JP3572636B2 - Method for producing butanediol - Google Patents

Method for producing butanediol Download PDF

Info

Publication number
JP3572636B2
JP3572636B2 JP22911193A JP22911193A JP3572636B2 JP 3572636 B2 JP3572636 B2 JP 3572636B2 JP 22911193 A JP22911193 A JP 22911193A JP 22911193 A JP22911193 A JP 22911193A JP 3572636 B2 JP3572636 B2 JP 3572636B2
Authority
JP
Japan
Prior art keywords
acetic acid
column
butanediol
water
acetoxylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22911193A
Other languages
Japanese (ja)
Other versions
JPH0782191A (en
Inventor
寛明 香取
信行 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP22911193A priority Critical patent/JP3572636B2/en
Publication of JPH0782191A publication Critical patent/JPH0782191A/en
Application granted granted Critical
Publication of JP3572636B2 publication Critical patent/JP3572636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ジアセトキシブタンを加水分解してブタンジオールを製造する方法に関するものである。
【0002】
【従来の技術】
ブタンジオール、特にポリエステル樹脂の原料等として有用な1,4−ブタンジオールの代表的な製造方法として、ジアセトキシブタンを加水分解してブタンジオールを製造する方法が知られている。
そして、このジアセトキシブタンの加水分解反応物中には、目的とする1,4−ブタンジオールの他に多量の酢酸と水を含んでいるので、工業的には、蒸留により酢酸と水を回収して再使用できることが望ましい。
【0003】
例えば、特公昭57−7609号公報には、ブタジエンをアセトキシ化し、次いで、水素化して得たジアセトキシブタンの加水分解反応物を第1蒸留塔で蒸留して、水、酢酸及び酢酸ブチル含有留分を留出させ、該留分を第2蒸留塔で蒸留して油相と水相に静置分離し、該水相を前記加水分解反応域に循環し、一方、第2蒸留塔の酢酸缶出分はアセトキシ化の原料として再使用する方法が記載されている。
該公報には、酢酸缶出分中には酢酸ブチルを含有するが、これをアセトキシ化反応に再使用しても反応には全く影響がなく、触媒の寿命にも全く影響がないとされている。また、上記の水相についても少量の酢酸ブチルを含有するが、この酢酸ブチルも加水分解されて酢酸とブタノールになり、1,4−ブタンジオールの品質には全く影響を与えないと記載されている。
【0004】
【発明が解決しようとする課題】
近年、1,4−ブタンジオールの応用分野が多様化し、更なる高品質化が要求されるようになってきている。そこで、品質の向上を達成する方法として、加水分解反応の条件、蒸留精製の条件の改良などが考えられる。しかしながら、工業的に採用しうるものとしては、製品コストアップを最小限に留めたより経済的な改良方法である必要がある。
【0005】
【課題を解決するための手段】
本発明者等はブタジエンをアセトキシ化、次いで水素化して得たジアセトキシブタンを加水分解してブタンジオールを製造する際に必要な水、酢酸を有効に回収利用しつつ、かつ製品であるブタンジオールを高い品質に維持する方法について鋭意検討を重ねた結果、従来、加水分解に使用していた回収水中の不純物がブタンジオールの品質に予想以上に大きく影響していることを見いだし、そのプロセス改良の検討を行った結果、本発明に到達した。即ち、本発明によれば、ジアセトキシブタンの加水分解の反応物より蒸留分離した酢酸水溶液を、酢酸分離塔に供給し、塔底より酢酸を缶出する一方、留出分を油相と水相に静置分離し、該水相を水精製塔に供給し、塔頂より軽沸分を留去するとともに塔底より缶出する精製水を前記加水分解反応域に循環することにより、高品質のブタンジオールを製造することができる。
【0006】
なお、アセトキシ化の反応物より蒸留分離した酢酸水溶液も、ジアセトキシブタンの加水分解の反応物より蒸留分離した酢酸水溶液と一緒に、酢酸分離塔に供給してもよい。
【0007】
以下、本発明について詳細に説明する。
ジアセトキシブタンは、通常、ブタジエンをアセトキシ化、次いで水素化して得られる。アセトキシ化とは、通常、パラジウム系触媒の存在下、ブタジエン、酢酸及び酸素を、通常40〜180℃の温度範囲で常圧以上の圧力条件で反応させることにより実施される。反応物よりジアセトキシブテンを分離する方法としては、初めに、水、酢酸、その他の軽沸分を蒸留分離し、次いで、ジアセトキシブテンと高沸物を別途、再度、蒸留分離する方法が好ましい。
【0008】
また、ジアセトキシブテンの水素化方法としては、通常、パラジウム、ルテニウム等の貴金属触媒の存在下にジアセトキシブテンを水素と接触させ、通常40〜180℃の温度範囲で、常圧以上の圧力条件で反応させることにより実施される。反応物は蒸留に供され、ジアセトキシブタンと高沸物に分離しておくことが好ましい。
【0009】
以上の方法で得られるジアセトキシブタンは、水素化の際、一部水添分解を受けて、通常0.1〜5%程度の酢酸ブチルを含有している。ジアセトキシブタンの加水分解反応には、固体酸触媒として陽イオン交換樹脂を使用するのが、加水分解速度が速く、しかもテトラヒドロフラン等の副生物が少ないので好適である。また、反応は、通常30〜110℃、好ましくは40〜90℃の温度条件にて実施する。水は、ジアセトキシブタン1モルに対し、通常2〜100モル、好ましくは4〜50モルの範囲の量を使用する。
【0010】
加水分解反応物は、以下のように分離精製する。まず、反応物を蒸留塔にて蒸留し、塔底より1,4−ブタンジオールを含む成分を缶出し、一方、水と酢酸、すなわち、酢酸水溶液を留出物として取得する。蒸留条件は、通常、塔底温度を100〜210℃、塔底圧力を30〜300mmHgの範囲から選ばれる。
回収された酢酸水溶液は、次に、酢酸分離塔に供給して、蒸留を行い、塔底より酢酸を缶出し、一方、水及びその他軽沸分を留去する。この場合、酢酸分離塔に供給する酢酸水溶液として、前述のアセトキシ化反応物より分離回収された分を含めてもよい。酢酸分離塔の操作条件としては、通常、常圧から若干の加圧下、塔底温度を100〜180℃の範囲から選ばれる。
【0011】
上記の酢酸分離塔の缶出液として酢酸を回収する。缶出液中には、酢酸以外にも、酢酸ブチル、モノアセチルブテン等の反応副生物や水が含まれているが、酢酸純度が、通常90重量%以上程度のものが回収できれば、前述のアセトキシ化反応の原料として再使用しても全く問題はない。
また、酢酸分離塔からの留出分は、分離器に導入して静置すると、油相と水相に分離する。このうち、油相は、酢酸ブチル、モノアセトキシブテンを主成分とするものであり、分離した油相は酢酸分離塔に循環してもよいし、系外に排出してもよい。一方、水相としては、水以外の成分は主に酢酸であり、他にわずかに溶解してくる酢酸ブチル等が微量含まれているが、通常95重量%以上の純度のものが容易に分離回収される。
【0012】
そこで、従来は、この水相を加水分解反応域に循環し、再使用されていたのであるが、本発明では、この水相を更に水精製塔に供給し、その塔底より缶出する精製水を加水分解反応域に循環することを特徴とするものである。
水精製塔の操作条件としては、通常、常圧付近の圧力条件下、塔底温度を70〜110℃の範囲に設定する。水精製塔では、水相中の微量の軽沸物を留出カットできれば特に厳密な蒸留を行う必要はなく、水相中の酢酸について特に分離できなくても全く支障はない。
【0013】
なお、軽沸物として回収される成分としては程々のものが検出されているが、具体的には、酢酸n−ブチル、モノアセトキシブテン、テトラヒドロフラン、フラン、n−ブチルアルデヒド、ブタノール等である。これらの各成分が加水分解の際に、1,4−ブタンジオールの品質に特に悪影響を与えることはこれまでほとんど予想されていなかったことであるが、工業的に連続運転するような場合においては、各成分の反応系での蓄積、あるいは、複雑な副反応がわずかに起きていることなどの影響があるものと考えられる。
【0014】
【実施例】
以下、本発明を実施例により更に詳細に説明する。なお、実施例中、「部」は「重量部」、「%」は「重量%」を示す。
実施例1
図1に示すブタジエン、酢酸原料よりブタンジオールを製造するプロセスを説明する。
パラジウム担持触媒を充てんしたアセトキシ化反応器1に、ブタジエン、空気及び後述の回収酢酸で供給し、90KG、100℃で反応させた。反応液は、気液分離後(図示せず)、蒸留塔2で酢酸、水、その他軽沸物を留去し、蒸留塔3にてジアセトキシブテンを留去した。
【0015】
次に、蒸留塔3から留出したジアセトキシブテンは、パラジウム触媒及びルテニウム触媒を充てんした水添反応器4において、水素流通下、反応圧50KG、温度90℃で水添反応を行った。そして、反応液を、気液分離後、蒸留塔5で蒸留し、ジアセトキシブタンを留出させた。
【0016】
次に、蒸留塔5から留出したジアセトキシブタン、及び後述の回収精製水を強酸性イオン交換樹脂を充てんした加水分解反応器6中において加水分解反応を50℃で行い、ブタンジオール、ヒドロキシアセトキシブタン、ジアセトキシブタンを主成分とする反応混合物とした。加水分解液は、蒸留塔7にて酢酸、水及びその他軽沸物を留去した。蒸留塔7の缶出液は蒸留塔8に供給し、塔頂より軽沸分、上部側流よりジアセトキシブタン、ヒドロキシアセトキシブタンを、中部側流よりブタンジオールを留出させた。そして、ブタンジオールは蒸留塔9において精留し、ブタンジオールの製品流として回収した。
【0017】
一方、アセトキシ化反応系の蒸留塔2より留出回収した酢酸水溶液29400部/hr、加水分解反応系の蒸留塔7より留出回収した酢酸水溶液10080部/hrを酢酸分離塔10に供給し、常圧下、塔底温度159℃の条件で蒸留を行った。
酢酸分離塔10の缶出液の組成は以下の通りであり、33230部/hrでアセトキシ化の反応器1に循環した。
【0018】
【表1】
酢酸 92.3%
水 1.5%
モノアセトキシブテン 3.8%
ジアセトキシブテン 0.4%
酢酸ブチル 0.7%
高沸分 1.3%
また、酢酸分離塔10の塔頂からの留出液の組成は以下の通りであり、28900部/hrで分離器11に供給した。
【0019】
【表2】
水 25.3%
モノアセチルブテン 34.3%
酢酸ブチル 35.8%
酢酸 0.3%
軽沸物 4.3%
上記の留出液を分離器にて静置分離したところ、油相11aと水相11bの組成は以下の通りであった。
【0020】
【表3】
(油相の組成)
酢酸ブチル 47.6%
モノアセチルブテン 45.6%
水 1.1%
酢酸 0.1%
軽沸物 5.7%
(水相の組成)
水 98.3%
酢酸 1.0%
酢酸ブチル 0.2%
モノアセチルブテン 0.3%
軽沸物 0.2%
【0021】
上記の油相11aの大半は酢酸分離塔10に戻し、一部(50部/hr)を系外に排出した。一方、水相11bについては7000部/hrで水精製塔12に供給した。そして、常圧下、塔底温度100℃の条件で蒸留を行った。そして、軽沸分を含む留出分50部/hrを系外に排出する一方、塔底より缶出する精製水(水99.0%、酢酸1.0%)6950部/hrを加水分解反応器6に循環した。
【0022】
以上のプロセスにつき連続運転を開始し、定常運転5日後及び30日後での蒸留塔9から留出した1,4−ブタンジオールの製品流の純度を表−1に示す。
なお、1,4−ブタンジオール中の微量不純物として種々のアルデヒド類、アセタール類が存在するものと考えられる。そして、これらのアルデヒド及びアセタール類総含有量の指標としてカルボニル価を使用することも可能である。表−1においてカルボニル価は、アルデヒド及びアセタール類と塩酸ヒドロキシアミンとの反応で生成したイミン塩酸塩のKOHによる電位差滴定値(mg・KOH/g)で表す。このカルボニル価が高いと、その1,4−ブタンジオールを原料としてポリエステル樹脂等の製品の着色などのトラブルが起こるので好ましくない。
【0023】
比較例1
実施例1において、分離器11からの水相を水精製塔12で精製することなく、加水分解反応器6に循環した以外は実施例1と同様に連続運転を行ったときの結果を表−1に示す。
【0024】
【表4】

Figure 0003572636
【0025】
【発明の効果】
本発明の方法によれば、ジアセトキシブタンを加水分解してブタンジオールを製造する際に必要な水、酢酸を有効に回収利用しつつ、かつ、製品であるブタンジオールを高い品質に維持することができる。加水分解反応物より回収された水は、留出物としてではなく、単に軽沸物を留出カットする簡単な蒸留で精製することができるので、熱源負荷を大きくすることなく、極めて経済的な品質改良プロセスといえる。
【図面の簡単な説明】
【図1】本発明の実施態様の一例である。
【符号の説明】
1 アセトキシ化反応器
2,3,5,7,8,9 蒸留塔
4 水添反応器
6 加水分解反応器
10 酢酸分離塔
11 分離器
11a 油相
11b 水相
12 水精製塔[0001]
[Industrial applications]
The present invention relates to a method for producing butanediol by hydrolyzing diacetoxybutane.
[0002]
[Prior art]
As a typical production method of butanediol, particularly 1,4-butanediol useful as a raw material of a polyester resin, a method of producing butanediol by hydrolyzing diacetoxybutane is known.
Since the diacetoxybutane hydrolysis reaction product contains a large amount of acetic acid and water in addition to the target 1,4-butanediol, industrially, acetic acid and water are recovered by distillation. It is desirable to be able to reuse it.
[0003]
For example, Japanese Patent Publication No. 57-7609 discloses that butadiene is acetoxylated, and then the diacetoxybutane hydrolysis reaction product obtained by hydrogenation is distilled in a first distillation column to give a distillate containing water, acetic acid and butyl acetate. And distilling the fraction in a second distillation column to separate it into an oil phase and an aqueous phase, and circulating the aqueous phase to the hydrolysis reaction zone, while separating the acetic acid in the second distillation column. A method is described in which the bottoms are reused as a starting material for acetoxylation.
According to the publication, butyl acetate is contained in the acetic acid bottoms, and even if it is reused in the acetoxylation reaction, it has no effect on the reaction and has no effect on the life of the catalyst. I have. The aqueous phase also contains a small amount of butyl acetate, but this butyl acetate is also hydrolyzed to acetic acid and butanol, which does not affect the quality of 1,4-butanediol at all. I have.
[0004]
[Problems to be solved by the invention]
In recent years, application fields of 1,4-butanediol have been diversified, and higher quality has been required. Then, as a method of achieving an improvement in quality, improvement of the conditions of the hydrolysis reaction and the conditions of the distillation purification can be considered. However, what can be industrially adopted needs to be a more economical improvement method that minimizes the increase in product cost.
[0005]
[Means for Solving the Problems]
The present inventors acetoxylated butadiene and then hydrolyzed diacetoxybutane obtained by hydrogenation to produce butanediol. result of intensive studies on how to maintain the high quality, conventionally, it found that impurities in the recovered water which was used in the hydrolysis is largely influenced than expected quality of butanediol, the process improvements As a result, the present invention has been achieved. That is, according to the present invention , an acetic acid aqueous solution distilled and separated from a reaction product of hydrolysis of diacetoxybutane is supplied to an acetic acid separation column, and acetic acid is removed from the bottom of the column, while the distillate is separated into an oil phase and water. phases separated settling, the aqueous phase was supplied to the water purification column, by circulating purified water to Kande from the bottom while distilling off low-boiling point fraction from the top to the hydrolysis reaction zone, high High quality butanediol can be produced.
[0006]
The aqueous acetic acid solution separated by distillation from the reaction product of acetoxylation may be supplied to the acetic acid separation tower together with the aqueous acetic acid solution separated by distillation from the reaction product of hydrolysis of diacetoxybutane.
[0007]
Hereinafter, the present invention will be described in detail.
Diacetoxybutane is usually obtained by acetoxylation of butadiene followed by hydrogenation. The acetoxylation is usually carried out by reacting butadiene, acetic acid and oxygen in the presence of a palladium-based catalyst at a temperature of usually from 40 to 180 ° C under a pressure condition of normal pressure or higher. As a method of separating diacetoxybutene from the reaction product, first, water, acetic acid, and other light-boiling components are separated by distillation, and then, diacetoxybutene and a high-boiling substance are separately separated, and a method of separating again by distillation is preferable. .
[0008]
Further, as a method of hydrogenating diacetoxybutene, usually, diacetoxybutene is brought into contact with hydrogen in the presence of a noble metal catalyst such as palladium or ruthenium, and usually in a temperature range of 40 to 180 ° C and a pressure condition of normal pressure or higher. And the reaction is carried out. Preferably, the reactants are subjected to distillation to separate diacetoxybutane and high-boiling substances.
[0009]
Diacetoxybutane obtained by the above method is partially hydrogenated during hydrogenation, and usually contains about 0.1 to 5% of butyl acetate. For the hydrolysis reaction of diacetoxybutane, it is preferable to use a cation exchange resin as a solid acid catalyst because the hydrolysis rate is high and there are few by-products such as tetrahydrofuran. The reaction is usually carried out at a temperature of 30 to 110 ° C, preferably 40 to 90 ° C. Water is used in an amount of usually 2 to 100 mol, preferably 4 to 50 mol, per 1 mol of diacetoxybutane.
[0010]
The hydrolysis reaction product is separated and purified as follows. First, the reaction product is distilled in a distillation column, and a component containing 1,4-butanediol is removed from the bottom of the column, while water and acetic acid, that is, an aqueous solution of acetic acid is obtained as a distillate. The distillation conditions are usually selected from the range of a bottom temperature of 100 to 210 ° C. and a bottom pressure of 30 to 300 mmHg.
The recovered acetic acid aqueous solution is then supplied to an acetic acid separation column, where distillation is performed, acetic acid is removed from the bottom of the column, and water and other light boiling components are distilled off. In this case, the aqueous solution of acetic acid supplied to the acetic acid separation tower may include an amount separated and recovered from the acetoxylation reaction product. The operating conditions of the acetic acid separation column are usually selected from a range of 100 to 180 ° C. under normal pressure to slightly elevated pressure.
[0011]
Acetic acid is recovered as a bottom of the acetic acid separation tower. In the bottoms, in addition to acetic acid, reaction by-products such as butyl acetate and monoacetylbutene and water are contained. There is no problem in reusing it as a raw material for the acetoxylation reaction.
When the distillate from the acetic acid separation tower is introduced into a separator and allowed to stand, it separates into an oil phase and an aqueous phase. Of these, the oil phase is mainly composed of butyl acetate and monoacetoxybutene, and the separated oil phase may be circulated to the acetic acid separation tower or discharged outside the system. On the other hand, in the aqueous phase, components other than water are mainly acetic acid, and a small amount of slightly dissolved butyl acetate and the like is contained. Collected.
[0012]
Therefore, conventionally, this aqueous phase was circulated to the hydrolysis reaction zone and reused. In the present invention, this aqueous phase is further supplied to a water purification column, and purified from the bottom of the water purification column. It is characterized in that water is circulated to the hydrolysis reaction zone.
As the operating conditions of the water purification tower, the bottom temperature is usually set in the range of 70 to 110 ° C. under pressure conditions near normal pressure. In the water purification tower, it is not necessary to perform strict distillation as long as a small amount of light boilers in the aqueous phase can be distilled off, and there is no problem even if acetic acid in the aqueous phase cannot be separated.
[0013]
Although some components are detected as light boilers, specific examples thereof include n-butyl acetate, monoacetoxybutene, tetrahydrofuran, furan, n-butyraldehyde, and butanol. It has been hardly expected that each of these components adversely affects the quality of 1,4-butanediol during hydrolysis. However, in the case of industrial continuous operation, It is considered that there is an effect such as accumulation of each component in the reaction system or slight occurrence of a complicated side reaction.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. In the examples, “parts” indicates “parts by weight” and “%” indicates “% by weight”.
Example 1
A process for producing butanediol from butadiene and acetic acid raw materials shown in FIG. 1 will be described.
Butadiene, air and recovered acetic acid described below were supplied to the acetoxylation reactor 1 filled with a palladium-supported catalyst, and reacted at 90 KG and 100 ° C. After gas-liquid separation (not shown) of the reaction solution, acetic acid, water and other light boilers were distilled off in the distillation column 2 and diacetoxybutene was distilled off in the distillation column 3.
[0015]
Next, the diacetoxybutene distilled from the distillation column 3 was subjected to a hydrogenation reaction at a reaction pressure of 50 KG and a temperature of 90 ° C. in a hydrogenation reactor 4 filled with a palladium catalyst and a ruthenium catalyst under a hydrogen flow. Then, the reaction solution was subjected to gas-liquid separation and then distilled in the distillation column 5 to distill diacetoxybutane.
[0016]
Next, diacetoxybutane distilled from the distillation column 5 and the purified water to be described later are subjected to a hydrolysis reaction at 50 ° C. in a hydrolysis reactor 6 filled with a strongly acidic ion exchange resin, to give butanediol, hydroxyacetoxy. A reaction mixture containing butane and diacetoxybutane as main components was used. Acetic acid, water and other light boilers were distilled off from the hydrolyzed liquid in the distillation column 7. The bottom product of the distillation column 7 was supplied to the distillation column 8 to distill a low boiling point from the top of the column, diacetoxybutane and hydroxyacetoxybutane from the upper side stream, and butanediol from the middle side stream. Then, butanediol was rectified in the distillation column 9 and recovered as a product stream of butanediol.
[0017]
On the other hand, 29400 parts / hr of an acetic acid aqueous solution distilled and collected from the distillation column 2 of the acetoxylation reaction system and 10080 parts / hr of an acetic acid aqueous solution distilled and collected from the distillation column 7 of the hydrolysis reaction system are supplied to the acetic acid separation column 10, Distillation was performed under normal pressure and at a tower bottom temperature of 159 ° C.
The composition of the bottom liquid of the acetic acid separation column 10 was as follows, and was circulated to the acetoxylation reactor 1 at 33230 parts / hr.
[0018]
[Table 1]
Acetic acid 92.3%
1.5% water
3.8% of monoacetoxybutene
Diacetoxybutene 0.4%
Butyl acetate 0.7%
High boiling 1.3%
The composition of the distillate from the top of the acetic acid separation column 10 was as follows, and was supplied to the separator 11 at 28,900 parts / hr.
[0019]
[Table 2]
Water 25.3%
Monoacetylbutene 34.3%
Butyl acetate 35.8%
Acetic acid 0.3%
4.3% of light boilers
When the above distillate was separated by standing with a separator, the composition of the oil phase 11a and the aqueous phase 11b was as follows.
[0020]
[Table 3]
(Composition of oil phase)
Butyl acetate 47.6%
Monoacetylbutene 45.6%
1.1% water
Acetic acid 0.1%
5.7% light boiler
(Aqueous phase composition)
98.3% of water
Acetic acid 1.0%
Butyl acetate 0.2%
Monoacetylbutene 0.3%
Light boiler 0.2%
[0021]
Most of the oil phase 11a was returned to the acetic acid separation column 10, and a part (50 parts / hr) was discharged out of the system. On the other hand, the water phase 11b was supplied to the water purification tower 12 at 7000 parts / hr. Then, distillation was carried out under normal pressure at a column bottom temperature of 100 ° C. Then, 50 parts / hr of a distillate containing light boiling components is discharged out of the system, and 6950 parts / hr of purified water (water 99.0%, acetic acid 1.0%) discharged from the bottom of the column are hydrolyzed. Circulated to reactor 6.
[0022]
Table 1 shows the purity of the product stream of 1,4-butanediol distilled from the distillation column 9 after 5 days and 30 days of continuous operation of the above process.
It is considered that various aldehydes and acetals exist as trace impurities in 1,4-butanediol. It is also possible to use the carbonyl value as an index of the total content of these aldehydes and acetals. In Table 1, the carbonyl value is represented by a potentiometric titration value (mg · KOH / g) of the imine hydrochloride formed by the reaction of aldehyde and acetal with hydroxyamine hydrochloride using KOH. If the carbonyl value is high, problems such as coloring of products such as polyester resins using the 1,4-butanediol as a raw material occur, which is not preferable.
[0023]
Comparative Example 1
In Example 1, the results obtained when continuous operation was performed in the same manner as in Example 1 except that the aqueous phase from the separator 11 was circulated to the hydrolysis reactor 6 without purification in the water purification tower 12 are shown in Table 1. 1 is shown.
[0024]
[Table 4]
Figure 0003572636
[0025]
【The invention's effect】
According to the method of the present invention, while water and acetic acid required for producing butanediol by hydrolyzing diacetoxybutane are effectively recovered and used, and the product butanediol is maintained at a high quality. Can be. The water recovered from the hydrolysis reaction product can be purified not by distillate but by simple distillation that simply distills off light boilers, so it is extremely economical without increasing the heat source load. This is a quality improvement process.
[Brief description of the drawings]
FIG. 1 is an example of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Acetoxylation reactor 2,3,5,7,8,9 Distillation tower 4 Hydrogenation reactor 6 Hydrolysis reactor 10 Acetic acid separation tower 11 Separator 11a Oil phase 11b Water phase 12 Water purification tower

Claims (3)

ブタジエンをアセトキシ化、次いで水素化して得たジアセトキシブタンを加水分解してブタジエンを製造する方法において、加水分解の反応物より蒸留分離した酢酸水溶液を、酢酸分離塔に供給し、塔底より酢酸を缶出する一方、留出分を油相と水相に静置分離し、該水相を水精製塔に供給し、塔頂より軽沸分を留去するとともに塔底より缶出する精製水を前記加水分解反応域に循環することを特徴とするブタンジオールの製造方法。 In a method for producing butadiene by hydrolyzing diacetoxybutane obtained by acetoxylation of butadiene and then hydrogenation, an aqueous acetic acid solution distilled and separated from a reaction product of the hydrolysis is supplied to an acetic acid separation column, and acetic acid is supplied from the bottom of the column. While separating the distillate into an oil phase and an aqueous phase, feeding the aqueous phase to a water purification column, distilling off the light boiling components from the top and removing it from the bottom. A method for producing butanediol, wherein water is circulated to the hydrolysis reaction zone. ブタジエンをアセトキシ化、次いで水素化して得たジアセトキシブタンを加水分解してブタンジオールを製造する方法において、アセトキシ化及び加水分解の反応物より蒸留分離した酢酸水溶液を、酢酸分離塔に供給し、塔底より酢酸を缶出する一方、留出分を油相と水相に静置分離し、該水相を水精製塔に供給し、塔頂より軽沸分を留去するとともに塔底より缶出する精製水を前記加水分解反応域に循環することを特徴とするブタンジオールの製造方法。In a method for producing butanediol by hydrolyzing diacetoxybutane obtained by acetoxylation of butadiene and then hydrogenation, an aqueous acetic acid solution obtained by distilling and separating an acetoxylation and hydrolysis reaction product is supplied to an acetic acid separation column, While distilling off acetic acid from the bottom of the column, the distillate is separated into an oil phase and an aqueous phase, and the separated aqueous phase is supplied to a water purification column. A method for producing butanediol, comprising circulating purified water discharged in the hydrolysis reaction zone. 酢酸分離塔の缶出液をアセトキシ化反応域に循環することを特徴とする請求項1又は2記載のブタンジオールの製造方法。3. The method for producing butanediol according to claim 1, wherein the bottom of the acetic acid separation tower is circulated to an acetoxylation reaction zone.
JP22911193A 1993-09-14 1993-09-14 Method for producing butanediol Expired - Fee Related JP3572636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22911193A JP3572636B2 (en) 1993-09-14 1993-09-14 Method for producing butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22911193A JP3572636B2 (en) 1993-09-14 1993-09-14 Method for producing butanediol

Publications (2)

Publication Number Publication Date
JPH0782191A JPH0782191A (en) 1995-03-28
JP3572636B2 true JP3572636B2 (en) 2004-10-06

Family

ID=16886921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22911193A Expired - Fee Related JP3572636B2 (en) 1993-09-14 1993-09-14 Method for producing butanediol

Country Status (1)

Country Link
JP (1) JP3572636B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002794A1 (en) * 2000-01-24 2001-07-26 Basf Ag Production of anhydrous formic acid involves hydrolysis of methyl formate, steam distillation, extraction with amide and further distillations, with prior use of steam for stripping aqueous extraction residue
WO2015002157A1 (en) * 2013-07-02 2015-01-08 三菱化学株式会社 1,4-butanediol, method for producing polyester using said 1,4-butanediol, and storage method for said 1,4-butanediol
JP6942738B2 (en) 2017-02-13 2021-09-29 株式会社ダイセル Method for producing catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran and reduced product of 3,4-dihydroxytetrahydrofuran

Also Published As

Publication number Publication date
JPH0782191A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US5397439A (en) Method for recovering 1,4-butanediol
KR960004624B1 (en) Process for purifying acrylic acid in high purity in the production of acrylic acid
JP5473329B2 (en) Method for producing dioxolane
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
JP2000505468A (en) Method for producing 1,6-hexanediol having a purity exceeding 99%
JP2004536880A (en) Method for separating ethyl acetate into s-butanol
KR100414249B1 (en) Process for purifying acetic acid
JP2003525218A (en) Method for purifying trimethylolpropane produced by hydrogenation by continuous distillation
JP5101495B2 (en) Method for producing 3-methyl-1,5-pentanediol
JP3572636B2 (en) Method for producing butanediol
KR100551461B1 (en) Process for working up crude, liquid vinyl acetate
TW202346245A (en) Process for producing a refined 1,4-butanediol stream
JP2003026622A (en) Method for producing 1,4-butanediol
JP3959993B2 (en) Method for producing 1,4-butanediol
JPH10139738A (en) Production of ethylamine compounds
JPH0629280B2 (en) Purification method of crude tetrahydrofuran
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP3314450B2 (en) Method for recovering acetic acid from waste oil mixture
JP4204097B2 (en) Method for producing methyl methacrylate
US4268447A (en) Process for producing tetrahydrofuran and 1,4-butanediol
JP3959793B2 (en) Method for producing butanediol
JP2737297B2 (en) Method for producing methyl isobutyl ketone
JP2003089694A (en) Method for purifying tetrahydrofuran
JP3744097B2 (en) Method for producing 1,4-butanediol

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees