JPH089125B2 - Power supply for electrical discharge machining - Google Patents
Power supply for electrical discharge machiningInfo
- Publication number
- JPH089125B2 JPH089125B2 JP5607488A JP5607488A JPH089125B2 JP H089125 B2 JPH089125 B2 JP H089125B2 JP 5607488 A JP5607488 A JP 5607488A JP 5607488 A JP5607488 A JP 5607488A JP H089125 B2 JPH089125 B2 JP H089125B2
- Authority
- JP
- Japan
- Prior art keywords
- waveform
- frequency pulse
- machining
- power supply
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤカツト放電加工における仕上加工に
おいて、加工深さを大きくし得るようにしたワイヤ放電
加工用パルス電源装置に関する。Description: TECHNICAL FIELD The present invention relates to a wire electric discharge machining pulse power supply device capable of increasing a machining depth in finishing machining in wire cut electric discharge machining.
ワイヤカツト放電加工においては、放電によつてワイ
ヤ電極に、その進行を妨げる反発力が作用する。このた
め、NC装置等で指示されるワイヤ電極の有るべき位置
と、実際のワイヤ電極の位置との間にずれを生じ、被加
工物の形状精度を低下させる。In wire-cut electric discharge machining, a repulsive force that impedes its progress acts on the wire electrode due to electric discharge. For this reason, a deviation occurs between the position of the wire electrode indicated by the NC device or the like and the actual position of the wire electrode, and the shape accuracy of the workpiece is reduced.
このため、高精度を要求される被加工物の加工を行な
う場合には、被加工物の仕上げ寸法より大きめに荒加工
したのち,セカンドカツトと称する仕上加工を行なつて
所要の寸法、面粗さ等に仕上げている。このときの仕上
寸法は一般的に数μmになるように荒加工を行なう。Therefore, when machining a work piece that requires high precision, after roughing the work piece to a size larger than the finished dimension, a finishing process called a second cut is performed to obtain the required size and surface roughness. It has been finished to the best. Roughing is performed so that the finished dimension at this time is generally several μm.
前記の仕上加工を行なうための加工用電極として、例
えば、特開昭61−4620号公報に開示された放電加工用電
源装置がある。As a machining electrode for performing the finishing machining, there is, for example, a power supply device for electric discharge machining disclosed in Japanese Patent Laid-Open No. 61-4620.
この放電加工用電源装置においては、単一の発振器か
ら発振されるパルスに基づいて、正負両極性のパルス電
圧を生成し、加工間隙に印加し、極間の平均電圧を零に
しながら一方向の電圧で加工するようにしたので、電解
電流による加工面の精度低下、電蝕を防止できる。In this power supply device for electric discharge machining, a pulse voltage of both positive and negative polarities is generated based on the pulse oscillated from a single oscillator, applied to the machining gap, and the average voltage between the poles is set to zero while unidirectional. Since the processing is performed by the voltage, it is possible to prevent the deterioration of the precision of the processed surface and the electrolytic corrosion due to the electrolytic current.
しかし、正負の電圧を交互に印加するので、加工休止
時間が長くなり、加工能率を低下させる。However, since positive and negative voltages are applied alternately, the machining down time becomes long and the machining efficiency is reduced.
また、発振器の発振周波数を高くすると、加工間隙に
印加する電圧が不十分になつて放電しなくなるなどの問
題点がある。Further, when the oscillation frequency of the oscillator is increased, there is a problem that the voltage applied to the machining gap becomes insufficient and the discharge does not occur.
本発明の目的は、電解電流による加工面精度の低下や
電蝕を防止し、且つ高能率の仕上加工を可能にした放電
加工用電源装置を提供するにある。An object of the present invention is to provide a power supply device for electric discharge machining, which prevents deterioration of machining surface accuracy and electrolytic corrosion due to electrolytic current and enables high-efficiency finish machining.
発明者は加工休止時間を短かくし、放電可能な時間を
長くすれば、ワイヤ電極と被加工物の間の有効な放電数
が増加し、加工効率が向上することに着目した。また、
実験により、加工間隙に印加される電圧のパルス幅を10
0μsec以下にして、ワイヤ電極と被加工物の間に印加し
た後、電圧の印加を中断すれば、電解電流は増大しない
ことを見出した。The inventor has paid attention to the fact that if the machining pause time is shortened and the dischargeable time is lengthened, the number of effective discharges between the wire electrode and the workpiece is increased and the machining efficiency is improved. Also,
Experiments have shown that the pulse width of the voltage applied to the machining gap is 10
It was found that the electrolytic current does not increase if the voltage application is interrupted after the voltage is applied between the wire electrode and the workpiece for 0 μsec or less.
このような加工条件を実現するための本発明の構成を
実施例に対応する第1図と第2図を用いて説明する。A configuration of the present invention for realizing such processing conditions will be described with reference to FIGS. 1 and 2 corresponding to the embodiment.
1は被加工物。2はワイヤ電極で、被加工物1と所定
の加工間隙を保持している。4はトランジスタで、加工
間隙に負パルスの電圧を印加する。7はトランジスタ
で、加工間隙に正パルスの電圧を印加する。9は低周波
パルス発振器。10は高周波パルス発振器。11はインバー
タで、低周波パルス発振器9に接続されている。12はア
ンド回路で、入力端子の一端は高周波パルス発振器10に
接続され、他端はインバータ11に接続され、且つ出力端
子はトランジスタ4のベース側端子に接続されている。
14はナンド回路で、入力端子の一端は高周波パルス発振
器10に接続され、他端は低周波パルス発振器9に接続さ
れ、且つ出力端子はトランジスタ7のベース側端子に接
続されている。1 is a work piece. Reference numeral 2 is a wire electrode which holds a predetermined processing gap with the workpiece 1. Reference numeral 4 denotes a transistor, which applies a negative pulse voltage to the machining gap. Reference numeral 7 denotes a transistor, which applies a positive pulse voltage to the machining gap. 9 is a low frequency pulse oscillator. 10 is a high frequency pulse oscillator. Reference numeral 11 is an inverter, which is connected to the low-frequency pulse oscillator 9. An AND circuit 12 has one input terminal connected to the high frequency pulse oscillator 10, the other end connected to the inverter 11, and an output terminal connected to the base side terminal of the transistor 4.
Reference numeral 14 is a NAND circuit, one end of the input terminal is connected to the high frequency pulse oscillator 10, the other end is connected to the low frequency pulse oscillator 9, and the output terminal is connected to the base side terminal of the transistor 7.
そして、インバータ11は低周波パルス発振器9の出力
波形Bの反転波形Cを出力する。アンド回路12は波形C
と高周波パルス発振器10の出力波形Aのアンド条件をと
り、出力波形Dによりトランジスタ4をオンオフさせ、
トランジスタ4のコレクタ側の波形Fの電圧を生成させ
る。一方ナンド回路14は低周波パルス発振器9の出力波
形Bと高周波パルス発振器10の出力波形Aのナンド条件
をとり、出力波形Eによりトランジスタ7をオンオフさ
せ、トランジスタ7のコレクタ側に波形Gの電圧を生成
させる。そして、波形Fと波形Gを加算した電圧波形H
が、加工間隙に印加される。Then, the inverter 11 outputs an inverted waveform C of the output waveform B of the low frequency pulse oscillator 9. AND circuit 12 has waveform C
And the AND condition of the output waveform A of the high frequency pulse oscillator 10 is taken, and the transistor 4 is turned on and off by the output waveform D,
The voltage of the waveform F on the collector side of the transistor 4 is generated. On the other hand, the NAND circuit 14 takes the NAND condition of the output waveform B of the low-frequency pulse oscillator 9 and the output waveform A of the high-frequency pulse oscillator 10, turns on / off the transistor 7 with the output waveform E, and applies the voltage of the waveform G to the collector side of the transistor 7. To generate. Then, the voltage waveform H obtained by adding the waveform F and the waveform G
Is applied to the machining gap.
この波形Hは通電ケーブル等のインダクタンスや浮遊
容量のため、周期の長い波形Bの周期で、矩形状に整形
されるので、放電可能電圧EA以上である時間taが長くと
れる。このため、放電可能時間が長く有効な放電数を多
くできるので、加工効率が向上する。This waveform H is shaped into a rectangular shape with the cycle of the waveform B having a long cycle due to the inductance and stray capacitance of the current-carrying cable or the like, so that the time ta that is equal to or higher than the dischargeable voltage E A can be long. Therefore, the dischargeable time is long and the number of effective discharges can be increased, so that the machining efficiency is improved.
第1図と第2図は本発明の放電加工用電源装置の一実
施例を示す図である。1 and 2 are views showing an embodiment of a power supply device for electric discharge machining of the present invention.
1は被加工物で、NC装置などの駆動装置によつてXY軸
平面上を移動するテーブル(図示せず)に設置されてい
る。2はワイヤ電極で、被加工物1との間に加工液であ
る水を介して、所定の加工間隙を保持している。3は直
流電源で、正極側は被加工物1に接続され、被加工物1
とワイヤ電極2間に電圧を印加する。4はNPN型のトラ
ンジスタで、エミツタ側は直流電源3の負極側へ接続さ
れ、直流電源3の電圧E1,をオンオフする。5は限流抵
抗で、トランジスタ4のコレクタ側とワイヤ電極2間に
直列に挿入されている。6は直流電源で、負極側は被加
工物1に接続され、且つ直流電源3と並列に接続され、
被加工物1とワイヤ電極2間に直流電源3と逆極性の電
圧を印加する。7はPNP型のトランジスタで、エミツタ
側は直流電源6の正極側に接続され、直流電源6の電圧
E2をオンオフ制御する。8は限流抵抗で、トランジスタ
7のコレクタ側とワイヤ電極2間に直列に挿入されてい
る。9は低周波パルス発振器。10は高周波パルス発振
器。11はインバータで、低周波パルス発振器9に接続さ
れている。12はアンド回路で、入力端子の一端は高周波
パルス発振器10に接続され、他端はインバータ11の出力
端子に接続され、且つ出力端子はトランジスタ4のベー
ス側に接続されている。13はドライブ回路で、アンド回
路12とトランジスタ4のベース側間に直列に挿入されて
いる。14はナンド回路で、入力端子の一端は高周波パル
ス発振器10にアンド回路12と並列に接続され、他端は低
周波パルス発振器9にインバータ11と並列に接続され、
且つ出力端子はトランジスタ7のベース側に接続されて
いる。15はドライブ回路で、ナンド回路14とトランジス
タ7のベース側間に直列に挿入されている。Reference numeral 1 denotes a workpiece, which is installed on a table (not shown) that moves on the XY axis plane by a driving device such as an NC device. Reference numeral 2 denotes a wire electrode, which holds a predetermined machining gap between the workpiece 1 and the work piece 1 through water as a machining liquid. Reference numeral 3 denotes a DC power source, the positive electrode side of which is connected to the workpiece 1
A voltage is applied between the wire electrode 2 and the wire electrode 2. Reference numeral 4 denotes an NPN type transistor, the emitter side of which is connected to the negative side of the DC power supply 3 to turn on and off the voltage E 1 of the DC power supply 3. A current limiting resistor 5 is inserted in series between the collector side of the transistor 4 and the wire electrode 2. 6 is a DC power supply, the negative electrode side is connected to the workpiece 1, and is connected in parallel with the DC power supply 3,
A voltage having a polarity opposite to that of the DC power supply 3 is applied between the workpiece 1 and the wire electrode 2. 7 is a PNP type transistor, the emitter side is connected to the positive side of the DC power supply 6, and the voltage of the DC power supply 6
Control E 2 on and off. A current limiting resistor 8 is inserted in series between the collector side of the transistor 7 and the wire electrode 2. 9 is a low frequency pulse oscillator. 10 is a high frequency pulse oscillator. Reference numeral 11 is an inverter, which is connected to the low-frequency pulse oscillator 9. An AND circuit 12 has one input terminal connected to the high-frequency pulse oscillator 10, the other end connected to the output terminal of the inverter 11, and the output terminal connected to the base side of the transistor 4. A drive circuit 13 is inserted in series between the AND circuit 12 and the base side of the transistor 4. 14 is a NAND circuit, one end of the input terminal is connected to the high frequency pulse oscillator 10 in parallel with the AND circuit 12, and the other end is connected to the low frequency pulse oscillator 9 in parallel with the inverter 11.
Moreover, the output terminal is connected to the base side of the transistor 7. A drive circuit 15 is inserted in series between the NAND circuit 14 and the base side of the transistor 7.
このような構成で、第2図のように高周波パルス発振
器10は波形Aのような短かい周期のパルスを出力する。
一方、低周波パルス発振器9は波形Bのような長い周期
のパルスを出力する。インバータ11は波形Bを反転し、
波形Cの信号を出力する。アンド回路12は波形Aと波形
Cのアンド条件をとり、波形Dの信号を出力する。ドラ
イブ回路13は波形Dの信号を増幅して、トランジスタ4
をオンオフさせる。すると、トランジスタ4のコレクタ
側の電圧は波形Fとなる。一方、ナンド回路14は、波形
Aと波形Bのナンド条件をとり、波形Eの信号を出力す
る。ドライブ回路15は波形Eの信号を増幅して、トラン
ジスタ7をオンオフさせる。すると、トランジスタ7の
コレクタ側の電圧は波形Gとなる。波形Fと波形Gのパ
ルス電圧は限流抵抗5と限流抵抗8を通じて加算された
後、加工間隙に印加される。ここで、加工間隙に印加さ
れる電圧の波形は、通電ケーブルのインダクタンスや浮
遊容量のため、波形Hとなる。すると、放電が加工間隙
に発生し、被加工物1を加工する。そして、放電が発生
すると、加工間隙を通じて、波形Iの加工電流が流れ、
加工間隙の電圧は下降して波形Jとなる。With such a configuration, the high frequency pulse oscillator 10 outputs a pulse having a short cycle like the waveform A as shown in FIG.
On the other hand, the low-frequency pulse oscillator 9 outputs a pulse having a long cycle like the waveform B. The inverter 11 inverts the waveform B,
The signal of waveform C is output. The AND circuit 12 takes the AND condition of the waveform A and the waveform C, and outputs the signal of the waveform D. The drive circuit 13 amplifies the signal of the waveform D and the transistor 4
Turn on and off. Then, the voltage on the collector side of the transistor 4 has a waveform F. On the other hand, the NAND circuit 14 takes the NAND condition of the waveform A and the waveform B and outputs the signal of the waveform E. The drive circuit 15 amplifies the signal of the waveform E to turn on / off the transistor 7. Then, the voltage on the collector side of the transistor 7 has a waveform G. The pulse voltages of the waveform F and the waveform G are added through the current limiting resistance 5 and the current limiting resistance 8 and then applied to the machining gap. Here, the waveform of the voltage applied to the processing gap becomes a waveform H due to the inductance and stray capacitance of the energizing cable. Then, electric discharge is generated in the machining gap, and the workpiece 1 is machined. Then, when an electric discharge occurs, a machining current of waveform I flows through the machining gap,
The voltage in the machining gap drops and becomes a waveform J.
波形Hは周期の長い波形Bの周期で、矩形状に整形さ
れたパルス電圧であるので、放電可能電圧EA以上である
放電可能時間taが長く、加工に有効な放電数を多くで
き、加工効率を向上させることができる。In the period of the waveform H is long period waveform B, because it is shaped pulse voltage in a rectangular shape, a dischargeable voltage E A above in which dischargeable time t a is long, can increase the number of effective discharge machining, The processing efficiency can be improved.
前記実施例における具体的な実験例を以下に示す。 A specific experimental example in the above embodiment will be shown below.
被加工物1 :工具鋼 SKD11製、HRC60℃焼入れ材、板
厚50mm ワイヤ電極2:真鍮 0.2mmφ 直流電源3 :50V 直流電源6 :50V 低周波パルス発振器9 :周期80μsec 高周波パルス発振器10 :周期0.25μsec の条件で、従来の加工粗さと同じ品質(加工面粗さ0.8
μmRmax,太鼓量5μm以下)を得る場合、加工送り速度
3mm/minで加工量2μm(従来は0.5μm)を得た。Workpiece 1: Tool steel SKD11, HRC60 ℃ hardened material, plate thickness 50mm Wire electrode 2: Brass 0.2mmφ DC power supply 3: 50V DC power supply 6: 50V Low frequency pulse oscillator 9: Cycle 80μsec High frequency pulse oscillator 10: Cycle 0.25 Under the condition of μsec, the same quality as the conventional processing roughness (processing surface roughness 0.8
(μmRmax, drum amount 5μm or less)
A processing amount of 2 μm (0.5 μm in the past) was obtained at 3 mm / min.
本発明によれば、ワイヤカツト放電加工の仕上加工に
おいて、両極性の周期の長い矩形状のパルス電圧を加工
間隙に印加するようにしたので、放電可能な時間を長く
して、加工に有効な放電の数を多くして、加工効率を向
上させることができる。According to the present invention, in finishing machining of wire cut electric discharge machining, a rectangular pulse voltage having a long bipolar period is applied to the machining gap. It is possible to improve the processing efficiency by increasing the number of.
第1図は本発明の放電加工用電源装置の一実施例を示す
図、第2図はその動作を説明するためのタイムチヤート
図である。 1…被加工物、2…ワイヤ電極、4…トランジスタ、7
…トランジスタ、9…低周波パルス発振器、10…高周波
パルス発振器、11…インバータ、12…アンド回路、14…
ナンド回路。FIG. 1 is a diagram showing an embodiment of a power supply device for electric discharge machining of the present invention, and FIG. 2 is a time chart for explaining its operation. 1 ... Workpiece, 2 ... Wire electrode, 4 ... Transistor, 7
... Transistor, 9 ... Low frequency pulse oscillator, 10 ... High frequency pulse oscillator, 11 ... Inverter, 12 ... AND circuit, 14 ...
Nando circuit.
Claims (1)
負パルス電圧を生成し、第2のスイツチング素子のオン
オフにより正パルス電圧を生成して、ワイヤ電極と被加
工物との間に形成される加工間隙に正負パルス電圧を交
互に印加して間欠的な放電を発生させる放電加工用電源
装置において、高周波パルス発振器を設け、低周波パル
ス発振器を設け、高周波パルスと、低周波パルスのナン
ド条件をとり、第2のスイツチング素子を作動させるナ
ンド回路を設け、高周波パルスと、反転された低周波パ
ルスのアンド条件をとり、第1のスイツチング素子を作
動させるアンド回路を設けたことを特徴とする放電加工
用電源装置。1. Machining formed between a wire electrode and a workpiece by generating a negative pulse voltage by turning on and off a first switching element and generating a positive pulse voltage by turning on and off a second switching element. In a power supply device for electrical discharge machining that applies a positive and negative pulse voltage alternately to a gap to generate an intermittent discharge, a high-frequency pulse oscillator is provided, a low-frequency pulse oscillator is provided, and high-frequency pulse and low-frequency pulse NAND conditions are set. An electric discharge machining is provided, in which a NAND circuit for activating the second switching element is provided, and an AND circuit for activating the first switching element by taking an AND condition of a high frequency pulse and an inverted low frequency pulse is provided. Power supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5607488A JPH089125B2 (en) | 1988-03-11 | 1988-03-11 | Power supply for electrical discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5607488A JPH089125B2 (en) | 1988-03-11 | 1988-03-11 | Power supply for electrical discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01234114A JPH01234114A (en) | 1989-09-19 |
JPH089125B2 true JPH089125B2 (en) | 1996-01-31 |
Family
ID=13016938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5607488A Expired - Fee Related JPH089125B2 (en) | 1988-03-11 | 1988-03-11 | Power supply for electrical discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH089125B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2914102B2 (en) * | 1993-06-30 | 1999-06-28 | 三菱電機株式会社 | Electric discharge machine |
DE4432916C1 (en) * | 1994-09-15 | 1996-04-04 | Agie Ag Ind Elektronik | Process and pulse generator for electroerosive machining of workpieces |
CN104755214B (en) | 2012-10-30 | 2016-08-31 | 三菱电机株式会社 | Wire discharge processing apparatus |
CN108672858B (en) * | 2018-06-30 | 2020-05-22 | 南京理工大学 | Full-bridge staggered parallel bipolar wire cut electrical discharge machining pulse power supply and machining method |
-
1988
- 1988-03-11 JP JP5607488A patent/JPH089125B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01234114A (en) | 1989-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0027041B1 (en) | Wire-cut electric-discharge machine, a power source for such a machine, and a method of wire-cut electric-discharge machining | |
JP2692510B2 (en) | Electric discharge machine | |
JP3882753B2 (en) | Power supply device for wire electric discharge machining and wire electric discharge machining method | |
JPH089125B2 (en) | Power supply for electrical discharge machining | |
WO2014024918A1 (en) | Electric discharge machining device | |
JP2559799B2 (en) | Power supply for electrical discharge machining | |
JPS5926414B2 (en) | Electric discharge machining equipment | |
JPS6368317A (en) | Electric discharge machining device | |
JP2593187B2 (en) | Power supply unit for electric discharge machining | |
JP3627084B2 (en) | Electric discharge machine power supply | |
WO2002102538A1 (en) | Wire electric-discharge machining method and device | |
JP3252622B2 (en) | Machining power supply controller for wire electric discharge machine | |
JPH11347844A (en) | Electric discharge machining method and power supply unit therefor | |
JPH0431805B2 (en) | ||
RU2140834C1 (en) | Method for electric-spark alloying and apparatus for performing the same | |
GB2081633A (en) | Electrical discharge machining method and apparatus | |
JPS61260921A (en) | Power source for electric discharge machining | |
EP0185101B1 (en) | Power source for discharge machining | |
JPH0230431A (en) | Power unit for discharge processing | |
JP2547365B2 (en) | EDM power supply | |
JP2696388B2 (en) | Power supply unit for electric discharge machining | |
JP3360619B2 (en) | Electric discharge machine | |
JPH059209B2 (en) | ||
JPH11333632A (en) | Electrical discharging device | |
JPS60146624A (en) | Method of electric discharge machining and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |