JPS61260921A - Power source for electric discharge machining - Google Patents

Power source for electric discharge machining

Info

Publication number
JPS61260921A
JPS61260921A JP10139585A JP10139585A JPS61260921A JP S61260921 A JPS61260921 A JP S61260921A JP 10139585 A JP10139585 A JP 10139585A JP 10139585 A JP10139585 A JP 10139585A JP S61260921 A JPS61260921 A JP S61260921A
Authority
JP
Japan
Prior art keywords
inductance
discharge machining
electric discharge
switching
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10139585A
Other languages
Japanese (ja)
Other versions
JPH0558845B2 (en
Inventor
Toshio Suzuki
俊雄 鈴木
Takeshi Yatomi
弥冨 剛
Takuji Magara
卓司 真柄
Masahiro Yamamoto
政博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10139585A priority Critical patent/JPS61260921A/en
Publication of JPS61260921A publication Critical patent/JPS61260921A/en
Publication of JPH0558845B2 publication Critical patent/JPH0558845B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize an output voltage with respect to the variation of a floating capacitance and obtain a good-quality and uniform machining surface by switching the inductance of a variable-inductance coupling coil, within a proper range by a switching means. CONSTITUTION:When the on-off control of a switching element 2 is repeated at a frequency of several MHz by means of a driving circuit 3, the both-end voltage of a floating capacitance 8, i.e., a high-frequency AC voltage is generat ed across poles 6, to carry out electric discharge machining. In order to obtain a uniform machining surface, it is necessary to restrain the variation in the output voltage with respect to the changes in a floating capacitance 8 and a floating inductance 7. Thereupon, by properly switching the inductance of a variable-inductance coupling coil 10 which is sufficiently larger than the induct ance of the floating inductance 8, the output voltage can be stabilized. According ly, an extremely good-quality and uniform machining surface can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来困難とされていた面粗度1μmRmax以
下の仕上面を得ることのできる放電加工用電源に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power source for electric discharge machining that can obtain a finished surface with a surface roughness of 1 μmRmax or less, which has been considered difficult in the past.

[従来の技術] 一般に交流高周波による放電加工は、平均加工電圧が0
となるため、電解作用によるチッピング(欠落現象)が
発生せず、−回の半波放電ごとに極性が変わり、放電点
が異なるため、fiめで良質の加工面が得られるという
優れた加工特性な持っている。第7図は従来の放電加工
用の交流高周波電源の回路図である。第7図において、
(1)は直流電源、(2)はスイッチング素子、(3)
はスイッチング素子(21を駆動するための駆動回路、
(4)は電流制限の抵抗器、(5)は結合トランス、(
6)は加工用電極と被加工物とから形成される極間、(
7)は電流供給線及び極間(6)に存在する浮遊インダ
クタンス、(8)は同じく電流供給線及び極間(6)に
存在する浮遊キャパシタンスである。
[Prior art] In general, electric discharge machining using AC high frequency has an average machining voltage of 0.
Therefore, chipping (missing phenomenon) due to electrolytic action does not occur, and the polarity changes every - half-wave discharge, and the discharge point is different, so it has excellent machining characteristics such as being able to obtain a high-quality machined surface at fi. have. FIG. 7 is a circuit diagram of a conventional AC high frequency power source for electrical discharge machining. In Figure 7,
(1) is a DC power supply, (2) is a switching element, (3)
is a switching element (drive circuit for driving 21,
(4) is a current limiting resistor, (5) is a coupling transformer, (
6) is the gap formed between the machining electrode and the workpiece, (
7) is a floating inductance that exists between the current supply line and the gap (6), and (8) is a floating capacitance that also exists between the current supply line and the gap (6).

次に、第7図に示した従来の放電加工用の交流高周波を
源の動作について説明する。スイッチング素子(2)が
駆動回路(3)により数百〜数MHzの周波数でスイッ
チング動作をすると、結合トランス(5)の1次側(直
流を勇側)には交流パルスが発生する。1矢側で発生し
た変流パルスが結合トランス(5)の2次側(vl、間
(6)側)に誘導されると、結合トランス(5)と極間
(6)との間に存在する浮遊インダクタンス(7)及び
浮遊キャパシタンス(8)の共振回路により決定される
又流高周波電圧が極間(6)に供給される°、他極間6
)に供給される電圧により、加工電極と被加工物との間
に放電が発生し、加工電極と被加工物との間の相対位置
を三次元的に移動させることにより被加工物が所望の加
工形状に加工される。こ・の場合、加工面の特性は極間
(6)に供給される電圧により大きく左右され、この電
圧は浮遊インダクタンス(7)及び浮遊キャパシタンス
(8;によって決定される。通常、浮遊インダクタンス
(7)は0.1〜数μH1#遊キヤパシタンス(8)は
数百〜数千pF8度であるが、共振回路が加工機本体及
び被加工物を包含したものとなるため1機械的構造の差
によるばらつきを持つ。又、浮遊キャパシタンス(8)
は加工中の電極、被加工物間距離及び対向面積などの変
化によっても大きく変動する。
Next, the operation of the conventional AC high frequency source for electric discharge machining shown in FIG. 7 will be explained. When the switching element (2) performs a switching operation at a frequency of several hundred to several MHz by the drive circuit (3), an alternating current pulse is generated on the primary side (direct current side) of the coupling transformer (5). When the current pulse generated on the first arrow side is induced to the secondary side (vl, between (6) side) of the coupling transformer (5), a current pulse exists between the coupling transformer (5) and the between poles (6). A current high frequency voltage determined by a resonant circuit of stray inductance (7) and stray capacitance (8) is supplied between the poles (6), and between the other poles 6
), an electrical discharge is generated between the machining electrode and the workpiece, and the relative position between the machining electrode and the workpiece is moved three-dimensionally, thereby moving the workpiece to the desired position. Processed into a processed shape. In this case, the characteristics of the machined surface are greatly influenced by the voltage supplied between the electrodes (6), and this voltage is determined by the stray inductance (7) and the stray capacitance (8). ) is 0.1 to several μH1 There is variation.Also, stray capacitance (8)
varies greatly depending on changes in the electrode during processing, the distance between workpieces, the facing area, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成の従来の交流高周波電源は実際極間(6)に供
給される電圧が浮遊インダクタンス(7)及び浮遊キャ
パシタンス(8)により大きく変動してしまうので、常
に安定した加工特性を維持することは困難であるという
問題があった。こうした問題点を改善するためには1周
波数を可変にして同調を取り極間(6)VcFh望の電
圧を供給すれば良いのであるが、加工中のt′?M、被
加工物間距離及び対向面積変化に起因する浮遊キャパシ
タンス(8)の変動に対してはまったく無力である上、
加工電源がきわめて高価なものとなり、さらに作業者の
操作が繁雑になってしまう。また、結合トランス(5)
についても特性のばらつきを少なくすることが難かしく
、安定した電源特性を確保することが困難であるという
問題があった。
In the conventional AC high frequency power supply with the above configuration, the voltage supplied between the electrodes (6) fluctuates greatly due to stray inductance (7) and stray capacitance (8), so it is difficult to maintain stable processing characteristics at all times. The problem was that it was difficult. In order to improve these problems, it is possible to make one frequency variable, tune it, and supply the desired voltage between the poles (6) VcFh, but t' during machining? M, is completely powerless against fluctuations in stray capacitance (8) caused by changes in the distance between workpieces and opposing areas;
The processing power source becomes extremely expensive, and furthermore, the operation by the operator becomes complicated. In addition, the coupling transformer (5)
There is also a problem in that it is difficult to reduce variations in characteristics and it is difficult to ensure stable power supply characteristics.

本発明は上記問題点を解消するためになされたもので、
放電加工機特有の浮遊キャパシタンスのバラつぎ及び変
動に対して、常に面組度の小さな良質加工面を得ること
ができるとともに、安価で加工適用範囲の広い放電加工
用電源を得ることを目的とする。
The present invention was made to solve the above problems, and
The purpose is to obtain a power source for electrical discharge machining that can always obtain a high-quality machined surface with a small degree of surface assemblage against fluctuations in stray capacitance peculiar to electric discharge machines, and is inexpensive and has a wide range of machining applications. .

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そこで本発明では、電極と被加工物とを対向配置して形
成しrこ極間に放電を発生させることにより、被加工物
を放電加工する装置の放電加工用電源を、極間に電圧を
印加するための直流電源と、極間と直流電源との間に極
間及び直流電源に対して並列に接続されたスイッチング
素子と、スイッチング素子をオンオフ制御することによ
って極間に又流電圧を発生させる駆動回路と、直流電源
とスイッチング素子との間に接続された電流制限用の抵
抗器と、スイッチング素子と極間との間に接続された結
合コンデンサと、結合コンデンサと前′記極間との間に
接続された可変インダクタンス結合コイルと、可変イン
ダクタンス結合コイルのインダクタンスを切り換えるた
めの切換手段とから構成する。
Therefore, in the present invention, an electrode and a workpiece are arranged facing each other, and an electric discharge is generated between the electrodes. A DC power supply for voltage application, a switching element connected between the poles and the DC power supply in parallel to the poles and the DC power supply, and a current voltage generated between the poles by controlling the switching element on and off. a current-limiting resistor connected between the DC power supply and the switching element, a coupling capacitor connected between the switching element and the electrode gap, and a coupling capacitor and the electrode gap connected to each other; The variable inductance coupling coil is connected between the variable inductance coupling coil and the switching means for switching the inductance of the variable inductance coupling coil.

〔作 用〕[For production]

上記構成の放電加工用電源は、駆動回路によってスイッ
チング素子をオンオフ制御して極間に高周波電圧を印加
して放電加工を行なう。その際、切換手段によって可変
インダクタンス結合コイルのインダクタンスを適正に切
り換えることにより、出力電圧を安定させる。
The electrical discharge machining power supply having the above configuration performs electrical discharge machining by controlling the switching elements on and off using the drive circuit and applying a high frequency voltage between the electrodes. At this time, the output voltage is stabilized by appropriately switching the inductance of the variable inductance coupling coil using the switching means.

〔実施例〕〔Example〕

以下1本発明の一実施例を添付図面を参照して詳細に説
明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係る放電加工用電源の回路図である。FIG. 1 is a circuit diagram of a power source for electric discharge machining according to the present invention.

第1図において、(1)は直流電源、(2)はスイッチ
ング素子、(3)はスイッチング素子(2)を駆動する
ための駆動回路、(4)は電流制限用の抵抗器、(6)
は加工電極と被加工物とから形成される極間、(7)は
電流供給線及び極間(6)などに存在する浮遊インダク
タンス、(8)は電流供給線及び極間(6)などに存在
する浮遊キャパシタンス、(9)はスイッチング素子(
2)と極間(6)の間に設けられた結合コンデンサ。
In Figure 1, (1) is a DC power supply, (2) is a switching element, (3) is a drive circuit for driving the switching element (2), (4) is a resistor for current limiting, (6)
is the gap formed between the machining electrode and the workpiece, (7) is the stray inductance that exists between the current supply line and the gap (6), etc., and (8) is the stray inductance that exists in the current supply line and the gap (6), etc. The stray capacitance that exists, (9) is the switching element (
2) and a coupling capacitor provided between the poles (6).

(1υは結合コンデンサ(9)と極間(6)の間に設け
られた可変インダクタンス結合コイル、 C11lは可
変インダクタンス結合コイル(Lolを切り換えるリレ
ー接点(切換手段)である。
(1υ is a variable inductance coupling coil provided between the coupling capacitor (9) and the pole gap (6), and C11l is a relay contact (switching means) for switching the variable inductance coupling coil (Lol).

次に本発明に係る放電加工用電源の全体の動作について
説明する。なお、可変インダクタンス(lO1結合コイ
ル0αのインダクタンスは浮遊インダクタンス(8)の
インダクタンスに較べて十分に大きいものとする。
Next, the overall operation of the electric discharge machining power supply according to the present invention will be explained. Note that the inductance of the variable inductance (lO1 coupling coil 0α) is sufficiently larger than the inductance of the floating inductance (8).

ま°ず、スイッチング素子(2)をオフにすると、第2
図に示すように直流電源(1)(El、抵抗器(4) 
(R1)、結合コンデンサ(91(Cs)、可変インダ
クタンス結合コイル0α(Ll)及び浮遊キャパシタン
ス(81(Cz )から構成される直列回路に、同図中
矢印で示す方向に電流が流れ、結合コンデンサ(9)及
び浮遊キャパシタンス(8)は充電されろ。次に、スイ
ッチング素子(2)をオンにすると、第3図に示すよう
に浮遊キャパシタンス(3) (Cz )、可変インダ
クタンス結合コイル(10)(Lt)及び結合コンデン
サ(91(C+)からI11成される直列回路に、同図
中矢印で示す方向に11流が流れ、結合コンデンサ(9
)及び浮遊キャパシタンス(8)は放電される。従って
、駆動回路(3)によって数[MHzlのスイッチング
速度でスイッチング素子(2)゛のオンオフ制御を繰り
返すと、極間(6)には浮遊キャパシタンス(8)の両
端の電圧、即ち変流高周波電圧が発生し、この電圧によ
って極間(6)に放電が生じて放電加工が行なわれるこ
とになる。
First, when switching element (2) is turned off, the second
As shown in the figure, DC power supply (1) (El, resistor (4)
(R1), a coupling capacitor (91 (Cs)), a variable inductance coupling coil 0α (Ll), and a floating capacitance (81 (Cz)). (9) and the stray capacitance (8) are charged.Next, when the switching element (2) is turned on, the stray capacitance (3) (Cz) and the variable inductance coupling coil (10) are charged as shown in FIG. (Lt) and the coupling capacitor (91 (C+)) to the series circuit formed by I11, 11 currents flow in the direction shown by the arrow in the figure, and the coupling capacitor (91 (C+)
) and the stray capacitance (8) are discharged. Therefore, when the drive circuit (3) repeats on/off control of the switching element (2) at a switching speed of several MHz, the voltage across the floating capacitance (8), that is, the variable current high-frequency voltage, appears between the electrodes (6). is generated, and this voltage causes electrical discharge to occur in the gap (6), resulting in electrical discharge machining.

前述した様に、放電加工装置の電気回路は加工機本体及
び加工間隙を包含したものであり、放電加工装置の機械
的な構造の違い又は電極と被加工物との間の距離及び対
向面積の変化などにより。
As mentioned above, the electrical circuit of the electrical discharge machining device includes the machine body and the machining gap, and there are differences in the mechanical structure of the electrical discharge machining device or the distance and opposing area between the electrode and the workpiece. Due to changes etc.

浮遊キャパシタンス(8)の容量が大ぎく変動する。The capacitance of the floating capacitance (8) varies greatly.

また、電流供給線の端末処理の方法などにより。Also, depending on the method of terminal treatment of the current supply line, etc.

浮遊インダクタンス(7)のインダクタンスも大きく変
動することになる。均一な加工面を得るためには、この
ような浮遊キャパシタンス(8)及び浮遊インダクタン
ス(7)の変化に対して、出力電圧の変動を抑えること
が必要となる。第4図は可変インダクタンス結合コイル
(10)をパラメータとした、浮遊キャパシタンス(8
)の変動に対する出力電圧の変化を示した図であって、
同図中A、B及びCは可変インダクタンス結合コイル帥
のインダクタンスfiOのインダクタンスを50〔μH
〕、10〔μH〕及び1[μH]とした場合を示すもの
である。同図から明らかなように、出力電圧は可変イン
ダクタンス結合コイル(1■のインダクタンスを10〔
μH〕にすると、少なくとも浮遊キャパシタンス(8)
の変動範囲約500〜1000[:pF]で安定する。
The inductance of the stray inductance (7) will also vary greatly. In order to obtain a uniform machined surface, it is necessary to suppress fluctuations in the output voltage with respect to such changes in the floating capacitance (8) and the floating inductance (7). Figure 4 shows the stray capacitance (8) with the variable inductance coupling coil (10) as a parameter.
) is a diagram showing changes in output voltage with respect to fluctuations in
In the same figure, A, B, and C represent the inductance of the inductance fiO between the variable inductance coupling coils at 50 [μH].
], 10 [μH] and 1 [μH]. As is clear from the figure, the output voltage is determined by changing the inductance of the variable inductance coupling coil (1
μH], at least the stray capacitance (8)
It is stable within a fluctuation range of about 500 to 1000 [:pF].

第5図は第1図に示した可変インダクタンス結合コイル
(11のインダクタンスを20〔μH〕と5〔μH〕の
2段に切り換えられるようにしたときの出力電圧の変化
を示した図であって、同図中入が20CμHIBが5〔
μH〕 のときの出力電圧を示している。同図から明ら
かなように可変インダクタンス結合コイル(11のイン
ダクタンスが20〔μH〕又は5[μH]のいずれであ
っても、浮遊キャパシタンス(8)の変動範囲500〜
1000 [pH]で出力電圧は安定する。そこで、加
工条件に応じて、リレー接点αDを適当に切り換えるこ
とによって出刃電圧を7切り換えて放電加工を行なうよ
うにする。
FIG. 5 is a diagram showing changes in output voltage when the inductance of the variable inductance coupling coil (11) shown in FIG. 1 can be switched to two stages of 20 [μH] and 5 [μH]. , the inside of the figure is 20CμHIB is 5 [
μH]. As is clear from the figure, regardless of whether the inductance of the variable inductance coupling coil (11 is 20 [μH] or 5 [μH]), the variation range of the stray capacitance (8) is 500 to 500 [μH].
The output voltage becomes stable at 1000 [pH]. Therefore, by appropriately switching the relay contact αD according to the machining conditions, the cutting voltage is switched by 7 to perform electrical discharge machining.

なお1通常の放電加工における仕上加工は加工の進行と
ともに電気的な条件を切り換えて、i&終的に良質加工
面及び所望の加工精度を得るようにしている。そこで、
本実施例では直流を源(1)の電圧の切り換えと可変イ
ンダクタンス結合コイル00)のインダクタンスの切り
換えとを組み合わせて、出力電圧の範囲を広げ、より細
かい電気的な条件の選択を可能にした。
Note that in finishing machining in ordinary electric discharge machining, the electrical conditions are switched as the machining progresses to ultimately obtain a high-quality machined surface and desired machining accuracy. Therefore,
In this embodiment, switching the voltage of the DC source (1) and switching the inductance of the variable inductance coupling coil 00) are combined to widen the output voltage range and enable more detailed selection of electrical conditions.

次に第6図は本発明の他の実施例である放電加工用電源
の回路図である。なお、第6図において第1図と同様の
機能を果たす部分については同一の符号を付し、その説
明は省略する。上記実施例では、可肇インダクタンス結
合コイル01としてインダクタンスの異なる2つのコイ
ルを並列に接続したもの、切換手段としてこの2つのコ
イルにそれぞれ直列に接続したリレー接点Ql)を用い
たが、本実施例においては、可変インダクタンス結合コ
イルσ(力として2つのコイルを直列に接続しにもの切
換手段としてこの2つのコイルにそれぞれ並列に接続し
たリレー接点(1])を甲いている。
Next, FIG. 6 is a circuit diagram of a power source for electrical discharge machining according to another embodiment of the present invention. Note that in FIG. 6, parts that perform the same functions as those in FIG. In the above embodiment, two coils with different inductances were connected in parallel as the variable inductance coupling coil 01, and a relay contact Ql) connected in series with each of these two coils was used as the switching means. In this case, a variable inductance coupling coil σ (two coils connected in series as a force and a relay contact (1) connected in parallel to each of the two coils as a switching means) is used.

なお、第1図及び第6図に示した実施例では切換手段と
してリレー接点(11)を使用したが、他の切換手段、
例えばロータリースイッチなどでも良い。
Note that in the embodiments shown in FIGS. 1 and 6, a relay contact (11) was used as the switching means, but other switching means,
For example, a rotary switch may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極と被加工物と
を対向配置して形成した極間に放電を発生させることに
より、被加工物を放電加工する装置の放電加工用電源を
、極間に電圧を印加するための直流電源と、極間と直流
電源との間に徐開及び直・流電源に対して並列に接iさ
れたスイッチング素子と、スイッチング素子をオンオフ
制御することによって極間に交流電圧を発生させる駆動
回路と、直流電源とスイッチング素子との間に接続され
た電流制限用の抵抗器と、スイッチング素子と極間との
間に接続された結合コンデンサと、結合コンデンサと前
記極間との間に接続された可変インダクタンス結合コイ
ルと、可変インダクタンス結合コイルのインダクタンス
を切り換えるための切換手段とから構成し、切換手段に
よって可変インダクタンス結合コイルのインダクタンス
を適正な範囲内で切り換えることにより、放電加工機特
有の浮遊キャパシタンスの変動に対して出力電圧を安定
させることができるので、極めて良質で均一な加工面を
得ることができる。
As explained above, according to the present invention, the electrical discharge machining power supply of the apparatus for electrical discharge machining of the workpiece is made extremely efficient by generating electrical discharge between the poles formed by arranging the electrode and the workpiece facing each other. A DC power supply for applying a voltage between the poles, a switching element connected between the poles and the DC power supply in parallel with the DC power supply, and a switching element connected in parallel to the DC/current power supply between the poles and the poles by controlling on/off of the switching elements. A drive circuit that generates an alternating current voltage between the two, a current limiting resistor connected between the direct current power supply and the switching element, a coupling capacitor connected between the switching element and the pole, and a coupling capacitor and It is composed of a variable inductance coupling coil connected between the poles and a switching means for switching the inductance of the variable inductance coupling coil, and the switching means switches the inductance of the variable inductance coupling coil within an appropriate range. As a result, it is possible to stabilize the output voltage against fluctuations in stray capacitance peculiar to electric discharge machines, so it is possible to obtain an extremely high-quality and uniform machined surface.

又、可変インダクタンス結合コイルのインダクタンスの
切り換えにより出力電圧を変えられるので、加工適用範
囲が広くなる。
Furthermore, since the output voltage can be changed by switching the inductance of the variable inductance coupling coil, the range of processing applications is widened.

さらに、従来の様にスイッチング周波数を変える必要が
ないので、同調回路が不要となり、極めて安価な放電加
工用電源が得られる。
Furthermore, since there is no need to change the switching frequency as in the conventional case, a tuning circuit is not required, and an extremely inexpensive power source for electrical discharge machining can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放電加工用電源の回路図。 第2図及び!3図は第1図に示した放電加工用電源の動
作説明図、第4図及び第5図は第1図に示した放電加工
用電源の浮遊キャパシタンスの変動に対する出力電圧の
特性を示す特性図、第6図は本発明の他の実施例である
放電加工用電源の回路図、第7図は従来の放電加工用電
源の回路図である。 図中、1は直流電源、2はスイッチング素子、3は駆動
回路、4は抵抗器、6は極間、7は浮遊インダクタンス
、8は浮遊キャパシタンス、9は結合コンデンサ、10
は可変インダクタンス結合コイル、11はリレー接点で
ある。 なお、各図中同一符号は同−又は相当部分な示すもので
ある。 代理人 弁理士 佐 藤 正 年 第2図  1・直流電源 7: ン字妨1インダクグンス 8: 5季造1午Vノでシタンス 第 3 図        9:締金コンデンサ第4図 第5図 第6図 第7図 手続補正書(自発) 昭和61年1月13日
FIG. 1 is a circuit diagram of a power source for electrical discharge machining according to the present invention. Figure 2 and! Figure 3 is an explanatory diagram of the operation of the electric discharge machining power supply shown in Figure 1, and Figures 4 and 5 are characteristic diagrams showing the characteristics of the output voltage with respect to fluctuations in stray capacitance of the electric discharge machining power supply shown in Figure 1. , FIG. 6 is a circuit diagram of a power source for electric discharge machining according to another embodiment of the present invention, and FIG. 7 is a circuit diagram of a conventional power source for electric discharge machining. In the figure, 1 is a DC power supply, 2 is a switching element, 3 is a drive circuit, 4 is a resistor, 6 is a gap between electrodes, 7 is a floating inductance, 8 is a floating capacitance, 9 is a coupling capacitor, 10
1 is a variable inductance coupling coil, and 11 is a relay contact. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Patent Attorney Tadashi Sato Figure 2 1. DC power supply 7: N-shape 1 Inductance 8: 5 Kizo 1: V-no power supply Figure 3 Figure 9: Clamping capacitor Figure 4 Figure 5 Figure 6 Figure 7 Procedural amendment (voluntary) January 13, 1985

Claims (4)

【特許請求の範囲】[Claims] (1)電極と被加工物とを対向配置して形成した極間に
放電を発生させることにより、該被加工物を放電加工す
る装置の放電加工用電源において、前記極間に電圧を印
加するための直流電源と、前記極間と直流電源との間に
該極間及び直流電源に対して並列に接続されたスイッチ
ング素子と、該スイッチング素子をオンオフ制御するこ
とによつて前記極間に交流電圧を発生させる駆動回路と
、前記直流電源とスイッチング素子との間に接続された
電流制限用の抵抗器と、前記スイッチング素子と極間と
の間に接続された結合コンデンサと、該結合コンデンサ
と前記極間との間に接続された可変インダクタンス結合
コイルと、該可変インダクタンス結合コイルのインダク
タンスを切り換えるための切換手段とを備えたことを特
徴とする放電加工用電源。
(1) A voltage is applied between the electrodes in the electric discharge machining power supply of the apparatus for electrical discharge machining the workpiece by generating an electric discharge between the electrodes formed by arranging the electrodes and the workpiece so as to face each other. a switching element connected between the electrode gap and the DC power source in parallel to the electrode gap and the DC power source; and a switching element connected between the electrode gap and the DC power source in parallel to the electrode gap and the DC power source; a drive circuit that generates a voltage; a current-limiting resistor connected between the DC power supply and the switching element; a coupling capacitor connected between the switching element and the pole; and the coupling capacitor. A power source for electric discharge machining, comprising: a variable inductance coupling coil connected between the electrodes; and switching means for switching the inductance of the variable inductance coupling coil.
(2)可変インダクタンス結合コイルは、インダクタン
スが前記極間の浮遊インダクタンスのインダクタンスに
較べて十分に大きい特許請求の範囲第1項記載の放電加
工用電源。
(2) The electric discharge machining power supply according to claim 1, wherein the variable inductance coupling coil has an inductance that is sufficiently larger than the inductance of the stray inductance between the poles.
(3)可変インダクタンス結合コイルは、インダクタン
スの異なる複数のコイルを並列に接続したものであり、
切換手段は該複数のコイルにそれぞれ直列に接続したリ
レー接点である特許請求の範囲第1項記載の放電加工用
電源。
(3) A variable inductance coupling coil is a combination of multiple coils with different inductances connected in parallel.
2. The electric discharge machining power supply according to claim 1, wherein the switching means is a relay contact connected in series to each of the plurality of coils.
(4)可変インダクタンス結合コイルは、インダクタン
スの異なる複数のコイルを直列に接続したものであり、
切換手段は該複数のコイルにそれぞれ並列に接続したリ
レー接点である特許請求の範囲第1項記載の放電加工用
電源。
(4) A variable inductance coupling coil is a combination of multiple coils with different inductances connected in series.
2. The electric discharge machining power supply according to claim 1, wherein the switching means is a relay contact connected in parallel to each of the plurality of coils.
JP10139585A 1985-05-15 1985-05-15 Power source for electric discharge machining Granted JPS61260921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139585A JPS61260921A (en) 1985-05-15 1985-05-15 Power source for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139585A JPS61260921A (en) 1985-05-15 1985-05-15 Power source for electric discharge machining

Publications (2)

Publication Number Publication Date
JPS61260921A true JPS61260921A (en) 1986-11-19
JPH0558845B2 JPH0558845B2 (en) 1993-08-27

Family

ID=14299550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139585A Granted JPS61260921A (en) 1985-05-15 1985-05-15 Power source for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS61260921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144618A (en) * 1988-07-22 1992-09-01 Fujitsu Limited Optical disc medium
DE4422834A1 (en) * 1993-06-30 1995-01-12 Mitsubishi Electric Corp Method and device for electrical discharge machining using variable capacitance and variable inductance
US6069335A (en) * 1997-03-12 2000-05-30 Mitsubishiki Denki Kabushiki Kaisha Electric discharge machine
DE4447649C2 (en) * 1993-06-30 2002-03-07 Mitsubishi Electric Corp Appts. and method for electric discharge machining with the use of variable capacitance and variable inductance
JP2006321007A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Power supply device for electrical discharge machine and wire electrical discharge machining device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162822A1 (en) * 2013-04-04 2014-10-09 西部電機株式会社 Electrical discharge machining device, electrical discharge machining method, and design method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144618A (en) * 1988-07-22 1992-09-01 Fujitsu Limited Optical disc medium
DE4422834A1 (en) * 1993-06-30 1995-01-12 Mitsubishi Electric Corp Method and device for electrical discharge machining using variable capacitance and variable inductance
DE4422834C2 (en) * 1993-06-30 2000-03-23 Mitsubishi Electric Corp Method and device for electrical discharge machining using variable capacitance and variable inductance
DE4447649C2 (en) * 1993-06-30 2002-03-07 Mitsubishi Electric Corp Appts. and method for electric discharge machining with the use of variable capacitance and variable inductance
DE4447650B4 (en) * 1993-06-30 2004-04-01 Mitsubishi Denki K.K. Electrical discharge machining device using variable capacitance and variable inductance
US6069335A (en) * 1997-03-12 2000-05-30 Mitsubishiki Denki Kabushiki Kaisha Electric discharge machine
DE19740714C2 (en) * 1997-03-12 2002-09-12 Mitsubishi Electric Corp EDM machine
JP2006321007A (en) * 2005-05-19 2006-11-30 Mitsubishi Electric Corp Power supply device for electrical discharge machine and wire electrical discharge machining device

Also Published As

Publication number Publication date
JPH0558845B2 (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP2914104B2 (en) Electric discharge machining method and apparatus, and variable electrostatic capacity and variable inductance applicable to this electric discharge machine
US6244939B1 (en) Micro-discharge truing device and fine machining method using the device
JPS61260921A (en) Power source for electric discharge machining
JPS61260915A (en) Power source for electric discharge machining
WO1985003894A1 (en) Power source for electric discharge machining
JPH0431805B2 (en)
EP0034477B1 (en) A power source circuit for an electric discharge machine
JP3664879B2 (en) Electric discharge machining method and electric discharge machining apparatus
JPS61260916A (en) Power source for electric discharge machining
RU2245767C1 (en) Apparatus for electric spark alloying
JPS61260922A (en) Power source for electric discharge machining
JPS61260914A (en) Power source for electric discharge machining
JPH11347844A (en) Electric discharge machining method and power supply unit therefor
JPH01234114A (en) Power supply device for electric discharge machining
JPS61260918A (en) Power source for electric discharge machining
JPS61260920A (en) Power source for electric discharge machining
JPS61260919A (en) Power source for electric discharge machining
GB2054436A (en) Electrical discharge machining using controlled low stray capacitances
US4754177A (en) Device for magnetic pulse treatment of ferromagnetic material
JPH068049A (en) Electric discharge machining device
JP3360619B2 (en) Electric discharge machine
JPS6416316A (en) Electric discharge machine
JPS5973226A (en) Machining power supply of electric discharge machining device
JP2984664B2 (en) Electric discharge machine
JPH02279214A (en) Power supply for electric discharge machining