JPH08217770A - New production of 3-methyltetrahydrofuran - Google Patents

New production of 3-methyltetrahydrofuran

Info

Publication number
JPH08217770A
JPH08217770A JP7022809A JP2280995A JPH08217770A JP H08217770 A JPH08217770 A JP H08217770A JP 7022809 A JP7022809 A JP 7022809A JP 2280995 A JP2280995 A JP 2280995A JP H08217770 A JPH08217770 A JP H08217770A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
methyltetrahydrofuran
methyl
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7022809A
Other languages
Japanese (ja)
Inventor
Yoshikazu Shima
義和 島
Takafumi Abe
崇文 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7022809A priority Critical patent/JPH08217770A/en
Publication of JPH08217770A publication Critical patent/JPH08217770A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE: To obtain the subject compound useful as a comonomer component of a copolymer for fiber, a solvent, etc., in high yield at a low cost by reacting methyl methacrylate with a formic acid ester, forming a methylsuccinic acid diester, hydrogenating and cyclodehydrating the resultant diester. CONSTITUTION: Methyl methacrylate and a formic acid ester (e.g. methyl formate) are added to an autoclave, made of stainless steel and equipped with a thermometer and a pressure indicator. An element belonging to group VIII of the periodic table (e.g. ruthenium) is used as a catalyst and benzene. etc., are used as a solvent. Carbon monoxide gas is filled therein and the reaction is carried out at 200 deg.C for 24hr to form a methylsuccinic acid diester of formula I (R is an alkyl), which is then hydrogenated and cyclodehydrated using a copper-chromite catalyst at 150-200 deg.C to industrially and advantageously afford the objective 3-methyltetrahydrofuran of formula II usable as a comonomer component of a copolymer which is a raw material for fibers rich in elasticity, a solvent, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、3−メチルテトラヒド
ロフランを製造する新規な方法に関する。3−メチルテ
トラヒドロフランは弾性力に富んだ繊維であるポリテト
ラメチレンエーテルグリコール・3−メチルテトラヒド
ロフラン共重合体のコモノマーとして、或いは特定の用
途における溶剤として有用な物質である。
FIELD OF THE INVENTION The present invention relates to a novel method for producing 3-methyltetrahydrofuran. 3-Methyltetrahydrofuran is a substance useful as a comonomer of a polytetramethylene ether glycol / 3-methyltetrahydrofuran copolymer, which is a fiber having a high elasticity, or as a solvent in a specific application.

【従来の技術】[Prior art]

【0002】3−メチルテトラヒドロフランの製造法は
種々開示されているが、例えばクエン酸の水素化による
方法(EP公開277562号)や、4−ヒドロキシ−
2−メチルブタン−1,2−エポキシドの水素化による
方法(USP3956318号)があるがいずれも出発
原料の確保が困難であり工業的に実施するには難があ
る。また、メチルマレイン酸またはメチルコハク酸の水
素化による方法(特開昭49−9463号)も開示され
ているが、出発原料の入手が困難であるばかりでなく水
素化条件も過酷であり工業的実施が困難なことは明白で
ある。
Various methods for producing 3-methyltetrahydrofuran are disclosed, for example, a method by hydrogenation of citric acid (EP Publication 277562) and 4-hydroxy-.
There is a method by hydrogenation of 2-methylbutane-1,2-epoxide (US Pat. No. 3,956,318), but it is difficult to secure a starting material and it is difficult to carry out industrially. Further, a method by hydrogenation of methylmaleic acid or methylsuccinic acid (JP-A-49-9463) is also disclosed. However, not only is it difficult to obtain starting materials, but also the hydrogenation conditions are harsh, so that industrial implementation Is obviously difficult.

【0003】また、1,4−ブチンジオールを部分水素
化した2−ブテン−1,4−ジオールをヒドロホルミル
化および水素化して得られる2−メチル−1,4−ブタ
ンジオールを得(USP3859369号)、これを酸
触媒下、脱水環化させることにより3−メチルテトラヒ
ドロフランを得る方法がある。しかしながら、1,4−
ブチンジオールの部分水素化による2−ブテン−1,4
−ジオールの選択率が充分高くないこと、さらに2−ブ
テン−1,4−ジオールのような内部オレフィンに対す
るヒドロホルミル化収率が十分高くないという欠点を持
っている。
Further, 2-methyl-1,4-butanediol obtained by hydroformylating and hydrogenating 2-butene-1,4-diol obtained by partially hydrogenating 1,4-butynediol is obtained (USP3859369). There is a method of obtaining 3-methyltetrahydrofuran by subjecting this to cyclodehydration in the presence of an acid catalyst. However, 1,4-
2-Butene-1,4 by partial hydrogenation of butynediol
It has the disadvantage that the selectivity of the diol is not high enough and that the hydroformylation yield for internal olefins such as 2-butene-1,4-diol is not high enough.

【0004】さらに、β−ホルミルイソ酪酸エステルの
水素化による3−メチルテトラヒドロフランまたは2−
メチル−1,4−ブタンジオールを得る方法(特開平6
−219981号)が開示されている。この方法におけ
る出発原料であるβ−ホルミルイソ酪酸エステルはメタ
クリル酸エステルのヒドロホルミル化という公知の方法
(Bull. Chem. Soc. Japan 50 (1977) 2351 )により合
成されるが、沸点の近接したα−異性体の生成が避けら
れず、その分離に多大なエネルギーを要し工業的に有利
な方法とはいえない。
Further, 3-methyltetrahydrofuran or 2-by the hydrogenation of β-formylisobutyric acid ester
Method for obtaining methyl-1,4-butanediol
No. 219981) is disclosed. The starting material β-formylisobutyric acid ester in this method is synthesized by a known method of hydroformylation of methacrylic acid ester (Bull. Chem. Soc. Japan 50 (1977) 2351), but α-isomerization with a close boiling point is performed. Generation of the body is unavoidable, and a large amount of energy is required for its separation, which is not an industrially advantageous method.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0005】本発明の解決すべき課題は、以上に述べら
れた3−メチルテトラヒドロフランの種々の製造法にお
ける問題点を解消し、且つ工業的に有利な方法で3−メ
チルテトラヒドロフランを製造する方法を提供すること
にあった。
The problem to be solved by the present invention is to solve the above-mentioned problems in various methods for producing 3-methyltetrahydrofuran and to provide a method for producing 3-methyltetrahydrofuran by an industrially advantageous method. There was to offer.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】本発明者らはこれらの課題点を解決すべく
鋭意研究を行った結果、3−メチルテトラヒドロフラン
を製造するに際し、(工程1)メタクリル酸メチルとギ
酸エステルとの反応により、メチルコハク酸ジエステル
を合成する工程、(工程2)前記工程で得られたメチル
コハク酸ジエステルを水素化と同時に環化脱水すること
により3−メチルテトラヒドロフランを製造する工程か
らなる3−メチルテトラヒドロフランを製造する方法を
見出し、本発明を完成させるに至った。
As a result of intensive studies to solve these problems, the present inventors have found that in the production of 3-methyltetrahydrofuran (step 1), a methyl succinate diester is formed by reacting methyl methacrylate with a formate ester. And a step of producing 3-methyltetrahydrofuran, which comprises the step of producing 3-methyltetrahydrofuran by cyclizing and dehydrating the methylsuccinic acid diester obtained in the above step (step 2) The present invention has been completed.

【0007】以下に、本発明の方法について詳細に説明
する。本発明の出発原料であるメタクリル酸メチルはポ
リメタクリレートのモノマーとして工業的に大量に製造
され、安価に入手が可能である。もう一方の原料となる
ギ酸エステルの内、ギ酸メチルは、大量安価に供給され
るメタノールの脱水素により、またはメタノールのカル
ボニル化により容易に入手可能であり、他のギ酸エステ
ルは前述のギ酸メチルと種々のアルコールとのエステル
交換反応により容易に入手が可能である。このように、
本発明の方法によると、何れも安価で入手容易な原料を
用い高い選択率で3−メチルテトラヒドロフランを製造
することが可能となり、工業的に極めて高い意義を持
つ。本発明による3−メチルテトラヒドロフランの製造
方法を化1に示す。
The method of the present invention will be described in detail below. Methyl methacrylate, which is the starting material of the present invention, is industrially produced in large quantities as a monomer of polymethacrylate and is available at low cost. Among the formate esters as the other raw material, methyl formate is easily available by dehydrogenation of methanol, which is supplied in large quantities and at low cost, or by carbonylation of methanol, and other formate esters are the same as those mentioned above. It can be easily obtained by transesterification reaction with various alcohols. in this way,
According to the method of the present invention, it is possible to produce 3-methyltetrahydrofuran with a high selectivity by using inexpensive and easily available raw materials, which is extremely significant industrially. Chemical formula 1 shows a method for producing 3-methyltetrahydrofuran according to the present invention.

【0008】[0008]

【化1】 式(化1)中のR はアルキル基、[I] はメチルコハク酸
ジエステル、および[II]は3−メチルテトラヒドロフラ
ンを示す。
Embedded image In the formula (Formula 1), R is an alkyl group, [I] is a methylsuccinic acid diester, and [II] is 3-methyltetrahydrofuran.

【0009】本発明における(工程1)のメタクリル酸
メチルとギ酸エステルの反応は、周期律表8族に属する
元素、またはその化合物を触媒として実施される(特願
平5−224590号)。また、本反応に於いて用いる
ギ酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸
プロピル、ギ酸イソプロピル、ギ酸ブチル等があり何れ
も反応性の点からは使用可能であるが、入手の容易さか
らギ酸メチルが好適である。
The reaction of methyl methacrylate and formic acid ester in (Step 1) of the present invention is carried out by using an element belonging to Group 8 of the periodic table or a compound thereof as a catalyst (Japanese Patent Application No. 5-224590). Further, examples of the formate ester used in this reaction include methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate and the like, and any of them can be used from the viewpoint of reactivity, but formic acid is easily available. Methyl is preferred.

【0010】本発明の(工程1)の実施の形態は、液相
均一系で行われ、原料のメタクリル酸メチルと、ギ酸エ
ステル、および触媒成分を混合し所定の時間、所定の温
度で処理することにより行われる。ギ酸エステルのメタ
クリル酸メチルに対する仕込のモル比は0.1〜20倍
モル、より好ましくは0.5〜10倍モルの範囲であ
る。また、触媒として使用する周期律表8族の元素とし
ては鉄、コバルト、ニッケル、ルテニウム、ロジウム、
パラジウム、オスミウム、イリジウム、白金があり、こ
れらは単独で、あるいは2種以上を混合して触媒に用い
ることができる。これらに挙げた中で、特にコバルト、
およびルテニウムが触媒成分として好適である。また、
触媒として用いる周期律表8族の元素の形態としては、
ハロゲン化物、塩、カルボニル化合物、ホスフィン配位
化合物等があり、何れも使用が可能であるが、特にカル
ボニル化合物が好適である。
The embodiment of (Step 1) of the present invention is carried out in a liquid phase homogeneous system, in which methyl methacrylate as a raw material, formic acid ester and a catalyst component are mixed and treated at a predetermined temperature for a predetermined time. It is done by The molar ratio of the formate ester to methyl methacrylate is in the range of 0.1 to 20 times by mole, more preferably 0.5 to 10 times by mole. Further, as elements of Group 8 of the periodic table used as catalysts, iron, cobalt, nickel, ruthenium, rhodium,
There are palladium, osmium, iridium, and platinum, and these can be used alone or in combination of two or more as a catalyst. Among these, especially cobalt,
And ruthenium are suitable as catalyst components. Also,
The form of the element of Group 8 of the periodic table used as a catalyst is
There are halides, salts, carbonyl compounds, phosphine coordination compounds and the like, and any of them can be used, but carbonyl compounds are particularly preferable.

【0011】本発明に触媒として使用する周期律表8族
の元素の量は、反応液1lあたり、0.1から200ミ
リモルの範囲であり、より好ましくは1〜50ミリモル
の範囲である。
The amount of the element of Group 8 of the periodic table used as a catalyst in the present invention is in the range of 0.1 to 200 mmol, preferably in the range of 1 to 50 mmol, per liter of the reaction solution.

【0012】本発明の方法において、一酸化炭素は消費
されないが、触媒として用いる周期律表8族の元素、ま
たはこれらの化合物の活性を高く維持するために有効で
あり、通常1〜300kg/cm2(ゲージ圧)、好ましくは
5〜200kg/cm2(ゲージ圧)の一酸化炭素加圧下に反
応を行うことにより高いメチルコハク酸ジエステル収率
が達成される。本発明の方法に使用する一酸化炭素は決
して高純度である必要はなく、メタン、水素、窒素等を
含んだものでも一酸化炭素の分圧が確保されていればな
んら問題はない。
In the method of the present invention, carbon monoxide is not consumed, but it is effective for maintaining high activity of the elements of Group 8 of the Periodic Table used as catalysts or these compounds, and usually 1 to 300 kg / cm 3. High methylsuccinate diester yields are achieved by carrying out the reaction under carbon monoxide pressure of 2 (gauge pressure), preferably 5-200 kg / cm 2 (gauge pressure). The carbon monoxide used in the method of the present invention does not need to be highly pure, and even if it contains methane, hydrogen, nitrogen, etc., there is no problem as long as the partial pressure of carbon monoxide is secured.

【0013】本発明の方法を実施するに際し、反応溶媒
を使用することが可能である。反応溶媒として、反応原
料自体を反応溶媒とすることも可能であるが、反応系で
安定で、目的とする反応を阻害しないものであれば、特
に制限はなく、脂肪族炭化水素、芳香族炭化水素、エー
テル、ケトン、エステル、アルコール、アミド等の中か
ら選択できる。本発明の方法での反応温度は、50〜3
50℃の範囲であるが、特に100〜250℃の範囲が
好ましい。
It is possible to use reaction solvents in carrying out the process of the invention. As the reaction solvent, it is possible to use the reaction raw material itself as the reaction solvent, but there is no particular limitation as long as it is stable in the reaction system and does not hinder the intended reaction, and aliphatic hydrocarbon, aromatic hydrocarbon It can be selected from hydrogen, ether, ketone, ester, alcohol, amide and the like. The reaction temperature in the method of the present invention is 50 to 3
The temperature is in the range of 50 ° C, but the range of 100 to 250 ° C is particularly preferable.

【0014】本発明の(工程1)における、反応生成物
であるメチルコハク酸ジエステルは蒸留、または抽出等
の操作により触媒成分と分離され次の(工程2)の水素
化、および脱水環化反応に供される。
The methyl succinic acid diester which is the reaction product in (Step 1) of the present invention is separated from the catalyst component by an operation such as distillation or extraction, and is subjected to the next (Step 2) hydrogenation and dehydration cyclization reaction. Be served.

【0015】本発明における(工程2)の水素化、およ
び脱水環化反応に用いる触媒は、主成分として銅、また
は周期律表第7aおよび8族に属する元素を含有する。
更に詳しくは、銅、コバルト、ニッケル、鉄、レニウ
ム、パラジウム、ルテニウム、白金、ロジウムが本反応
の触媒の主成分として有効である。また、助触媒をなす
成分として、クロム、モリブデン、マンガン、バリウ
ム、マグネシウム、および珪素、アルミを含有する固体
酸成分等が有効である。本反応の触媒として、特に好適
なのは銅を主成分とした、一般に銅−クロマイトと称す
るものであり、マンガン、バリウム等を助触媒成分とし
て含有したものなどがある。本発明における(工程2)
の水素化、および脱水環化反応は、用いる触媒成分によ
りその反応条件は異なるが、おおむね反応温度は、10
0〜300℃、反応圧は20〜200kg/cm2(ゲージ
圧)の範囲で実施される。本反応の触媒として、特に好
適な銅−クロマイトでは、反応温度は150〜280
℃、また反応圧は50〜200kg/cm2(ゲージ圧)の範
囲が好適である。反応に使用する水素は、純水素が好ま
しいが、メタン、窒素等を含有したものも使用が可能で
ある。
The catalyst used in the hydrogenation and dehydration cyclization reaction of (Step 2) in the present invention contains copper or an element belonging to Groups 7a and 8 of the periodic table as a main component.
More specifically, copper, cobalt, nickel, iron, rhenium, palladium, ruthenium, platinum and rhodium are effective as the main components of the catalyst of this reaction. Further, as a component forming the co-catalyst, a solid acid component containing chromium, molybdenum, manganese, barium, magnesium, and silicon and aluminum is effective. A particularly suitable catalyst for this reaction is one containing copper as a main component and generally called copper-chromite, and one containing manganese, barium, or the like as a promoter component. In the present invention (step 2)
The reaction conditions for the hydrogenation and dehydration cyclization reaction of are different depending on the catalyst components used, but the reaction temperature is generally 10
The reaction is carried out at a temperature of 0 to 300 ° C. and a reaction pressure of 20 to 200 kg / cm 2 (gauge pressure). With copper-chromite, which is particularly suitable as a catalyst for this reaction, the reaction temperature is 150 to 280.
° C., also the reaction pressure is preferably in the range of 50 to 200 kg / cm 2 (gauge pressure). The hydrogen used in the reaction is preferably pure hydrogen, but those containing methane, nitrogen, etc. can also be used.

【0016】本接触水素化反応に用いる触媒としては銅
−クロム−バリウム(またはマンガン)触媒が好まし
く、例えば次のような方法で調製される。 (1)固体状の酸化第二銅(CuO) 、酸化第二クロム(Cr2
O3) 及び二酸化マンガン(MnO2)(または酸化バリウム(B
aO) )を混ぜ,更に滑材としてグラファイト等を添加し
て良く混合した後、一般的な方法で成形し、高温焼成後
成形物を破砕して適当な大きさにして使用する。 (2)重クロム酸アンモニウムを溶かした水溶液にアン
モニア水を加え、この水溶液に別途調製した硝酸第二銅
(または硫酸第二銅等)と、硝酸マンガン(または硫酸
マンガン等)或は硝酸バリウムとを溶かした水溶液を撹
伴しながら滴下する。生成する沈澱を水洗、乾燥後、例
えば空気中で350 ℃付近の温度で焼成する。この様にし
て得た粉末状の焼成物をそのまま反応に用いることもで
きるが、この焼成物に適当な粘結剤や滑剤を加えて充分
に混合した後成形して使用することもできる。
The catalyst used in this catalytic hydrogenation reaction is preferably a copper-chromium-barium (or manganese) catalyst, which is prepared, for example, by the following method. (1) Solid cupric oxide (CuO), chromic oxide (Cr 2
O 3 ) and manganese dioxide (MnO 2 ) (or barium oxide (B
aO)) is mixed, and graphite etc. are added as a lubricant and mixed well, then molded by a general method, calcinated at a high temperature, and crushed the molded product to be used in an appropriate size. (2) Ammonia water is added to an aqueous solution in which ammonium dichromate is dissolved, and cupric nitrate (or cupric sulfate or the like) and manganese nitrate (or manganese sulfate or the like) or barium nitrate that are separately prepared are added to the aqueous solution. Is added dropwise with stirring. The precipitate formed is washed with water, dried and then calcined in the air at a temperature of about 350 ° C. The powdery calcined product thus obtained can be used as it is for the reaction, but it is also possible to add an appropriate binder or lubricant to the calcined product and sufficiently mix it, followed by molding and use.

【0017】上記(1)、(2)等の方法により得られ
た銅−クロム−バリウム(またはマンガン)触媒に含ま
れる各成分の重量比はCuO:Cr2O3:MnO2(またはBaO )の
比率に換算してそれぞれ20-85:15-75:1-15の範囲内にあ
ることが好ましい。触媒の形態としては粉末状またはタ
ブレット状等何れのものでも良く、その使用形態に最適
なものが使用される。これらの触媒は使用する前に例え
ば水素雰囲気で200 ℃付近で処理される等の適当な活性
化処理をした後で反応に供せられる。使用する水素量は
エステル1モル当たり4モル以上,好ましくは6-60モル
が適当である。
The weight ratio of each component contained in the copper-chromium-barium (or manganese) catalyst obtained by the above-mentioned methods (1), (2), etc. is CuO: Cr 2 O 3 : MnO 2 (or BaO 2 ). It is preferable that they are in the range of 20-85: 15-75: 1-15, respectively. The catalyst may be in the form of powder, tablet, or the like, and the most suitable one for the usage is used. Before use, these catalysts are subjected to a suitable activation treatment such as treatment in a hydrogen atmosphere at about 200 ° C. and then subjected to the reaction. The amount of hydrogen used is 4 mol or more, preferably 6 to 60 mol, per 1 mol of the ester.

【0018】本発明において、水素化、および脱水環化
反応によって生成された3−メチルテトラヒドロフラン
を含む反応液は通常の蒸留操作によって、分離精製され
容易に目的とする3−メチルテトラヒドロフランを得る
ことができる。
In the present invention, the reaction liquid containing 3-methyltetrahydrofuran produced by hydrogenation and dehydration cyclization reaction can be separated and purified by a conventional distillation operation to easily obtain the desired 3-methyltetrahydrofuran. it can.

【0019】[0019]

【実施例】以下に、実施例を挙げて本発明を更に詳しく
説明するが、本発明はこれらの実施例によりその範囲を
限定されるものではない。
The present invention will be described in more detail below with reference to examples, but the scope of the present invention is not limited by these examples.

【0020】(工程1) 実施例1 温度計、圧力計を備えた、50ml容のステンレス製オ
ートクレーブにメタクリル酸メチル1.0 ×10-2mol 、ギ
酸メチル0.1mol、触媒としてRu3(CO)12 を 1.2×10-5mo
l 、溶媒としてベンゼンを5.0ml 仕込んだ。反応容器内
を一酸化炭素ガスで充分置換した後、一酸化炭素ガスを
20kg/cm2(ゲージ圧)まで充填し、200℃に保った
オイルバスに反応容器を浸し、マグネチックスターラー
で反応液を撹拌し、24時間反応を行った。反応液をガ
スクロマトグラフィーで分析したところ、メタクリル酸
メチルの転化率は92%、メチルコハク酸ジメチルの収
率は73.2%であり、このほかにイソ酪酸メチルが
4.0%生成していた。
(Step 1) Example 1 Methyl methacrylate 1.0 × 10 -2 mol, methyl formate 0.1 mol, and Ru 3 (CO) 12 as a catalyst were placed in a 50 ml stainless steel autoclave equipped with a thermometer and a pressure gauge. 1.2 x 10 -5 mo
l, 5.0 ml of benzene was charged as a solvent. After thoroughly replacing the inside of the reaction vessel with carbon monoxide gas, fill the reaction vessel with carbon monoxide gas up to 20 kg / cm 2 (gauge pressure), immerse the reaction vessel in an oil bath maintained at 200 ° C, and use a magnetic stirrer to prepare the reaction solution. Was stirred and reacted for 24 hours. When the reaction solution was analyzed by gas chromatography, the conversion rate of methyl methacrylate was 92%, the yield of dimethyl methylsuccinate was 73.2%, and in addition, 4.0% of methyl isobutyrate was produced. .

【0021】実施例2 触媒として、Co2(CO)8 3.6 ×10-5 molを使用し、一酸
化炭素の圧力を200kg/cm2(ゲージ圧)まで充填した
以外は実施例1と同様に行った。分析の結果、メタクリ
ル酸メチルの転化率は88%、メチルコハク酸ジメチル
の収率は68.5%であり、このほかにイソ酪酸メチル
が3.2%生成していた。
Example 2 As in Example 1, except that Co 2 (CO) 8 3.6 × 10 -5 mol was used as the catalyst and the carbon monoxide pressure was up to 200 kg / cm 2 (gauge pressure). went. As a result of the analysis, the conversion rate of methyl methacrylate was 88%, the yield of dimethyl methylsuccinate was 68.5%, and in addition to this, 3.2% of methyl isobutyrate was produced.

【0022】実施例3 ギ酸メチルをギ酸イソプロピルに代えた以外は実施例1
と同様に行った。分析の結果、メタクリル酸メチルの転
化率は91%、メチルコハク酸メチルイソプロピルエス
テル、メチルコハク酸ジメチル、およびメチルコハク酸
ジイソプロピルを合わせた収率は70.1%であり、こ
のほかにイソ酪酸メチル、イソ酪酸イソプロピル等が
4.2%生成していた。
Example 3 Example 1 except that methyl formate was replaced with isopropyl formate.
I went the same way. As a result of the analysis, the conversion rate of methyl methacrylate was 91%, and the combined yield of methyl succinic acid methyl isopropyl ester, dimethyl methyl succinate and diisopropyl methyl succinate was 70.1%. Isopropyl and the like were produced in 4.2%.

【0023】(工程2) 実施例4 水素化反応器として、内径15mm、長さ300mmの
ステンレス製反応管を使用し、これに触媒として銅−ク
ロマイト触媒(日産ガードラー社製:G−99C)を1
0〜20メッシュに整粒したものを10g充填した。常
法に従いホットスポットが出来ないようにしながら、窒
素で希釈した水素0.5〜5容量%を含む窒素で150
〜200℃で触媒の還元を行った。
(Step 2) Example 4 A reaction tube made of stainless steel having an inner diameter of 15 mm and a length of 300 mm was used as a hydrogenation reactor, and a copper-chromite catalyst (manufactured by Nissan Gardler: G-99C) was used as a catalyst. 1
10 g of the sized 0 to 20 mesh was filled. According to the usual method, while preventing hot spots, the amount of hydrogen diluted with nitrogen was 0.5 to 5% by volume of nitrogen containing 150%.
The catalyst was reduced at ˜200 ° C.

【0024】実施例1により得られた反応液より常法
(減圧蒸留)により触媒成分を分離し、メチルコハク酸
ジメチルを単離した。このメチルコハク酸ジメチル30
重量部に対し混合キシレン70重量部加え、水素化およ
び脱水環化反応への供給原料とした。水素化反応器への
供給ガスを純水素に切り替え、圧力160kg/cm2
(ゲージ圧)、パージガスSVを500hr-1とし、触
媒層温度を230℃とした。反応原料を、毎時3.3g
で反応管上部から供給した。反応液は冷却後、気液分離
し、液相部をガスクロマトグラフィーにより分析した。
反応開始から5時間を経過した後、1時間反応液の採取
を行い分析した結果、3−メチルテトラヒドロフランの
収率は95.2%、2−メチル−1,4−ブタンジオー
ルの収率は0.4%であった。
The catalyst component was separated from the reaction solution obtained in Example 1 by a conventional method (vacuum distillation) to isolate dimethyl methylsuccinate. This dimethyl methyl succinate 30
70 parts by weight of mixed xylene was added to parts by weight and used as a feedstock for hydrogenation and dehydration cyclization reactions. The supply gas to the hydrogenation reactor was switched to pure hydrogen, and the pressure was 160 kg / cm 2
(Gauge pressure), the purge gas SV was set to 500 hr -1 , and the catalyst layer temperature was set to 230 ° C. 3.3 g of reaction raw material per hour
Was supplied from above the reaction tube. The reaction liquid was cooled, gas-liquid separated, and the liquid phase portion was analyzed by gas chromatography.
After 5 hours had passed from the start of the reaction, the reaction solution was collected for 1 hour and analyzed. As a result, the yield of 3-methyltetrahydrofuran was 95.2% and the yield of 2-methyl-1,4-butanediol was 0. It was 0.4%.

【0025】実施例5 水素化の原料を、実施例3で得られた反応液より単離し
たメチルコハク酸メチルイソプロピルを使用した以外は
実施例4と同様に行った。実施例4と同様に反応液の分
析を行ったところ、3−メチルテトラヒドロフランの収
率は95.5%、2−メチル−1,4−ブタンジオール
の収率は0.5%であった。
Example 5 The same procedure as in Example 4 was carried out except that methylisopropyl methylsuccinate isolated from the reaction solution obtained in Example 3 was used as the raw material for hydrogenation. When the reaction solution was analyzed in the same manner as in Example 4, the yield of 3-methyltetrahydrofuran was 95.5% and the yield of 2-methyl-1,4-butanediol was 0.5%.

【0026】[0026]

【発明の効果】本発明によれば各工程とも高い収率で進
行し、しかも安価な原料から3−メチルテトラヒドロフ
ランが得られるので、本発明は工業的に極めて高い価値
を持つ。
INDUSTRIAL APPLICABILITY According to the present invention, since each process proceeds with high yield and 3-methyltetrahydrofuran can be obtained from an inexpensive raw material, the present invention has an extremely high industrial value.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチルをギ酸エステルと反
応させメチルコハク酸ジエステルを合成する工程1と、
工程1の生成物であるメチルコハク酸ジエステルを水素
化および脱水環化する工程2とからなる3−メチルテト
ラヒドロフランの製造方法。
1. A step 1 in which methyl methacrylate is reacted with a formate ester to synthesize a methyl succinate diester,
A method for producing 3-methyltetrahydrofuran, which comprises the step 2 of hydrogenating and cyclodehydrating the methyl succinic acid diester which is the product of step 1.
【請求項2】 メタクリル酸メチルとギ酸エステルとの
反応に際し、周期律表8族に属する元素の存在下に行う
請求項1に記載の方法。
2. The method according to claim 1, wherein the reaction of methyl methacrylate with the formate ester is carried out in the presence of an element belonging to Group 8 of the periodic table.
【請求項3】 周期律表8族に属する元素がコバルト、
またはルテニウムである請求項2に記載の方法。
3. An element belonging to Group 8 of the periodic table is cobalt,
The method according to claim 2, which is also ruthenium.
【請求項4】 ギ酸エステルがギ酸メチルである請求項
1に記載の方法。
4. The method according to claim 1, wherein the formate ester is methyl formate.
【請求項5】 工程2に於いて、銅、銅化合物、7a族
金属、8族金属、7a族金属の化合物および8族金属の
化合物の少なくとも一種類の存在下に水素化反応を行う
請求項1に記載の方法。
5. The hydrogenation reaction in step 2 is carried out in the presence of at least one of copper, a copper compound, a 7a group metal, a 8 group metal, a 7a group metal compound and a 8 group metal compound. The method according to 1.
【請求項6】工程2に於いて水素化触媒が銅−クロマイ
トである請求項5に記載の方法。
6. The method according to claim 5, wherein the hydrogenation catalyst in step 2 is copper-chromite.
JP7022809A 1995-02-10 1995-02-10 New production of 3-methyltetrahydrofuran Pending JPH08217770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7022809A JPH08217770A (en) 1995-02-10 1995-02-10 New production of 3-methyltetrahydrofuran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7022809A JPH08217770A (en) 1995-02-10 1995-02-10 New production of 3-methyltetrahydrofuran

Publications (1)

Publication Number Publication Date
JPH08217770A true JPH08217770A (en) 1996-08-27

Family

ID=12093026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7022809A Pending JPH08217770A (en) 1995-02-10 1995-02-10 New production of 3-methyltetrahydrofuran

Country Status (1)

Country Link
JP (1) JPH08217770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856531A (en) * 1996-10-21 1999-01-05 Eastman Chemical Company Preparation of 3-methytetra-hydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6147233A (en) * 2000-01-20 2000-11-14 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6521765B1 (en) 2002-04-18 2003-02-18 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
WO2012119861A2 (en) 2011-03-09 2012-09-13 L'oreal Use of a 2-methylsuccinic acid diester derivative as solvent in cosmetic compositions; cosmetic compositions containing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856531A (en) * 1996-10-21 1999-01-05 Eastman Chemical Company Preparation of 3-methytetra-hydrofuran from 2,3-dihydrofuran
US5912364A (en) * 1996-10-21 1999-06-15 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6147233A (en) * 2000-01-20 2000-11-14 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
US6521765B1 (en) 2002-04-18 2003-02-18 Eastman Chemical Company Process for the preparation of 3-methyltetrahydrofuran
WO2012119861A2 (en) 2011-03-09 2012-09-13 L'oreal Use of a 2-methylsuccinic acid diester derivative as solvent in cosmetic compositions; cosmetic compositions containing the same

Similar Documents

Publication Publication Date Title
KR100417353B1 (en) Method of Producing 1,4-Butanediol and Tetrahydrofuran from Furan
US5196602A (en) Two-stage maleic anhydride hydrogenation process for 1,4-butanediol synthesis
JPH0337545B2 (en)
JP3400501B2 (en) Method for producing 2-methyl-1,4-butanediol and 3-methyltetrahydrofuran
KR100307255B1 (en) Method for producing 1,4-butanediol
JPH08217770A (en) New production of 3-methyltetrahydrofuran
JP2003528066A (en) Preparation method of propane-1,3-diol by gas phase hydrogenation of 3-hydroxypropanal, β-propiolactone, oligomer of β-propiolactone, ester of 3-hydroxypropanoic acid, or a mixture thereof
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
US6331624B1 (en) Process for preparing 6-aminocaproamide
US5945571A (en) Preparation of 1,4-butanediol
KR100453117B1 (en) Method for preparing 3-methyltetrahydrofuran
JPH09124628A (en) Production of 3-methyltetrahydrofuran
US5618953A (en) Process for producing 3-methyltetrahydrofuran
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPH0673042A (en) Production 0f gamma-butyrolactone
US6759561B2 (en) Preparation of tetrahydrogeraniol
JPH08217708A (en) Production of 3-methyltetrahydrofuran and neopentyl glycol
JP3741155B2 (en) Method for producing 3-methyltetrahydrofuran
JPH08217771A (en) Production of 3-methyltetrahydrofuran
KR20000064438A (en) Process for preparing 1,6-hexanediol from epoxy butadiene
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
EP1010682B1 (en) Method of producing isobutylene glycol
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JPH0514710B2 (en)
US4649225A (en) Hydrogenolysis of polyalkylene glycols to produce monoethylene glycol monoalkyl ethers, monoethylene glycol and ethanol