JPS58167532A - Separation method of butanediol - Google Patents

Separation method of butanediol

Info

Publication number
JPS58167532A
JPS58167532A JP57050322A JP5032282A JPS58167532A JP S58167532 A JPS58167532 A JP S58167532A JP 57050322 A JP57050322 A JP 57050322A JP 5032282 A JP5032282 A JP 5032282A JP S58167532 A JPS58167532 A JP S58167532A
Authority
JP
Japan
Prior art keywords
butanediol
mpg
water
mixture
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57050322A
Other languages
Japanese (ja)
Other versions
JPH036130B2 (en
Inventor
Yoshiyuki Harano
原野 嘉行
Katsumi Miwa
三輪 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, Daicel Chemical Industries Ltd filed Critical Daicel Corp
Priority to JP57050322A priority Critical patent/JPS58167532A/en
Publication of JPS58167532A publication Critical patent/JPS58167532A/en
Publication of JPH036130B2 publication Critical patent/JPH036130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound efficiently in high purity, by hydroformylating allyl alcohol, hydrogenating the resultant hydroformylation product, and heating the resultant crude butanediol mixture in the presence of a ruthenium catalyst, water and hydrogen, and distilling and separating the titled compound. CONSTITUTION:Allyl alcohol is hydroformylated, and the resultant product is then hydrogenated to give a crude butanediol mixture, which is then heat-treated at preferably 80-150 deg.C and 30-50kg/cm<2> in the presence of a ruthenium catalyst, water and hydrogen. The heat-treated product is then distilled and separated into 2-methyl-1,3-propanediol and 1,4-butanediol to give high-purity butanediol usable for polymerization. According to the method, impurities to inhibit the distillatory separability of the butanediol are decomposed reductively by the above-mentioned heat treatment, and the above-mentioned separability is remarkably improved. Thus, the purity of the aimed compound is improved.

Description

【発明の詳細な説明】 この発明は純度のよい2−メチル−1,5−プロパンジ
オール(以下MPGと略す)を得る事の出来るブタンジ
オール類の分離法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating butanediol by which 2-methyl-1,5-propanediol (hereinafter abbreviated as MPG) of high purity can be obtained.

アリルアルコールのヒドロホルミル化により3−又は2
−位にホルミル化されたプロパツール(ヒドロキシブチ
ルアルデヒド類)の混合物を得、これを接触水素添加す
ることによりブタンジオール類、即ち1,4−ブタンジ
オール(以下1.4− B Gと略す)とMPGとの混
合物が得られることは公知である。例えば特公昭53−
19563号公報には、ベンゼンなどの有機溶媒中でロ
ジウムを含む触媒の存在下にアリルアルコールと合成ガ
ス(H,+ Co)を反応させ、水抽出罠よりロジウム
触媒と分離した反応生成物水溶液をラネーニッケル等公
知の水素添加触媒を用いて接触水素化し1.4− B 
GとMPGとを含む液が得られる事が開示されている0 このような粗ブタンジオール混合物は水及び低沸副生物
を留去したのち、その沸点差に基づいてM P G (
BP 215℃)と1.4− B G (BP 250
℃)とを蒸留分離するのが慣用的な分離法と考えられる
By hydroformylation of allyl alcohol, 3- or 2-
A mixture of propatool (hydroxybutyraldehydes) formylated at the - position is obtained, and this is catalytically hydrogenated to produce butanediols, that is, 1,4-butanediol (hereinafter abbreviated as 1.4-BG). It is known that mixtures of MPG and MPG can be obtained. For example, the special public service in 1973-
No. 19563 discloses that allyl alcohol and synthesis gas (H, + Co) are reacted in the presence of a rhodium-containing catalyst in an organic solvent such as benzene, and the reaction product aqueous solution separated from the rhodium catalyst is separated from the rhodium catalyst through a water extraction trap. Catalytic hydrogenation is performed using a known hydrogenation catalyst such as Raney nickel to produce 1.4-B.
It is disclosed that a liquid containing G and MPG can be obtained. After water and low-boiling byproducts are distilled off from such a crude butanediol mixture, MPG (
BP 215°C) and 1.4-BG (BP 250
℃) is considered to be a conventional separation method.

しかしこの方法では純度のよいMPGを、1.4− B
 Gかも効率良く分離するのに難点がある仁とが見出さ
れた。即ちアリルアルコールのヒドロホルミル化と接触
水素添加によって得られる前記粗ブタンジオール混合物
中KHこの製法特有の不純物が存在し、これらがMPG
と1.4− B Gの分離性に悪影響のあることがわか
った。詳しくいうと水添工糧においては原料となるアル
デヒド類と生成し九ア゛ルコール類が相互に反応1−b
種々の副生物が生じその量的な関係は条件により著しく
異なる。これ等副生成物の存在は目的とする1 、 4
−B GならびにMPGの品質を着しく損うばかりで危
く、目的物であるジオール類の蒸留による分離を著しく
困難にし、場合によっては分離そのものを通常の蒸留に
よって行なう事を不可能にする。
However, with this method, MPG with good purity can be converted into 1.4-B
It has been found that there are some difficulties in separating G and G in an efficient manner. That is, in the crude butanediol mixture obtained by hydroformylation of allyl alcohol and catalytic hydrogenation, there are impurities specific to this production method, and these are
It was found that this had an adverse effect on the separation of 1.4-BG and 1.4-BG. To be more specific, in hydrogenated foods, the aldehydes used as raw materials and the nine alcohols produced react with each other 1-b.
Various by-products are produced, and their quantitative relationships vary significantly depending on the conditions. The presence of these by-products is intended for purposes 1 and 4.
- This is dangerous because it seriously impairs the quality of G and MPG, and makes it extremely difficult to separate the target diols by distillation, and in some cases makes it impossible to perform the separation itself by ordinary distillation.

本発明者は重合用に使用し得る高純度ブタンジオール類
を得る事を目的として研究し、上記の事実にはじめて着
目し検討の結果MPGとL4−B Ckの分離に悪影響
のある不純働程をつきとめ、それ等の影響を防いで純度
のよいMPGと1.4− B Gとを効率よく得る具体
的な技術手段を見出すに至った。
The present inventor conducted research with the aim of obtaining high-purity butanediols that can be used for polymerization, and focused on the above facts for the first time, and as a result of his studies, he determined that the impurity process that has a negative effect on the separation of MPG and L4-B Ck was found. We have found a specific technical means to efficiently obtain MPG and 1.4-BG with good purity by preventing these effects.

即ち、検討の結果MPGと1.4− B Gとの分前に
悪影響のある物質として粗ブタンジオール中に存在する
3mの不純物に注目すべきことが見出された。その4つ
はアリルアルコールが異性化して生じ九プロピオンアル
デヒドのアルドール縮合物が水素化されて生じたと考え
られる2−メfルー1.s−ヘンタンジオール(以下M
PIGと略す)でMFGとほぼ同じ沸点を持つ。
That is, as a result of the study, it was found that the 3m impurity present in crude butanediol should be noted as a substance that has an adverse effect on the presence of MPG and 1.4-BG. Four of them are 2-mef-1, which are thought to be produced by isomerization of allyl alcohol and hydrogenation of an aldol condensate of nine-propionaldehyde. s-hentanediol (hereinafter referred to as M
(abbreviated as PIG) and has almost the same boiling point as MFG.

第2はアリルアルコールのヒドロホルずル化物である4
−ヒドロキシブチルアルデヒドが分子内環化した2−ヒ
ドロキシテトラヒドロフランとMPGとのエーテルであ
る2−(5−ヒドロキシ−2−メチルプ四ポキシ)−テ
トラヒドロフラン(以下HMPTHIと略す)であり、
この物質の存在FiMPGと1.4− B Gの分離を
非常に困1IAKシ、シばしば殆んど分離不可能ならし
める。その原因Fi)IMPTHFが1.4− B G
と共沸混合物をつくり、これがMPGとほぼ同じ蒸気圧
を示す為と考えられる。但し、との共沸混合物につき正
確にその物性を確かめたわけではない。第5の不純物で
ある2−(4−ヒドロキシブトキシ)−テトラヒドロフ
ラン(以下HBTHIFと略す)は2−ヒドロキシ−テ
トラヒドロフランと1.4− B Gとのエーテルであ
り、この物質41.4−BGと共沸混合物をつくりその
沸点はM P G −1,4−BGの中間になるので両
者の分離を困難ならしめる。
The second is a hydrophorzol compound of allyl alcohol 4
2-(5-hydroxy-2-methylp4poxy)-tetrahydrofuran (hereinafter abbreviated as HMPTHI), which is an ether of 2-hydroxytetrahydrofuran and MPG in which -hydroxybutyraldehyde is intramolecularly cyclized,
The presence of this substance makes the separation of FiMPG and 1.4-BG very difficult and often almost impossible. The cause Fi) IMPTHF is 1.4- B G
This is thought to be because it forms an azeotropic mixture with MPG, which exhibits almost the same vapor pressure as MPG. However, the physical properties of the azeotrope with The fifth impurity, 2-(4-hydroxybutoxy)-tetrahydrofuran (hereinafter abbreviated as HBTHIF), is an ether of 2-hydroxy-tetrahydrofuran and 1,4-BG; A boiling mixture is formed whose boiling point is between that of MPG-1,4-BG, making it difficult to separate the two.

本発明者はアリルアルコールを出発物としてヒドロホル
ミル化と接触水素添加の2工糧により得られた粗ブタン
ジオール混合物が上記のような3種の不純物のために分
離性が阻害されていることを見出した上でルテニウム触
媒、水及び水素の存在下に上記粗ブタンジオール混合物
を加熱処理すると311の不純物が還元分解され、MP
Gと1.4− B Gとの蒸留分離性が飛躍的に改善さ
れることを確111一本発明を完成した。
The present inventor discovered that the separability of a crude butanediol mixture obtained by two processes of hydroformylation and catalytic hydrogenation using allyl alcohol as a starting material was inhibited by the three types of impurities mentioned above. Then, when the crude butanediol mixture is heat-treated in the presence of a ruthenium catalyst, water and hydrogen, the impurity 311 is reductively decomposed and MP
The present invention was completed after confirming that the distillation separation between G and 1.4-B G was dramatically improved.

即ち本発明はアリルアルコールのヒドロホルミル化生成
物を接触水素添加して得られる粗ブタンジオール混合物
をルテニウム触媒、水及び水素の存在下に加熱処理し九
のち2−メチル−1,3−プロパンジオールと1.4−
ブタンジオールとを蒸留分離することを特徴とすゐブタ
ンジオール類の分離法に係る本のである0 本発明の対象となる粗ブタンジオール混合物はすてにラ
ネーニッケル等の触媒を用いる水素添加という還元的工
糧を経て得られ喪ものであるが、特定の触媒の存在下で
改めて処理・することにより本発明特有の分解効果が得
られる。本発明で効果のある触媒はルテニウム触媒に限
り通常考えられる水素添加用の触媒すなわちNi。
That is, in the present invention, a crude butanediol mixture obtained by catalytic hydrogenation of a hydroformylation product of allyl alcohol is heat-treated in the presence of a ruthenium catalyst, water and hydrogen, and then converted into 2-methyl-1,3-propanediol. 1.4-
This is a book about a method for separating butanediol, which is characterized by separating butanediol by distillation.The crude butanediol mixture, which is the subject of the present invention, is prepared by reductive hydrogenation using a catalyst such as Raney nickel. Although it is obtained through industrial processing, it can be treated again in the presence of a specific catalyst to obtain the decomposition effect unique to the present invention. The catalyst that is effective in the present invention is limited to ruthenium catalysts, which are commonly thought of as hydrogenation catalysts, namely Ni.

CO等のベースメタルならびにpt、 pa郷の貴金属
系の触媒は殆んど不純物の還元分解作用を示さなかった
Catalysts based on base metals such as CO and noble metals such as PT and PA showed almost no reductive decomposition effect on impurities.

本発明で用いるルテニウム触媒は必らずし本担体を必要
とするものではないが、適当な担体を用いることにより
処理を好まし〈実施する事が出来る。担体としては特に
限定されるものではないが、代表的な本のは活性炭、シ
リカ、アルミナ等を挙げ、る事が出来る。これ等担体上
に担持させるルテニウムの担持量は担体に対して0.2
〜20重量参の範囲が好ましい。20重量%以上でも分
解効果に影響を及はさないが経済的ではない。
Although the ruthenium catalyst used in the present invention does not necessarily require this carrier, the treatment can be carried out preferably by using a suitable carrier. The carrier is not particularly limited, but representative examples include activated carbon, silica, and alumina. The amount of ruthenium supported on these carriers is 0.2
A range of 20 to 20 parts by weight is preferred. Even if it exceeds 20% by weight, it does not affect the decomposition effect, but it is not economical.

水の存在量は還元分解に除去されるべき不純物と当量あ
るいはそれ以−ヒであれば充分である0勿論多量に存在
する事によ抄反応速度は著しく増大する。水素存在下の
加熱処理東件は一般的には加圧、高温の方が速度的には
好ましく、特に限定するものではないが経済的な見地よ
り80〜150℃、 30〜50ky/11+−G 1
it(D条件が好オしい。
It is sufficient that the amount of water is equivalent to or more than the impurities to be removed by reductive decomposition.Of course, the presence of a large amount of water significantly increases the papermaking reaction rate. For heat treatment in the presence of hydrogen, pressurization and high temperature are generally preferable in terms of speed, and although not particularly limited, from an economical point of view, 80 to 150°C, 30 to 50ky/11+-G 1
it (D condition is preferable.

本発明によると、MPG、1.4−BG及び前記不純物
のいずれかを含む粗ブタンジオール混合物であれば精製
工程途中の液でも、場合罠よってはすでに一応の分離が
なされたMPGや1.4− B Gの粗製品でも上記条
件下で処理し、蒸留分離性を改善で!!ふ○ 以下実施例に基づいて説明する0 実  施  例    1 アリルアルコールをRh−触媒の存在下ヒドロホルミル
化反応を行ない生成し晃ヒドロキシブイールアルデヒド
類を水で抽出した0この抽出液をラネーニッケル触媒の
存在下で水素添加反応を行ない、得られた反応液を蒸留
により脱低沸。
According to the present invention, if it is a crude butanediol mixture containing MPG, 1.4-BG, and any of the impurities mentioned above, even if the liquid is in the middle of the purification process, MPG or 1.4-BG that has already been separated may be used. - Even crude BG products can be treated under the above conditions to improve distillation separation! ! Example 1 Allyl alcohol was subjected to a hydroformylation reaction in the presence of a Rh-catalyst, and hydroxybuyraldehydes were extracted with water.This extract was treated with a Raney nickel catalyst. Hydrogenation reaction is carried out in the presence of hydrogen, and the resulting reaction liquid is removed from low boiling point by distillation.

脱水を行なった後、オールダーショウ塔を使用し蒸留分
離して粗ブタンジオールを得た。この留出液20FK純
水190tを加えた水溶液に市販の5優ルテニウムチヤ
コール(日本エンゲに/’k )”社) 2 fを添加
し500−オートクレーブに仕込んでH2を5 o (
VeIII’・e )迄張抄込んだ後攪拌を行ないなが
らtoocで5時間加熱した後渡を散り出しガスクロ分
析を行なった。
After dehydration, crude butanediol was obtained by distillation using an Oldershaw column. To this aqueous solution to which 190 tons of 20FK pure water was added was added 2 f of commercially available 5-grade ruthenium thiacol (Nihon Enge/'k)'', the mixture was charged into a 500 autoclave and H2 was heated to 5 o (
After stirring until VeIII'·e), the mixture was heated with a TOOC for 5 hours.

粗ブタンジオール中K 4.Go−存在し九1’IBT
HFはルテニウム、水、水素存在下での加熱処理により
痕跡1度になった。加熱処理後の組成(水を除く)はM
 P a 77、[11優、  1.a −B G  
22.21チ、MPIG痕跡程度、Hht、pTgy不
検出トlk、ッテおり、MPGと1.4−BG tl容
易に蒸留分離出来九〇 比較例 1 実施例1と同じ粗ブタンジオール混合物1゜f K D
iムIH,を1f添加し還元処理を行表ったが!IBT
I’lFは全く減少せずMPGと1.4−BGの蒸留分
離性は改善され々かった0 実施例 2 不純物の還元分解性を確認する為のモデルと【7て次の
実験を行なった。
K in crude butanediol 4. Go-Exist 91'IBT
HF was reduced to 1 trace by heat treatment in the presence of ruthenium, water, and hydrogen. The composition after heat treatment (excluding water) is M
P a 77, [11 honors, 1. a-B G
22.21, traces of MPIG, Hht, pTgy undetected, ttl, MPG and 1.4-BG tl easily separated by distillation 90 Comparative Example 1 Same crude butanediol mixture as Example 1 1° fKD
I added 1f of IM IH and performed the reduction process! IBT
I'lF did not decrease at all, and the distillation separation of MPG and 1.4-BG was almost improved. .

ジヒドロフランと1.4− B Gの等モルヲH280
゜触媒の存在下で反応させて、反応液を蒸留精製した。
Equimole of dihydrofuran and 1.4-B G H280
゜The reaction was carried out in the presence of a catalyst, and the reaction solution was purified by distillation.

得られた留出液の組成はHBTHF 57,8wt4.
1.4− B G  4j2 wt%であった0この留
出液20gに純水190fを加え市販5gbルテニウム
チャコール触媒2Fと共にオートクレーブ中でH2圧力
50 (k7cm −G) 、 100℃で1時間加熱
処理を行かった。HBT)IFの分解率は10〇−テア
リ、コ(7) ウチ99,215(1,4−BG、 0
.5 %がn−ブタノール、0.2%がr−ブチロラク
トン、o、11gが4−ヒドロキシブチルアルデヒドで
あった。
The composition of the obtained distillate was HBTHF 57.8wt4.
1.4- 190f of pure water was added to 20g of this distillate, which was 4j2 wt%, and heat-treated at 100°C for 1 hour at H2 pressure of 50 (k7cm-G) in an autoclave with 5gb of commercially available ruthenium charcoal catalyst 2F. I went. The decomposition rate of HBT) IF is 100-Teari, Ko (7) Uchi99,215 (1,4-BG, 0
.. 5% was n-butanol, 0.2% was r-butyrolactone, and 11 g was 4-hydroxybutyraldehyde.

比較例 2 ルテニウム触媒の代りに市販ラネーニッケル触媒2fを
用いた他は実施例2と同様にして)TFIT)IFを含
む液を加熱処理した。HBTHlrの分解率は31.6
嗟であり、仁のうち96嘔が1,4−BGに−4,声が
n−ブタノールに転化していた。
Comparative Example 2 A liquid containing TFIT) IF was heat-treated in the same manner as in Example 2, except that a commercially available Raney nickel catalyst 2f was used instead of the ruthenium catalyst. The decomposition rate of HBTHlr is 31.6
Unfortunately, 96 of the particles were converted to 1,4-BG and -4 to n-butanol.

実施例 6 実施例1と類似のプロセスで得たルテニウム処理前の粗
ブタンジオール留分を更シてオ〜ルダーシ町つ塔で蒸留
分離1.九。得られた?7PG留分#′iMPG純分s
o、so sで1.4−R(’+ 4,7816の他に
MPIG 4,40%、 HMPTFIIF 7,65
%、)I’BTHFO,8996などの不純物を含んで
いた、MPGを主体とするこの粗ブタンジオール混合物
209に純水19Of、市販の51ルテニウムチヤコー
ル触媒2fを加え50017オートクレープ中で攪拌下
水素圧50 kV’cm’G 、 100 ℃f 2時
間加熱処理した。液組成(水を除< ) h)JPG 
90.88−11.4−BG  743911MP!!
!G痕跡程度、HMPTT(F 1,05Is、 HB
TH!F不検出テM P G ト1.4−BGの蒸留分
離性は着しく改善された。
Example 6 The crude butanediol fraction before ruthenium treatment obtained by a process similar to Example 1 was further filtered and distilled and separated in O-Rudas columns.1. Nine. Did you get it? 7PG fraction #'iMPG pure fraction s
o, so s 1.4-R ('+ 4,7816 plus MPIG 4,40%, HMPTFIIF 7,65
%,) I'BTHFO, 8996, etc., to this crude butanediol mixture 209 mainly composed of MPG, 19Of pure water and 2F of a commercially available 51 ruthenium charcoal catalyst were added, and the mixture was heated with hydrogen under stirring in an autoclave. Heat treatment was performed at a pressure of 50 kV'cm'G and 100°C for 2 hours. Liquid composition (excluding water < ) h) JPG
90.88-11.4-BG 743911MP! !
! G trace level, HMPTT (F 1,05Is, HB
TH! The distillation separation of F-undetected MPG 1.4-BG was significantly improved.

比較例 3 ルテニウム触媒の代シに市販ラネーニッケル触媒2fを
用いた他は実施例5とrFf1様に加熱処理しり。処理
後ノMPKGi−j 5,52%、 FfMPTHIF
は7.02−殆んど還元分解されなかった。
Comparative Example 3 Heat treated as in Example 5 and rFf1 except that commercially available Raney nickel catalyst 2f was used in place of the ruthenium catalyst. After treatment MPKGi-j 5,52%, FfMPTHIF
was 7.02 - hardly reductively decomposed.

参考例 1 実施例1と類似のプロセスで得たルテニウム処理前の粗
ブタンジオール留分を更にオールダーショウ塔で蒸留分
離して得たMPG留分410fを15φ、1.0慨高の
ナニヮバック充填塔のフラスコに仕込み、塔頂圧力11
1111gで真空蒸留を行なった。この時還流比ti2
8、罐温度は130℃であり、留出液を202毎に4留
分採取した後、各留分と罐組成の分析を行なった。
Reference Example 1 MPG fraction 410f obtained by distilling the crude butanediol fraction before ruthenium treatment obtained by a process similar to Example 1 using an Oldershaw column was packed in a 15φ, 1.0 height nanobag. Charge the flask of the tower, and the top pressure of the tower is 11
Vacuum distillation was performed on 1111 g. At this time, the reflux ratio ti2
8. The can temperature was 130° C., and after collecting 4 fractions of distillate every 20 2, the composition of each fraction and the can was analyzed.

結果は第1表に示す様でMP!l!G、HMPTHFな
どの不純物が各留分に!たがりMPGと1.4−BGと
の分離性はきわめて悪い。
The results are shown in Table 1. MP! l! Impurities such as G and HMPTHF are present in each fraction! Separability between Tagaari MPG and 1.4-BG is extremely poor.

第  1  表 参考例 2 MPIG、HMPTHF  を微量しか含んでいない液
150Fを15φ、1へ高のナニワパツク充填塔のフラ
スコに仕込み塔頂圧力201111Hgで真空蒸留を行
なった。この時の還流比は18.罐温度は約140Cで
あシ留出率約60.チル留出した時の各留分と罐組成の
分析を行なり九。結果は第2表に示す様て参考例1より
4還流比が少ないにもかかわらずMPGと1.4−BG
の分離性が著しく改善されている。
Table 1 Reference Example 2 A liquid 150F containing only trace amounts of MPIG and HMPTHF was charged into a flask of a Naniwa Pack packed column of 15 φ and 1 mm, and vacuum distillation was carried out at a top pressure of 201111 Hg. The reflux ratio at this time was 18. The temperature of the can is about 140C and the distillation rate is about 60. We analyzed each fraction and the can composition when chilled distillation was carried out.9. As shown in Table 2, the results show that although the 4 reflux ratio is lower than that of Reference Example 1, MPG and 1.4-BG
Separability has been significantly improved.

第  2  表 参考例 3 FIBTHFの存在がMPGと1.4−BGの分離性を
悪くすることを確認する目的で1lBTHF〜1.4B
G系の気液平衡を50 wmTIgの真空下で測定した
この結果F!BTHF’ Fil、4−BGと1!BT
FI?濃度3ごmo1%で最低共沸し更[HBTHFと
1.4−BG系の比揮発度は小さく蒸留により1,4−
BG留分からT(B T PI Fを分離する事は非常
に困難である事がわかった。
Table 2 Reference Example 3 In order to confirm that the presence of FIBTHF worsens the separation between MPG and 1.4-BG, 11BTHF to 1.4B
The result of measuring the gas-liquid equilibrium of the G system under a vacuum of 50 wmTIg is F! BTHF' Fil, 4-BG and 1! BT
FI? [The specific volatility of HBTHF and 1.4-BG systems is small and 1,4-
It has been found that it is very difficult to separate T(BTPIF) from the BG fraction.

Claims (1)

【特許請求の範囲】[Claims] 71Jルアルコールのヒドロホルきル化生成物を接触水
素添加して得られる粗ブタンジオール混合物をルテニウ
ム触媒、水及び水素の存在下に加熱処理したのち2−メ
チル−1,5−プロパンジオールと1,4−ブタンジオ
ールとを蒸留分離することを特徴とするブタンジオール
類の分離法。
A crude butanediol mixture obtained by catalytic hydrogenation of the hydrophorylation product of 71J alcohol was heat-treated in the presence of a ruthenium catalyst, water and hydrogen, and then 2-methyl-1,5-propanediol and 1, A method for separating butanediol from 4-butanediol by distillation.
JP57050322A 1982-03-29 1982-03-29 Separation method of butanediol Granted JPS58167532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050322A JPS58167532A (en) 1982-03-29 1982-03-29 Separation method of butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050322A JPS58167532A (en) 1982-03-29 1982-03-29 Separation method of butanediol

Publications (2)

Publication Number Publication Date
JPS58167532A true JPS58167532A (en) 1983-10-03
JPH036130B2 JPH036130B2 (en) 1991-01-29

Family

ID=12855661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050322A Granted JPS58167532A (en) 1982-03-29 1982-03-29 Separation method of butanediol

Country Status (1)

Country Link
JP (1) JPS58167532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197534A (en) * 1985-02-27 1986-09-01 Mitsubishi Chem Ind Ltd Method of purifying crude 1,4-butanediol
WO1997036846A1 (en) * 1996-03-29 1997-10-09 Kvaerner Process Technology Limited Process for the purification of butane-1,4-diol
WO2014196530A1 (en) 2013-06-04 2014-12-11 株式会社クラレ Process for producing polyhydric alcohol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197534A (en) * 1985-02-27 1986-09-01 Mitsubishi Chem Ind Ltd Method of purifying crude 1,4-butanediol
WO1997036846A1 (en) * 1996-03-29 1997-10-09 Kvaerner Process Technology Limited Process for the purification of butane-1,4-diol
AU710732B2 (en) * 1996-03-29 1999-09-30 Davy Process Technology Limited Process for the purification of butane-1,4-diol
US6137016A (en) * 1996-03-29 2000-10-24 Kvaerner Process Technology Limited Process for the purification of butane-1,4-diol
WO2014196530A1 (en) 2013-06-04 2014-12-11 株式会社クラレ Process for producing polyhydric alcohol
KR20160034249A (en) 2013-06-04 2016-03-29 가부시키가이샤 구라레 Process for producing polyhydric alcohol
JPWO2014196530A1 (en) * 2013-06-04 2017-02-23 株式会社クラレ Method for producing polyhydric alcohol
US10029965B2 (en) 2013-06-04 2018-07-24 Kuraray Co., Ltd. Process for producing polyhydric alcohol

Also Published As

Publication number Publication date
JPH036130B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
CA1157888A (en) Process for the preparation of ethanol
US3000906A (en) Purification of pivalolactone
JP3175360B2 (en) Purification method of 1,4-butanediol
TW200413295A (en) Process for producing alcohol
US3340312A (en) Manufacture of neopentyl glycol and isobutanol
KR100973443B1 (en) Process for production of purified alcohols
JPH10265418A (en) Purification of crude 1, 4-butanediol
JPS60155155A (en) Collection of caprolactam from caprolactam-containing distillation residue
US4275243A (en) Process for producing hydroxybutyraldehyde
JPS58167532A (en) Separation method of butanediol
US4864066A (en) Preparation of alkanediols from alkynols
JPS5840533B2 (en) Production method of 3-methylpentane-1,5-diol
US4599466A (en) Preparation of alkanediols
US2524899A (en) Purification of fatty acid esters
EP1510512B1 (en) Process for producing alicyclic aldehydes
US4311854A (en) Process for the production of di-n-propyl-acetic acid
US2422802A (en) Dehydration of diacetone glycol to form a methyl pentadiene
JPS61200979A (en) Method of purifying crude tetrahydrofuran
EP0133739B1 (en) Process for preparing 2-alkyl-1,4-butanediols
US3405185A (en) Production of isomenthol isomers
EP0257727B1 (en) Process for preparing cyclohexanonecarboxylic acid compounds
US3246036A (en) Production of 2-cyclohexylcyclo-hexanone
JPH0676348B2 (en) Method for producing 2,2-dimethylpropanediol- (1,3)
US3880913A (en) Dehydroformylation of acetoxybutyraldehydes
US3941851A (en) 1,4-Butanediol from hydrogenated hydroformylated allyl acetate