JPS6239118A - Electric discharge machining method by paired electrode - Google Patents
Electric discharge machining method by paired electrodeInfo
- Publication number
- JPS6239118A JPS6239118A JP17730085A JP17730085A JPS6239118A JP S6239118 A JPS6239118 A JP S6239118A JP 17730085 A JP17730085 A JP 17730085A JP 17730085 A JP17730085 A JP 17730085A JP S6239118 A JPS6239118 A JP S6239118A
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- electrodes
- electric discharge
- discharge machining
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は放電加工法とりわけ対電極による放電加工法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrical discharge machining, particularly electrical discharge machining using a counter electrode.
各種材料に対する電気化学的加工法の一つに放電加工法
がある。この加工法は、材料の硬さや脆さと無関係に加
工できるため、金型類の型彫りをはじめ、超硬合金やセ
ラミックスなどの段加工材の孔あけ、切断、研削、スリ
ット切り等の加工法として利用されている。Electric discharge machining is one of the electrochemical machining methods for various materials. This processing method can be processed regardless of the hardness or brittleness of the material, so it can be used for carving molds, drilling, cutting, grinding, slitting, etc. of stepped materials such as cemented carbide and ceramics. It is used as.
しかしながら、従来の放電加工法は、一般に、工具とし
ての単一の電極と被加工物とを両極として。However, the conventional electrical discharge machining method generally uses a single electrode as a tool and a workpiece as bipolar poles.
RC回路などにより断続的な電圧を印加する方法であっ
たため、被加工物に放電電源を直接結線する必要があり
、そのため、電気的絶縁状態にある被加工物や電極の結
線が国是な高速回転する被加工物や高速移動する物体に
対して容易に加工を行えないという問題があった。Since this method applied intermittent voltage using an RC circuit, it was necessary to connect the discharge power source directly to the workpiece. Therefore, it was the national policy to connect the workpiece and electrodes in an electrically insulated state. There has been a problem in that rotating workpieces or objects moving at high speed cannot be easily machined.
また、高速回転体などに対する放電加工では、被加工物
に対してブラシなどにより接地する必要があることから
、機械本体側への絶縁対策も面倒となり、更にはブラシ
の摩耗やノイズ等の電波障害などによる誤動作対策も必
要とし、これらにより作業が煩雑化し、能率が低下する
問題があった。In addition, in electrical discharge machining of high-speed rotating objects, it is necessary to ground the workpiece using brushes, etc., which makes it difficult to provide insulation for the machine itself, and furthermore, radio interference such as brush wear and noise occurs. Countermeasures against malfunctions such as these are also required, which has the problem of complicating work and reducing efficiency.
本発明は、前記のような実情に鑑み研究を重ねて創案さ
れたもので、その目的とするところは、被加工物に放電
電源を直接結線する必要がなく、加工機械本体などと絶
縁状態にある被加工物や高速回転、高速移動する被加工
物を、簡単かつ能率良く除去加工することが出来る放電
加工法を提供することにある。The present invention was devised after repeated research in view of the above-mentioned circumstances, and its purpose is to eliminate the need to connect a discharge power source directly to the workpiece, and to make it insulated from the main body of the processing machine. An object of the present invention is to provide an electric discharge machining method that can easily and efficiently remove a certain workpiece or a workpiece that rotates at high speed or moves at high speed.
この目的を達成するため、本発明は、従来の発想を転換
した特殊な放電加工法を採用したもので、すなわち、所
要距離を隔てた一対以上の対をなす電極を、接地されて
いない被加工物に対峙させつつ、前記対の電極に共有時
間内で互いに異なる極性を与え、対の電極の先端と被加
工物との間での放電エネルギーにより被加工物要部を除
去することを特徴とするものである。In order to achieve this objective, the present invention employs a special electric discharge machining method that changes the conventional concept, namely, one or more pairs of electrodes separated by a required distance are The method is characterized by applying different polarities to the pair of electrodes within a shared time while facing the object, and removing the main part of the workpiece by electric discharge energy between the tips of the pair of electrodes and the workpiece. It is something to do.
本発明において、電極は固定型のほか、移動式即ち消耗
分を自動的に補給するタイプのものが用いられる。In the present invention, in addition to a fixed type electrode, a movable type, that is, a type that automatically replenishes consumable electrodes, is used.
以下本発明の実施例を添付図面に基づいて説明する。 Embodiments of the present invention will be described below based on the accompanying drawings.
第1図は本発明による対電極放電加工法の原理を示すも
ので、1は被加工物であり、絶縁層11を介して接地さ
れている。FIG. 1 shows the principle of the counter-electrode electrical discharge machining method according to the present invention. Reference numeral 1 denotes a workpiece, which is grounded via an insulating layer 11.
2は本発明で特徴とする放電加工機構であり。2 is an electrical discharge machining mechanism that is a feature of the present invention.
対をなす電極3a、3bが絶縁材4により所定の間隔り
を隔てて保持されている。前記放電加工機構2は加工機
やロボットアームなどに取付けられ、対電極3a、3b
の先端31.31は、被加工物1の加工要部10と所要
の距離をおいて対峙させられ、この状態で、電極3a、
3bの先端31゜31と加工要部10との間に水、油あ
るいはこれらの混合物などからなる用液が介在される。A pair of electrodes 3a and 3b are held by an insulating material 4 with a predetermined spacing between them. The electric discharge machining mechanism 2 is attached to a processing machine, a robot arm, etc., and has counter electrodes 3a, 3b.
The tips 31.31 of the electrodes 3a, 31 are opposed to the main processing part 10 of the workpiece 1 at a required distance, and in this state, the electrodes 3a,
A liquid consisting of water, oil, or a mixture thereof is interposed between the tip 31.degree. 31 of 3b and the main processing part 10.
この溶液は研磨剤などの粒子を含んでいても良い。This solution may also contain particles such as abrasives.
この状態で、電源から対の電極3a、3bに高い電圧(
電流)を与える。このとき、対の電極3a、3bには、
共有する時間内において互いに逆の極性を与えることが
必要であり、これは、一方の電極を常に正、他方を常に
負とする方式のほか一定サイクルで極性を交互に切替る
方式がある。In this state, a high voltage (
current). At this time, the pair of electrodes 3a and 3b have
It is necessary to provide mutually opposite polarities within the shared time, and this can be done by making one electrode always positive and the other always negative, or by alternately switching the polarity at a fixed cycle.
第2図は本発明の実施に用いられる電源回路の一例を示
すもので、図中、Eはコンデンサ、Rは電流値設定用無
誘導抵抗、Tはスイッチングトランジスタ、Sは極性切
替器である。この回路を使用することで、対の電極3a
、3bの極性が交互に切替られるため、各電極3a、3
bの放電の平均化が図られ、各電極から同程度の放電を
安定して得られる。また、図示しないが、ソフトウェア
による彫り込み深さないしは電極経路補正を併用するこ
とも推奨される。FIG. 2 shows an example of a power supply circuit used in carrying out the present invention. In the figure, E is a capacitor, R is a non-inductive resistor for setting a current value, T is a switching transistor, and S is a polarity switch. By using this circuit, the opposite electrode 3a
, 3b are alternately switched, each electrode 3a, 3b is switched alternately.
The discharge of b is averaged, and the same degree of discharge can be stably obtained from each electrode. Although not shown, it is also recommended to use software to correct the engraving depth or electrode path.
電極3a、3bに印加する電圧は、交流、バイアスをか
けた交流、脈流など交番性のものを用いる方法が挙げら
れる。その電力波形は、パルス波、矩形波、鋸状波、正
弦波およびこれにバイアスをかけたものなどを適宜選択
すればよい。The voltage applied to the electrodes 3a and 3b may be an alternating voltage, such as an alternating current, a biased alternating current, or a pulsating current. The power waveform may be appropriately selected from a pulse wave, a rectangular wave, a sawtooth wave, a sine wave, a biased wave thereof, and the like.
上記操作により、互いに極性の異なる対の電極3a、3
bの先端には、導電性の被加工物1を媒体として強い電
場が形成され、いわゆる電子なだれ現象により対の電極
3a、3bの先端31,31と被加工物1の要部10と
の間で放電が励起され、要部10が効率良く除去される
。By the above operation, the pair of electrodes 3a, 3 having mutually different polarities
A strong electric field is formed at the tip of the electrode b using the conductive workpiece 1 as a medium, and due to the so-called electron avalanche phenomenon, the gap between the tips 31, 31 of the pair of electrodes 3a, 3b and the main part 10 of the workpiece 1 is generated. The discharge is excited and the main part 10 is efficiently removed.
上記方法しこおいて、加工の安定化を図るため、対の電
極3a、3bまたは/及び被加工物1に所望の運動を与
えてもよい。In the above method, a desired motion may be applied to the paired electrodes 3a, 3b and/or the workpiece 1 in order to stabilize the processing.
第3図は1本発明を被加工物1が導電性を持つ高速回転
体である場合の除去加工(たとえば形状付与)に適用し
た実施例を示すもので、被加工物1は主体6の外周に絶
縁層11を介して一体に設けられ、主体6により高速回
転される。対電極3a。FIG. 3 shows an embodiment in which the present invention is applied to removal processing (for example, shaping) when the workpiece 1 is a conductive high-speed rotating body. The main body 6 rotates the main body 6 at high speed. Counter electrode 3a.
3bは被加工物1の適所に対峙され、適宜半径方向に送
り移動されながら、前記のごとく互いに異なる極性が与
えらるように電圧が印加される。そして、電極先端31
.31と要部間には用液5が噴射される。これにより、
対の電極3a、3bは移動する導電性の要部1oを媒体
として放電が励起され、各電極先端ごとに加工が行われ
る。3b is opposed to the workpiece 1 at a suitable position, and is moved in the radial direction as appropriate, while voltages are applied so as to give mutually different polarities as described above. Then, the electrode tip 31
.. A liquid 5 is injected between the main part 31 and the main part. This results in
A discharge is excited between the pair of electrodes 3a and 3b using the moving conductive main part 1o as a medium, and processing is performed for each electrode tip.
第4図は非導電性の被加工物1の除去加工に本発明を適
用した実施例を示すもので、この場合、放電加工機2に
おける対の電極3a、3bは先端31.31が互いに接
近するように斜状に絶縁材4で保持され、被加工物1の
要部10に接近あるいは接触させた状態で、共有時間内
で対の電極3a。FIG. 4 shows an embodiment in which the present invention is applied to removal processing of a non-conductive workpiece 1. In this case, the tips 31 and 31 of the pair of electrodes 3a and 3b in the electric discharge machine 2 are close to each other. The pair of electrodes 3a is held obliquely by the insulating material 4 so as to be close to or in contact with the main part 10 of the workpiece 1 within a shared time.
3bが互いに逆の極性となるように、第2図のごとき回
路から電圧が印加される。A voltage is applied from a circuit as shown in FIG. 2 so that the polarities of the terminals 3b are opposite to each other.
これにより、接近する電極先端31.31間に放電が起
り、この衝撃的な放電エネルギーが媒体である用液5を
介して直下の非導電性要部を微少量あて除去する。ある
いは、非導電性要部に付着ないし堆積している異物(た
とえば切り屑、微粉)が除去される。なお、この非導電
性被加工物1が回転体である場合も、第3図と同様な手
法を採用し得るのは勿論である。As a result, a discharge occurs between the electrode tips 31 and 31 approaching each other, and this impulsive discharge energy hits and removes a small amount of the non-conductive essential part immediately below via the medium 5. Alternatively, foreign matter (for example, chips, fine powder) attached to or deposited on the non-conductive main portion is removed. It goes without saying that even when the non-conductive workpiece 1 is a rotating body, the same method as shown in FIG. 3 can be adopted.
第5図ないし第8図は本発明の実施に使用される放電加
工機構の数例を示す。まず、第5図と第6図は1合成樹
脂のごときからなる絶縁材4に、板状の電極3a、3b
を絶縁性ブシュ14を介してねじ15で固定したもので
ある。Figures 5 through 8 illustrate several examples of electrical discharge machining mechanisms that may be used in the practice of the present invention. First, in FIGS. 5 and 6, plate-shaped electrodes 3a, 3b are placed on an insulating material 4 made of synthetic resin or the like.
are fixed with screws 15 via an insulating bush 14.
第7図と第8図は本発明をより精度高く行うためのもの
で、放電加工を実施するにあたっては、低電極消耗条件
を採用したり、電極の消耗状態を検出してフィードバッ
クをかけることも考えられるが、これと同時に消耗量を
自動的に補充することが効果的である。図示のものは、
セラミックス等のブロック状絶縁材4の側部から底部に
かけて、電極に対応するガイド溝41.41を形成し、
異なる極性のワイヤ電極3a、3bを前記ガイド溝41
.41により保持しつつ、ローラ等によりワイヤ電極の
送り移動を行うようにしたものである。Figures 7 and 8 are for carrying out the present invention with higher precision. When performing electric discharge machining, it is possible to adopt low electrode wear conditions or to detect the wear state of the electrode and provide feedback. Although it is possible, it would be effective to automatically replenish the consumed amount at the same time. The one shown is
Guide grooves 41 and 41 corresponding to the electrodes are formed from the side to the bottom of the block-shaped insulating material 4 such as ceramics,
Wire electrodes 3a and 3b of different polarities are connected to the guide groove 41.
.. 41, and the wire electrode is fed and moved by a roller or the like.
この方法によれば、常に新しい電極が補給されるので、
高精度の加工を行える。According to this method, new electrodes are always supplied, so
High-precision machining is possible.
なお、図示するものは電極が一対であるが、これに限定
されるものではなく、また、電極形状も限定は無い。Note that although a pair of electrodes is shown in the drawing, the present invention is not limited to this, and there is no limitation to the shape of the electrodes.
次に、本発明の具体的な実施例を示す。Next, specific examples of the present invention will be shown.
実施例I
■、全自動NC放電加工機を使用し、平板状部材の放電
加工を行った。Example I ① A fully automatic NC electrical discharge machine was used to perform electrical discharge machining of a flat member.
放電加工機の諸元は下記の通りである。The specifications of the electrical discharge machine are as follows.
テーブル移動量(左右) 300+n+テーブル移動
I!(前後) 200nn両面距離 500
〜250 m電極は110X25X2の銅板で、第5図
と第6図に示す2極構造(間隔3IIn)とし、回路は
第2図を用いた。Table movement amount (left and right) 300+n+table movement I! (front and back) 200nnDistance on both sides 500
~250 m The electrode was a 110×25×2 copper plate and had a two-pole structure (spacing 3IIn) shown in FIGS. 5 and 6, and the circuit shown in FIG. 2 was used.
平板上部材は、外形寸法30X5t、X30mmのダイ
ヤモンド分散鋳鉄を用いた。集中度は75である。Diamond-dispersed cast iron with external dimensions of 30 x 5 tons and x 30 mm was used for the flat plate member. The concentration level is 75.
■、放電加工条件は、放電間隙約Low、無負荷放電電
圧5OV一定、放電電圧20〜25Vとし、放電電流(
電流ピーク値)Ipを8〜30Aの範囲で変化させた。■The electrical discharge machining conditions were a low discharge gap, a constant no-load discharge voltage of 5OV, a discharge voltage of 20 to 25V, and a discharge current (
Current peak value) Ip was varied in the range of 8 to 30A.
実験の簡略のため、放電時間(放電パルス幅)τpと休
止時間τrを等しくし、これを2〜128μsecの範
囲で変化させた。加工は、電極軸線と直角方向に送り速
度F = 10 mm/winで送りながら、極性切替
え(2回/秒)を併用して行った。用液は水溶性研削液
で、噴射圧力は0.3kg/aJとした。To simplify the experiment, the discharge time (discharge pulse width) τp and rest time τr were made equal and varied within a range of 2 to 128 μsec. The processing was carried out while feeding in a direction perpendicular to the electrode axis at a feed rate F = 10 mm/win, in combination with polarity switching (2 times/second). The cleaning fluid was a water-soluble grinding fluid, and the injection pressure was 0.3 kg/aJ.
■以上の結果、下記範囲で初期の目的のとおり、両電極
と砥石間に安定した放電が発生し、彫り込み深さは、5
μm、10μmで何ら支障無く行われ、彫り込みを20
μm以上としても良好な結果が得られ、母地からダイヤ
モンド粒の突出が認められた。■As a result, a stable electric discharge was generated between both electrodes and the grinding wheel within the range shown below, and the engraving depth was 5.
The engraving was carried out without any problem at 10 μm and 20 μm.
Good results were obtained even when the diameter was more than μm, and protrusion of diamond grains from the matrix was observed.
放電電流(電流ピーク値)Ip=8Aにおいて、放電時
間(放電パルス幅)τp=4〜32μsecの範囲、I
p=1OAにおいてtp=4〜128μsecの範囲、
Ip=15Aにおいてτp=8〜128μsecの範囲
+ Ip=2OAにおいてτp=8〜128の範囲であ
る。Discharge current (current peak value) Ip = 8A, discharge time (discharge pulse width) τp = 4 to 32 μsec range, I
p=1OA, tp=4 to 128 μsec range,
At Ip=15A, τp=range of 8 to 128 μsec+at Ip=2OA, τp=range of 8 to 128.
この結果から本発明は有効な放電加工法であることがわ
かる。This result shows that the present invention is an effective electric discharge machining method.
実施例2
10次に軸付き回転体に本発明を適用して放電加工を行
った。Example 2 10 Next, the present invention was applied to a rotating body with a shaft to perform electrical discharge machining.
被加工物は、直径30mmφ、絶縁層を介して一体とな
った厚さ3III11の青銅板である。電極は幅を20
mmとするほか実施例1と同じ構成とし、被加工物をl
rpmで回転させながら、テーブル上に装着されたツイ
ン電極を半径方向に100mm/minで送り移動させ
、放電加工した。The workpiece is a bronze plate with a diameter of 30 mmφ and a thickness of 3III11 integrated with an insulating layer interposed therebetween. The width of the electrode is 20
mm, and the same configuration as in Example 1, and the workpiece is l.
While rotating at rpm, the twin electrodes mounted on the table were fed and moved in the radial direction at 100 mm/min to carry out electrical discharge machining.
■放電加工条件は、放電時間(放電パルス幅)τp二休
体時間τrを2〜512μseCとするほかは実施例1
と同様とした。■The electrical discharge machining conditions are Example 1 except that the discharge time (discharge pulse width) τp and the two-rest period τr are 2 to 512μsecC.
The same is true.
II 、その結果、青銅層と回転軸とが導通していない
にもかかわらず、IP=10AにおいてτP=8〜32
μseCの範囲、I p = 1.5 Aにおいててp
=8〜32 μsecの範囲、Ip=2OAにおいてて
p=8−128 μsecの範囲、■p=30Aにおい
てもτp=8〜32μseCの範囲で両極から完全に安
定した放電が生じ。II, as a result, τP=8~32 at IP=10A even though the bronze layer and the rotating shaft are not electrically connected.
p in the range of μsecC, I p = 1.5 A
At Ip=8 to 32 μsec, p=8 to 128 μsec at Ip=2OA, and perfectly stable discharge from both poles at p=30A and τp=8 to 32 μsec.
彫り込み深さ20μmまで支障無く加工が行われた。Machining was carried out without any problem up to the engraving depth of 20 μm.
以上説明した本発明によるときには、被加工物に放電電
源を直接結線する必要が無く、加工基本体などと絶縁状
態にある被加工物や、高速回転あるいは高速移動する被
加工物を簡単に、能率良く放電加工でき、結線作業やブ
ラシ類の摩耗、ノイズなどの対策を講する必要がないた
め作業性が良いとともに、被加工物を駆動乃至作動状態
にしたまま加工を施すことができるなどの優れた効果が
得られる。According to the present invention as described above, there is no need to directly connect a discharge power source to the workpiece, and workpieces that are insulated from the basic machining body, etc., or workpieces that rotate or move at high speed can be easily and efficiently processed. It can perform electric discharge machining well, and has good workability because there is no need to take measures such as wiring work, brush wear, noise, etc., and it also has the advantage of being able to perform machining while the workpiece is being driven or in operation. You can get the same effect.
第1図は本発明に係る対電極による放電加工法の原理を
示す説明図、第2図は本発明に適用する放電回路の一例
を示す回路図、第3図と第4図は本発明の適用例を示す
説明図、第5図は本発明の実施に用いる対電極の一例を
示す正面図、第6図は同じくその縦断面図、第7図は電
極を自動補充式とした実施例を示す斜視図、第8図は同
じくその側面図である。FIG. 1 is an explanatory diagram showing the principle of the electrical discharge machining method using a counter electrode according to the present invention, FIG. 2 is a circuit diagram showing an example of a discharge circuit applied to the present invention, and FIGS. An explanatory diagram showing an example of application, FIG. 5 is a front view showing an example of a counter electrode used in the implementation of the present invention, FIG. 6 is a longitudinal sectional view thereof, and FIG. 7 is an example in which the electrode is automatically refilled. The perspective view shown in FIG. 8 is also a side view thereof.
Claims (3)
されていない被加工物に対峙させつつ、前記対の電極に
共有時間内で互いに異なる極性を与え、対の電極の先端
と被加工物との間の放電により被加工物要部を除去する
ことを特徴とする対電極による放電加工法。(1) One or more pairs of electrodes separated by a required distance are faced to an ungrounded workpiece, and the pairs of electrodes are given different polarities within a shared time, so that the tip of the pair of electrodes and the workpiece are An electric discharge machining method using a counter electrode, which is characterized by removing the main part of the workpiece by electrical discharge between the workpiece and the workpiece.
載の対電極による放電加工法。(2) The electric discharge machining method using a counter electrode according to claim 1, wherein the workpiece includes a rotating body.
次補給されるものを含む特許請求の範囲第1項記載の対
電極による放電加工法。(3) The electrical discharge machining method using a counter electrode according to claim 1, which includes a method in which the counter electrode is fed and moved during electrical discharge machining, and consumed parts are successively replenished.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17730085A JPS6239118A (en) | 1985-08-12 | 1985-08-12 | Electric discharge machining method by paired electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17730085A JPS6239118A (en) | 1985-08-12 | 1985-08-12 | Electric discharge machining method by paired electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6239118A true JPS6239118A (en) | 1987-02-20 |
Family
ID=16028586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17730085A Pending JPS6239118A (en) | 1985-08-12 | 1985-08-12 | Electric discharge machining method by paired electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6239118A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02150270U (en) * | 1989-05-24 | 1990-12-25 |
-
1985
- 1985-08-12 JP JP17730085A patent/JPS6239118A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02150270U (en) * | 1989-05-24 | 1990-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5651901A (en) | Method and apparatus for surface treatment by electrical discharge machining | |
KR20000017369A (en) | Micro-discharge truing device and fine machining method using the device | |
US5194126A (en) | Method and device for dressing grinding wheels | |
Liu et al. | Electric discharge milling of polycrystalline diamond | |
US6447376B1 (en) | Plasma discharge truing apparatus and fine-machining methods using the apparatus | |
Tehrani et al. | Overcut in pulsed electrochemical grinding | |
Srivastava | Review of dressing and truing operations for grinding wheels | |
JPH04256520A (en) | Electric discharge machining | |
JPS6239118A (en) | Electric discharge machining method by paired electrode | |
US3475312A (en) | Electrolytic lathe and grinding apparatus employing a homogeneous carbon electrode-tool | |
CN206912416U (en) | A kind of equipment applied to electrical discharge machining | |
Han et al. | Wire electrochemical grinding of tungsten micro-rod with electrostatic induction feeding method | |
KR100203753B1 (en) | Method and apparatus for magnetic electrolyticsurface grinding of flat surface | |
JPH089125B2 (en) | Power supply for electrical discharge machining | |
JP2593187B2 (en) | Power supply unit for electric discharge machining | |
RU2111095C1 (en) | Multielectrode tool for electric-spark alloying | |
JPS645734A (en) | Method and device for electrolytic burr removal | |
RU2151033C1 (en) | Tool-electrode for electroerosion working of gear wheels | |
GB798609A (en) | Improvements in and relating to methods and apparatus for cutting electrically conductive materials | |
RU2074066C1 (en) | Method of electro-spark machining of metal surfaces | |
JPH0429491B2 (en) | ||
SU1187937A1 (en) | Method of electro-erosion working of bodies of revolution | |
KR200382716Y1 (en) | Device for controlling the discharge pulse of electric discharge machine drill apparatus | |
SU1685644A1 (en) | Tool-electrode for contact erosion dressing of diamond wheels | |
JPS62120918A (en) | Method and device for cutting difficult-to-cut material |