高純度テト
ラヒドロフランを留出させる ことを特徴とする粗テトラヒドロフランの精製方法に存
する。
The gist of the present invention is that (1) crude tetrahydrofuran containing at least one of dihydrofuran and butyraldehyde is added to (a) water and / or water in a reaction zone consisting of a strongly acidic cation exchange resin.
Alternatively, at least a part of dihydrofuran is converted into hydroxytetrahydrofuran and / or acetoxytetrahydrofuran by contacting with acetic acid, and (b) the reaction liquid from the reaction zone of the above (a) is supplied to an acetic acid separation column, and hydroxyl is introduced from the bottom of the column. A water-acetic acid bottoms solution containing tetrahydrofuran and / or acetoxytetrahydrofuran is withdrawn, and a water-tetrahydrofuran mixture containing butyraldehyde and / or dihydrofuran is distilled from the top of the column, and (c) the water-tetrahydrofuran mixture is used as a noble metal catalyst. Of butyraldehyde and / or dihydrofuran to n-butanol and / or tetrahydrofuran by hydrogenation in the presence of (d), and (d) the hydrogenation reaction product liquid of (c) above is supplied to the dehydration tower through the liquid phase portion after gas-liquid separation. Then, the water-tetrahydrofuran azeotrope is distilled from the top of the tower, and the bottom of the tower is distilled. Was out cans tetrahydrofuran containing boiling substances consists in bottoms were fed to the product column, the purification method of the crude tetrahydrofuran which comprises bringing distilled highly pure tetrahydrofuran from the top of the (e) (d).

以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

本発明で精製処理される粗THFは、DHF及びNBD
の少くとも1種を含有するものであれば特に限定される
ものではなく、フランを接触水素化する方法、1,4−ブ
タンジオールを脱水環化する方法或いは1,4−ブタンジ
オールのジ酢酸エステルを酸触媒の存在下、水と反応さ
せる方法等、いずれの方法で製造されたものでも可能で
あるが、以下に1,4−ブタンジオールのジ酢酸エステル
を加水分解して生成した1,4−ブタンジオールを脱水環
化する場合について説明する。
The crude THF purified by the present invention includes DHF and NBD.
Is not particularly limited as long as it contains at least one of the above, a method of catalytic hydrogenation of furan, a method of cyclodehydration of 1,4-butanediol, or a diacetic acid of 1,4-butanediol. Although it may be produced by any method such as a method of reacting an ester with water in the presence of an acid catalyst, the following is produced by hydrolyzing a diacetic acid ester of 1,4-butanediol: The case of dehydration cyclization of 4-butanediol will be described.

1,4−ブタンジオールのジ酢酸エステルは、ブタジエ
ン、酢酸をパラジウム系触媒の存在下分子状酸素と反応
させて得られた1,4−ジアセトキシブテンを、水素化触
媒の存在下、水素添加することにより得られる。反応生
成物は、1,4−ジアセトキシブタンと1,2−ジアセトキシ
ブタンの混合物であり、更に水、酢酸、酢酸ブチル、高
沸アルデヒド、アセタール類を若干量含んでいるが、特
に精製する必要はない。該ジアセトキシブタン混合物
は、水と共に強酸性陽イオン交換樹脂を充填した反応器
に供給し、40〜80℃で加水分解反応を行なう。反応
液は蒸留により、水、酢酸を留去し、1,2−及び1,4−ブ
タンジオール、モノ及び酢酸エステルよりなる液相部
は、異性体分離塔で1,2−ブタンジオール、そのモノ及
びジ酢酸エステルを留去し、1,4−ブタンジオール、そ
のモノ及びジ酢酸エステルを含有する缶出液を、更に高
沸分離塔に供給し、高沸物を分離することにより粗1,4
−ブタンジオールが取得される。該粗1,4−ブタンジオ
ールは強酸性陽イオン交換樹脂を充填したTHF化反応
器に供給され、40〜90℃で反応を行い、反応生成液
は蒸留により水、酢酸、THFを主成分とする軽沸物を
留出させ、更に該留去物を更に常圧で操作される蒸留塔
に供給し、水−THF共沸混合物を留出させる。該水−
THF共沸混合物は、DHF及びNBDの少くとも1種
を不純物として含有するものであり、本発明で精製処理
される原料粗THFの要件を満足するものである。
1,4-Butanediol diacetate ester is obtained by hydrogenating 1,4-diacetoxybutene obtained by reacting butadiene and acetic acid with molecular oxygen in the presence of a palladium-based catalyst in the presence of a hydrogenation catalyst. It is obtained by doing. The reaction product is a mixture of 1,4-diacetoxybutane and 1,2-diacetoxybutane, and further contains water, acetic acid, butyl acetate, high-boiling aldehydes, and a small amount of acetals, but is particularly purified. No need. The diacetoxybutane mixture is supplied together with water to a reactor filled with a strongly acidic cation exchange resin, and a hydrolysis reaction is carried out at 40 to 80 ° C. The reaction solution is distilled to remove water and acetic acid, and the liquid phase portion consisting of 1,2- and 1,4-butanediol, mono- and acetic acid ester is 1,2-butanediol in the isomer separation column. The mono- and di-acetic acid ester was distilled off, and the bottoms containing 1,4-butanediol and the mono- and di-acetic acid ester were further fed to a high boiling point separation column to separate the high boiling point product. ,Four
-Butanediol is obtained. The crude 1,4-butanediol is supplied to a THF-forming reactor filled with a strongly acidic cation exchange resin, and the reaction is carried out at 40 to 90 ° C. The reaction product liquid is mainly composed of water, acetic acid and THF by distillation. The distillate is distilled off, and the distillate is further fed to a distillation column operated under normal pressure to distill off the water-THF azeotrope. The water
The THF azeotrope contains at least one of DHF and NBD as impurities, and satisfies the requirement of the raw crude THF to be purified in the present invention.

精製される粗THFに含有されるDHF及びNBDの量
は特に限定されるものではなく、公知の種々の方法で製
造された粗THF中に含まれる程度の量であるが、通常
DHFは0〜500ppm、NBDは0〜1000ppm程度
である。
The amount of DHF and NBD contained in the crude THF to be purified is not particularly limited, and is an amount contained in the crude THF produced by various known methods. 500 ppm and NBD are about 0 to 1000 ppm.

本発明によれば、このような粗THFを水素添加処理す
ることにより粗THFに含有されるDHFをTHFに、
NBDをn−ブタノールに変換してTHFとの分離を容
易にし、高純度THFを取得することができるが、本発
明においては、水素添加処理に先立って、本発明の原料
である粗THFを水及び/又は酢酸と反応させることに
より、不純物であるDHFの少なくとも一部を、THF
と容易に蒸留分離されるヒドロキシテトラヒドロフラン
及び/又はアセトキシテトラヒドロフランに変換する。
本反応は、強酸性陽イオン交換樹脂等の固体酸触媒、好
ましくはスルホン酸型陽イオン交換樹脂の存在下行なわ
れる。原料粗THFと水及び/又は酢酸とを固体酸触媒
と接触反応させる場合の反応温度は30〜80℃、LH
SV(液体空間速度)は0.5〜5hr-1程度である。
According to the present invention, by subjecting such crude THF to hydrogenation treatment, DHF contained in the crude THF is converted into THF,
It is possible to convert NBD into n-butanol to facilitate separation from THF and obtain high-purity THF. However, in the present invention, prior to the hydrogenation treatment, the crude THF as the raw material of the present invention is converted to water. And / or by reacting with acetic acid, at least a part of the impurity DHF is converted into THF.
It is converted to hydroxytetrahydrofuran and / or acetoxytetrahydrofuran which are easily separated by distillation.
This reaction is carried out in the presence of a solid acid catalyst such as a strongly acidic cation exchange resin, preferably a sulfonic acid type cation exchange resin. When the raw material crude THF and water and / or acetic acid are contact-reacted with the solid acid catalyst, the reaction temperature is 30 to 80 ° C., LH
The SV (liquid space velocity) is about 0.5 to 5 hr -1 .

反応液は酢酸分離塔(第3蒸留塔)に供給され、塔頂よ
りブチルアルデヒド及び一部のジヒドロフランを含む水
−THF共沸混合物を留出させ、塔底よりヒドロキシテ
トラヒドロフラン及び/又はアセトキシテトラヒドロフ
ランを含み、水及び/又は酢酸を主成分とする液相部を
缶出液として抜き出す。第3蒸留塔は常圧で操作され、
理論段数8〜15、塔底温度100〜110℃、還流比
0.5〜2.0程度である。塔頂より留出する水−THF共
沸混合物は、次いで水素添加工程に供給される。
The reaction solution is supplied to an acetic acid separation column (third distillation column), a water-THF azeotrope mixture containing butyraldehyde and a part of dihydrofuran is distilled from the top of the column, and hydroxytetrahydrofuran and / or acetoxytetrahydrofuran from the bottom of the column. And a liquid phase portion containing water and / or acetic acid as a main component is extracted as a bottom liquid. The third distillation column is operated at atmospheric pressure,
Number of theoretical plates 8-15, bottom temperature 100-110 ° C, reflux ratio
It is about 0.5 to 2.0. The water-THF azeotrope distilled from the top of the column is then fed to the hydrogenation step.

第3蒸留塔からの塔頂留分は、水素添加工程に於て、担
体に担持された貴金属水素添加触媒の存在下、水素添加
処理することにより、微量のDHF及びNBDを夫々T
HF及びnーブタノールに変換する。水素添加触媒とし
ては、アルデヒド類をアルコール類に還元する能力を有
する触媒及び/又は炭素−炭素不飽和二重結合を水素化
する能力を有する貴金属触媒が使用され、具体的には、
ルテニウム、パラジウム、白金等の貴金属触媒が挙げら
れ、これらの水素添加触媒は、単独でも十分作用を有す
るが二種以上を組合せて使用することも出来る。水素化
触媒として公知のニッケル触媒は比較的高温で活性を有
するが、高温ではTHFの水添分解が増加するので適宜
温度を選定しなければならない。本願発明では、パラジ
ウム或いは白金触媒とルテニウム触媒を夫々一層ずつ充
填して使用することも可能である。
The overhead fraction from the third distillation column is subjected to hydrogenation treatment in the presence of a noble metal hydrogenation catalyst supported on a carrier in a hydrogenation step, so that a trace amount of DHF and NBD can be treated with T, respectively.
Convert to HF and n-butanol. As the hydrogenation catalyst, a catalyst having an ability to reduce aldehydes to alcohols and / or a noble metal catalyst having an ability to hydrogenate a carbon-carbon unsaturated double bond is used, and specifically,
A noble metal catalyst such as ruthenium, palladium or platinum can be used. These hydrogenation catalysts have sufficient action alone, but two or more types can be used in combination. Nickel catalysts known as hydrogenation catalysts are active at relatively high temperatures, but at high temperatures the hydrogenolysis of THF increases, so the temperature must be selected appropriately. In the invention of the present application, it is also possible to use a palladium or platinum catalyst and a ruthenium catalyst, one layer each.

担体としては、活性炭、シリカゲル、シリカアルミナ、
粘土、ボーキサイト、マグネシア、ケイソウ土、軽石等
が挙げられる。水素は必ずしも純粋なものである必要は
なく、不活性ガス、飽和炭化水素等で希釈されたもので
もよい。水素分圧は1kg/cm2以上であれば実施可能で
あるが、高い圧力の採用は高価な設備が必要であり又、
圧力が低すぎる場合には多量の触媒が必要となるため、
5kg/cm2〜20kg/cm2の水素分圧が好ましい。反応温
度は30〜200℃の範囲で実施されるが、高温側では
THFの水添分解が顕著となり又、低温側では多量の触
媒が必要となるため、50〜120℃が好ましい。
As the carrier, activated carbon, silica gel, silica alumina,
Examples include clay, bauxite, magnesia, diatomaceous earth, and pumice stone. Hydrogen does not necessarily have to be pure, and may be diluted with an inert gas, saturated hydrocarbon or the like. The hydrogen partial pressure can be implemented if it is 1 kg / cm 2 or more, but the use of high pressure requires expensive equipment.
If the pressure is too low, a large amount of catalyst is required,
Hydrogen partial pressure of 5kg / cm 2 ~20kg / cm 2 is preferred. The reaction temperature is in the range of 30 to 200 ° C., but the hydrogenolysis of THF is remarkable on the high temperature side, and a large amount of catalyst is required on the low temperature side, so 50 to 120 ° C. is preferable.

水素添加反応によって、粗THF中のDHF及び/又は
NBDは夫々THF及びnーブタノール等に変換され
る。
By the hydrogenation reaction, DHF and / or NBD in crude THF are converted into THF and n-butanol, etc., respectively.

該反応生成物は、常圧に保持された気液分離器に移送さ
れ、気相排ガスを分離後、液相部は脱水塔である第1蒸
留塔に供給され、塔頂より水−THF共沸混合物を留出
させ、塔底より高沸物を含む脱水されたTHFを缶出さ
せる。
The reaction product is transferred to a gas-liquid separator maintained at normal pressure, and after separating the gas-phase exhaust gas, the liquid phase part is supplied to the first distillation column which is a dehydration column, and water-THF coexists from the top of the column. The boiling mixture is distilled off, and dehydrated THF containing a high boiling point is removed from the bottom of the column.

尚、粗THFがNBDを含有する場合には、水添反応に
よって生成したnーブタノールは、高沸物と共に第1蒸
留塔から缶出される。水−THF混合物は、加圧下では
水モル分率の高まった共沸混合物を形成するので第1蒸
留塔は加圧下で運転するのが好ましい。第1蒸留塔の操
作条件は、理論段数10〜20、圧力5〜15kg/cm2
G、塔底温度130〜180℃、還流比0.1〜1.0程度
である。第1蒸留塔の缶出液は更に製品塔である第2蒸
留塔の供給され、塔底よりTHF10〜50%程度及び
場合によりnーブタノールを含む高沸物を排出し、塔頂
より高純度THFを取得する。第2蒸留塔は、理論段数
15〜30、圧力760〜1000Torr、塔底温度
60〜125℃、還流比0.1〜1.5程度で操作される。
尚、第1蒸留塔の塔頂からの水−THF共沸混合物は必
要に応じ蒸留により水を分離後原料粗THFに循環混合
することも可能である。
When the crude THF contains NBD, the n-butanol produced by the hydrogenation reaction is removed from the first distillation column together with the high boiling substances. Since the water-THF mixture forms an azeotrope with an increased water mole fraction under pressure, the first distillation column is preferably operated under pressure. The operating conditions of the first distillation column are 10 to 20 theoretical plates and 5 to 15 kg / cm 2 of pressure.
G, the bottom temperature is 130 to 180 ° C, and the reflux ratio is about 0.1 to 1.0. The bottoms of the first distillation column are further supplied to the second distillation column which is a product column, and the high boiling substance containing about 10 to 50% of THF and optionally n-butanol is discharged from the bottom of the column and the high purity THF is collected from the top of the column. To get. The second distillation column is operated at a theoretical plate number of 15 to 30, a pressure of 760 to 1000 Torr, a column bottom temperature of 60 to 125 ° C., and a reflux ratio of about 0.1 to 1.5.
The water-THF azeotrope from the top of the first distillation column can be circulated and mixed with the raw material THF after separating water by distillation, if necessary.

かくして第2蒸留塔から得られるTHFは、純度99.9
%以上という極めて高純度のものである。
The THF thus obtained from the second distillation column has a purity of 99.9.
It has a very high purity of at least%.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが、本
発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

尚、以下の実施例及び比較例で原料として使用した粗T
HFは、ブタジエンのアセトキシ化で得られた1,4−ジ
アセトキシブテンを水添により1,4−ジアセトキシブタ
ンとし、更に加水分解して得た1,4−ブタンジオールを
環化することにより製造したものを使用した。又、以下
の記載に於て「%」及び「部」は夫々「重量%」及び
「重量部」を示す。
Incidentally, the crude T used as a raw material in the following examples and comparative examples
HF is obtained by hydrogenating 1,4-diacetoxybutene obtained by acetoxylation of butadiene to 1,4-diacetoxybutane, and further hydrolyzing it to cyclize 1,4-butanediol. The manufactured one was used. Further, in the following description, "%" and "part" represent "wt%" and "part by weight", respectively.

実施例1 DHF250ppm、NBD550ppmを含有し、水9.9
%、酢酸23.0%、THF67.1%からなる混合物をス
ルホン酸型強酸性陽イオン交換樹脂ダイヤイオンSK1
B(三菱化成(株)製)を充填した反応塔に715部/
hrで導入し、反応させた。反応塔は50℃、2kg/cm
2Gで運転した。反応塔を流出した液はヒドロキシテト
ラヒドロフラン185ppm、アセトキシテトラヒドロフ
ラン190ppm、NBD540ppmを含有し、DHFは1
0ppm以下であった。反応塔流出液は第1蒸留塔留出液
394部/hrと共に水、酢酸分離塔(第3蒸留塔)へ
供給し、塔底より水及び酢酸を主成分とする缶出液を2
35部/hrで抜き出し、塔頂より水5.9%、テトラヒ
ドロフラン94.0%からなる留出液を874部/hrで
留出させた。
Example 1 Containing 250 ppm of DHF and 550 ppm of NBD, water 9.9
%, Acetic acid 23.0%, THF 67.1% as a mixture of sulfonic acid type strong acid cation exchange resin DIAION SK1
715 parts / in a reaction tower filled with B (manufactured by Mitsubishi Kasei Co., Ltd.)
It was introduced at hr and reacted. Reaction tower at 50 ℃, 2kg / cm
I drove at 2 G. The liquid flowing out of the reaction tower contains 185 ppm of hydroxytetrahydrofuran, 190 ppm of acetoxytetrahydrofuran, and 540 ppm of NBD, and DHF is 1
It was 0 ppm or less. The reaction tower effluent was supplied to water and an acetic acid separation tower (third distillation tower) together with 394 parts / hr of the first distillation tower distillate, and a bottoms containing water and acetic acid as main components was discharged from the bottom of the tower to 2 times.
It was withdrawn at 35 parts / hr, and a distillate composed of water (5.9%) and tetrahydrofuran (94.0%) was distilled at 874 parts / hr from the top of the column.

留出液中のDHF、ヒドロキシテトラヒドロフラン、ア
セトキシテトラヒドロフランの含有量はいずれも10pp
m以下であり、NBDが450ppmであった。留出液はR
uを活性炭に担持した触媒を充填した反応器に、0.5部
/hrの水素と共に供給した。水添反応は温度100
℃、圧力9.5kg/cm2、滞留時間0.5hr(空筒基準)
で行なった。
The content of DHF, hydroxytetrahydrofuran and acetoxytetrahydrofuran in the distillate is 10 pp.
It was below m and NBD was 450 ppm. Distillate is R
U was fed to a reactor packed with a catalyst in which activated carbon was supported together with 0.5 part / hr of hydrogen. Hydrogenation reaction temperature is 100
℃, pressure 9.5kg / cm 2 , residence time 0.5hr (empty cylinder standard)
I did it in.

反応器より流出した液中のnーブタノールは475pp
m、NBDは10ppm以下であった。この反応液を理論段
数14段、圧力8.5kg/cm2、還流比0.3の条件で操作
される脱水塔(第1蒸留塔)へ供給し、塔頂からは水1
3.1%、THF86.9%からなる留出液を394部/h
rで留出させ、留出液は第3蒸留塔へリサイクルした。
塔底からは水50ppm,ブタノール850ppmを含む粗T
HFを480部/hrで抜き出し、理論段数19段、圧
力760Torr、還流比0.6の条件で運転される製品
塔(第2蒸留塔)へ供給した。
N-Butanol in the liquid flowing out from the reactor was 475 pp
m and NBD were 10 ppm or less. This reaction solution was supplied to a dehydration column (first distillation column) operated under the conditions of 14 theoretical plates, a pressure of 8.5 kg / cm 2 , and a reflux ratio of 0.3, and water 1
Distillate consisting of 3.1% and THF 86.9% 394 parts / h
Distilled at r, and the distillate was recycled to the third distillation column.
Crude T containing 50ppm of water and 850ppm of butanol from the bottom of the tower
HF was extracted at 480 parts / hr and supplied to a product column (second distillation column) operated under the conditions of 19 theoretical plates, a pressure of 760 Torr and a reflux ratio of 0.6.

塔底からはブタノール8.2%及び高沸物を含むTHFを
5部/hrで抜き出し、塔底液は高沸物分離後原料粗T
HFに混合し、THFを回収した。塔頂からは製品TH
Fを475部/hrで留出させた。製品は純度99.9%
以上であり、DHF及びNBD含有量はいずれも10pp
m以下であった。
THF containing 8.2% butanol and high boiling point was withdrawn from the bottom of the column at a rate of 5 parts / hr, and the bottom liquid was separated from the high boiling point raw material crude T
Mix with HF and collect THF. Product TH from the top of the tower
F was distilled at 475 parts / hr. The product has a purity of 99.9%
Above, the DHF and NBD contents are both 10 pp
It was less than m.

比較例1 実施例1と同一組成の粗THF715部/hrと第1蒸
留塔留出液394部/hrを同時に実施例1と同一条件
で操作される第3蒸留塔に供給し塔頂より水5.9%、T
HF94.0%からなる留出液を874部/hrで留出さ
せ、塔底より、水及び酢酸を主成分とする缶出液を23
5部/hrで抜き出した。留出液はNBD450ppm、
DHF200ppmを含んでいた。留出液を実施例1と同
一条件で操作される脱水塔(第1蒸留塔)に供給し、塔
頂より水13.1%、THF86.9%より成り、NBD5
0ppm、DHF200ppmを含む留出液394部/hrを
留出させ、留出液は第3蒸留塔にリサイクルした。
Comparative Example 1 Crude THF having the same composition as in Example 1 (715 parts / hr) and the first distillation column distillate (394 parts / hr) were simultaneously supplied to a third distillation column operated under the same conditions as in Example 1, and water was supplied from the top of the column. 5.9%, T
A distillate consisting of HF94.0% was distilled at 874 parts / hr, and a bottom liquid containing water and acetic acid as main components was distilled from the bottom of the column to 23
It was extracted at 5 parts / hr. Distillate is NBD 450ppm,
It contained 200 ppm of DHF. The distillate was supplied to a dehydration column (first distillation column) operated under the same conditions as in Example 1, consisting of water (13.1%) and THF (86.9%) from the top, and NBD5
A distillate containing 394 parts / hr of 0 ppm and 200 ppm of DHF was distilled, and the distillate was recycled to the third distillation column.

第1蒸留塔塔底からは、DHF360ppm、NBD82
0ppm、H2O50ppmを含む缶出液480部/hrを抜
き出し、実施例1と同一条件で操作される製品塔(第2
蒸留塔)に供給した。第2蒸留塔の塔頂からは製品TH
F470部/hrを抜き出し、塔底からはNBD濃度1.
0%のTHF10部/hrを抜き出した。製品中のNB
D濃度は620ppm、DHFは350ppmであった。
From the bottom of the first distillation column, DHF 360ppm, NBD82
480 parts / hr of bottom liquid containing 0 ppm and 50 ppm of H 2 O was withdrawn, and a product column operated under the same conditions as in Example 1 (second
It was supplied to a distillation column). From the top of the second distillation column, the product TH
F470 parts / hr was withdrawn and the NBD concentration was 1.
0% of THF 10 parts / hr was extracted. NB in the product
The D concentration was 620 ppm and the DHF was 350 ppm.

〔発明の効果〕〔The invention's effect〕

本発明によれば、粗THFの精製工程に於て強酸性陽イ
オン交換樹脂で処理及び水素添加処理することにより、
THFと蒸留分離困難なDHF及びNBD等の不純物
を、THFと容易に分離可能な化合物に変換することが
可能であり、従って蒸留等の通常の手段で、THFの損
失を抑制しつつ、高純度のTHFを取得することができ
る。
According to the present invention, in the crude THF purification step, by treatment with a strongly acidic cation exchange resin and hydrogenation treatment,
Impurities such as DHF and NBD, which are difficult to separate from THF by distillation, can be converted into compounds that can be easily separated from THF. THF can be obtained.

本発明方法で得られたTHFは、好適には純度99.9%
以上という極めて高純度であるため樹脂及び繊維等の原
料として高い製品価値を有する。
The THF obtained by the method of the present invention preferably has a purity of 99.9%.
Because of the extremely high purity described above, it has high product value as a raw material for resins and fibers.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ジヒドロフラン及びブチルアルデヒドの少
くとも一種を含有する粗テトラヒドロフランを、 (a)強酸性陽イオン交換樹脂よりなる反応域で水及び/
又は酢酸と共に接触させてジヒドロフランの少なくとも
1部をヒドロキシテトラヒドロフラン及び/又はアセト
キシテトラヒドロフランに変換し、 (b)上記(a)の反応域からの反応液を酢酸分離塔に供給
し、塔底よりヒドロキシテトラヒドロフラン及び/又は
アセトキシテトラヒドロフランを含有する水−酢酸缶出
液を抜出し、塔頂よりブチルアルデヒド及び/又はジヒ
ドロフランを含む水−テトラヒドロフラン混合物を留去
させ、 (c)該水−テトラヒドロフラン混合物を貴金属触媒の存
在下水素化してブチルアルデヒド及び/又はジヒドロフ
ランをn−ブタノール及び/又はテトラヒドロフランと
し、 (d)上記(c)の水素化反応生成液は気液分離後の液相部を
脱水塔に供給して、塔頂より水−テトラヒドロフランの
共沸混合物を留出させ、塔底より高沸物を含むテトラヒ
ドロフランを缶出させ、 (e)(d)の缶出液を製品塔に供給し、塔頂より高純度テト
ラヒドロフランを留出させる ことを特徴とする粗テトラヒドロフランの精製方法。
1. A crude tetrahydrofuran containing at least one of dihydrofuran and butyraldehyde is mixed with water and / or in a reaction zone comprising (a) a strongly acidic cation exchange resin.
Alternatively, at least a part of dihydrofuran is converted into hydroxytetrahydrofuran and / or acetoxytetrahydrofuran by contacting with acetic acid, and (b) the reaction liquid from the reaction zone of the above (a) is supplied to an acetic acid separation column, and hydroxyl is introduced from the bottom of the column. The water-acetic acid bottoms containing tetrahydrofuran and / or acetoxytetrahydrofuran is withdrawn, the water-tetrahydrofuran mixture containing butyraldehyde and / or dihydrofuran is distilled off from the top of the column, and (c) the water-tetrahydrofuran mixture is used as a noble metal catalyst. Of butyraldehyde and / or dihydrofuran to n-butanol and / or tetrahydrofuran by hydrogenation in the presence of (d), and (d) the hydrogenation reaction product liquid of (c) above is supplied to the dehydration tower through the liquid phase portion after gas-liquid separation. Then, the water-tetrahydrofuran azeotrope is distilled from the top of the tower, and the bottom of the tower is distilled. Was out cans tetrahydrofuran containing boiling substances, (e) the bottom liquid of (d) is supplied to the product column, the crude tetrahydrofuran purification method, characterized in that distilling the high-purity tetrahydrofuran from the top of the tower.
JP60039680A 1985-02-28 1985-02-28 Purification method of crude tetrahydrofuran Expired - Lifetime JPH0629280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039680A JPH0629280B2 (en) 1985-02-28 1985-02-28 Purification method of crude tetrahydrofuran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039680A JPH0629280B2 (en) 1985-02-28 1985-02-28 Purification method of crude tetrahydrofuran

Publications (2)

Publication Number Publication Date
JPS61200979A JPS61200979A (en) 1986-09-05
JPH0629280B2 true JPH0629280B2 (en) 1994-04-20

Family

ID=12559803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039680A Expired - Lifetime JPH0629280B2 (en) 1985-02-28 1985-02-28 Purification method of crude tetrahydrofuran

Country Status (1)

Country Link
JP (1) JPH0629280B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865957A (en) * 1994-12-01 1999-02-02 Mitsubishi Chemical Company Method for producing butyraldehydes
KR100456387B1 (en) * 1997-09-30 2004-11-10 호도가야 가가쿠 고교 가부시키가이샤 Process for Purifying Tetrahydrofurans used as Starting Material for Polyether Polyols
DE10223067A1 (en) * 2002-05-24 2003-12-11 Basf Ag Process for the preparation of polytetrahydrofuran with low color numbers
US20120215012A1 (en) * 2009-10-30 2012-08-23 Toshiaki Matsuo Process and system for purification of tetrahydrofuran
JP2013060429A (en) * 2011-08-23 2013-04-04 Mitsubishi Chemicals Corp Method of purifying 1,4-butanediol and method of manufacturing tetrahydrofuran
WO2015194568A1 (en) * 2014-06-17 2015-12-23 三菱化学株式会社 Method for purifying tetrahydrofuran compound
JP2016017041A (en) * 2014-07-07 2016-02-01 三菱化学株式会社 Method for purifying tetrahydrofuran
JP6439385B2 (en) * 2014-10-31 2018-12-19 三菱ケミカル株式会社 Method for purifying tetrahydrofuran

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111557A (en) * 1976-03-16 1977-09-19 Mitsubishi Chem Ind Ltd Production of cyclic ether
US4257961A (en) * 1980-06-11 1981-03-24 E. I. Du Pont De Nemours And Company Purification of tetrahydrofuran

Also Published As

Publication number Publication date
JPS61200979A (en) 1986-09-05

Similar Documents

Publication Publication Date Title
US4032458A (en) Production of 1,4-butanediol
JP5124366B2 (en) Process for producing 1,6-hexanediol having a purity exceeding 99%
KR100814310B1 (en) Process for the epoxidation of olefins
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
JP2003521544A (en) Process for epoxidation of olefins
US4172961A (en) Production of 1,4-butanediol
JP2513798B2 (en) Distillation and purification method of tetrahydrofuran
JPH0629280B2 (en) Purification method of crude tetrahydrofuran
TW202346245A (en) Process for producing a refined 1,4-butanediol stream
JP3959993B2 (en) Method for producing 1,4-butanediol
KR100949628B1 (en) Method for producing gamma-butyrolactone
JP2000143652A (en) Purification of crude tetrahydrofuran
JPH10237057A (en) Purification of crude tetrahydrofuran
US7193091B2 (en) Method for the simultaneous production of tetrahydrofurans and pyrrolidones
US4094887A (en) Process for preparing cyclic ethers
JP3744097B2 (en) Method for producing 1,4-butanediol
US4105679A (en) Process for producing a cylic ether from an acetic ester of a 1,4-glycol
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP3903513B2 (en) Method for producing diacetoxybutene
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
JP4483156B2 (en) Method for purifying gamma-butyrolactone
US4140704A (en) Process for producing cyclic ether
JPS593477B2 (en) Method for producing cyclic ether
JP2003226688A (en) METHOD FOR PURIFYING Gamma-BUTYROLACTONE
JP2003089694A (en) Method for purifying tetrahydrofuran

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term