JPS5973226A - Machining power supply of electric discharge machining device - Google Patents
Machining power supply of electric discharge machining deviceInfo
- Publication number
- JPS5973226A JPS5973226A JP18421382A JP18421382A JPS5973226A JP S5973226 A JPS5973226 A JP S5973226A JP 18421382 A JP18421382 A JP 18421382A JP 18421382 A JP18421382 A JP 18421382A JP S5973226 A JPS5973226 A JP S5973226A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- feeder
- power supply
- low
- rough
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H11/00—Auxiliary apparatus or details, not otherwise provided for
- B23H11/006—Electrical contacts or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H2300/00—Power source circuits or energization
- B23H2300/20—Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits
- B23H2300/22—Circuits using or taking into account line impedance to shape the discharge pulse
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、放電加工装置の加工用電源、特に被加工物と
これに対向させて配置した電極との間に加工用エネルギ
を供給する加工用軍源蹟関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a machining power source for an electric discharge machining device, and particularly to a machining source that supplies machining energy between a workpiece and an electrode placed opposite thereto. be.
従来の放電加工装置の加工電源として第1図に示すもの
があった。第1図において、直流電源10の正側はフィ
ーダ12を介して被加工物14に接続し、負側はスイッ
チング素子として複数個のトランジスタ16〜20のエ
ミッタに接続し、この各トランジスタ16〜20の夫々
のコレクタに電流制限抵抗22〜26とダイオード28
〜32を結線し、上記電流制限抵抗22〜26の一端翻
は共通フィーダ12を介して上記被加工物14と対向位
置する電極34に接続し、上記ダイオード28〜32の
一端側はまとめて上記直流電源10の正側に接続され、
上記トランジスタ16〜20の各ペースにパルス発振器
36が接続されている。図示例は上記のように被加工物
14が直流電源10の正側に電極34が負側に接続され
ているが逆の場合もある。As a machining power source for a conventional electrical discharge machining device, there is one shown in FIG. In FIG. 1, the positive side of a DC power supply 10 is connected to a workpiece 14 via a feeder 12, and the negative side is connected to the emitters of a plurality of transistors 16 to 20 as switching elements. Current limiting resistors 22 to 26 and diodes 28 are connected to the respective collectors of
- 32 are connected, one ends of the current limiting resistors 22 - 26 are connected via the common feeder 12 to an electrode 34 located opposite the workpiece 14, and one ends of the diodes 28 - 32 are connected together as described above. Connected to the positive side of the DC power supply 10,
A pulse oscillator 36 is connected to each pace of the transistors 16-20. In the illustrated example, as described above, the workpiece 14 is connected to the positive side of the DC power supply 10 and the electrode 34 is connected to the negative side, but the reverse may be the case.
従来の加工用電源は上記の回路構成からなるもので、以
下、その作用を説明する。パルス発信器36からの信号
によシトランジスタ16〜20がオン・オフ制御され、
被加工物14と電極34との間(以下、極間と称す)に
電圧が印加され、この電圧印加によって極間は絶縁破壊
されて電流が流れる。このとき、極間に流れる電流はト
ランジスタ16〜20の1個あるいは複数個の組み合わ
せによって決められる。トランジスタ20は最小面粗度
を得る条件となるように電流制限抵抗26の抵抗値が設
定され、通常他の抵抗28.30の抵抗値よシ大きい値
となる。A conventional processing power source has the above-mentioned circuit configuration, and its operation will be explained below. The transistors 16 to 20 are controlled on and off by a signal from a pulse generator 36,
A voltage is applied between the workpiece 14 and the electrode 34 (hereinafter referred to as the electrode gap), and this voltage application causes dielectric breakdown in the electrode gap and current flows. At this time, the current flowing between the electrodes is determined by one or a combination of transistors 16 to 20. In the transistor 20, the resistance value of the current limiting resistor 26 is set to meet the condition for obtaining the minimum surface roughness, and is usually larger than the resistance values of the other resistors 28 and 30.
第2図は、荒加工及び中加工における極間の電圧・電流
波形図で、(a)は電圧波形、(b)は電流波形である
。第2図において、電流波形の立上シは次式で表わされ
る。FIG. 2 is a diagram of voltage and current waveforms between the machining electrodes during rough machining and semi-machining, where (a) shows the voltage waveform and (b) shows the current waveform. In FIG. 2, the rise of the current waveform is expressed by the following equation.
ここで、v2は極間でのアーク電位、Rは抵抗22〜2
6の複数個の組み合わせによる全抵抗値、Lはフィーダ
ー2のインダクタンスであシ、抵抗等のインダクタンス
は無視する。Here, v2 is the arc potential between the poles, R is the resistance 22~2
6, L is the inductance of the feeder 2, and inductances such as resistances are ignored.
上記の式によれば、電流の立上シは、時定数丁を持つ指
数関数である。電流の立下シは、トランジスタをOFF
にしたときから始まシ、フィーダー2のインダクタンス
によシミ流は流れ続け、ダイオード28〜32を通り、
時定数L/几を持つ指数関数となる。例えば1t=10
、L=10μHとすると時定数は10μ廐となシ、電流
の影響が無視される値にまで電流値が減少するまでには
3〜4倍の時間を用するため、休止時間はその時間に更
にアーク防止に必要な時間を加えた時間を必要とする。According to the above equation, the current rise is an exponential function with a time constant of d. When the current falls, the transistor is turned off.
Starting from the time when , the stain current continues to flow due to the inductance of feeder 2, passing through diodes 28 to 32,
It becomes an exponential function with a time constant L/L. For example, 1t=10
, if L = 10 μH, the time constant is about 10 μH, and since it takes 3 to 4 times the time for the current value to decrease to a value where the influence of the current is ignored, the rest time is equal to that time. Furthermore, the time required for arc prevention is added.
そのため、休止時間が長くなシ、加工時間の損失となる
。例えば、ワイヤカット放電加工方法では、アーク防止
に必要な時間は6〜10μ就程度であるため、加工時間
の損失は大きなものとなる。Therefore, the down time is long and processing time is lost. For example, in the wire-cut electrical discharge machining method, the time required to prevent arcing is about 6 to 10 μm, so the loss in machining time is large.
一般に上記損失を防止するために、フィーダ12のイン
ダクタンスは極力小さくする工夫がなされている。例え
ばフィーダ12を低インダクタンスの同軸ケーブルを使
用する等である。−例として、L=1μI−1、几=1
0とすると、時定数は1μ冠となジ、休止時間はアーク
防止に必要な時間に近づくや
第3図は但インダクタンスの同軸クープルを使用した場
合の電圧・電流波形図で、(a)は電圧波形、(b)は
電流波形である。第2図と第3図を比較すると、繰シ返
えし周波数が増加していることが容易に判断できる。Generally, in order to prevent the above-mentioned loss, efforts are made to reduce the inductance of the feeder 12 as much as possible. For example, a low inductance coaxial cable may be used for the feeder 12. - As an example, L=1μI-1, 几=1
If it is set to 0, the time constant will be 1μ, and the rest time will approach the time required for arc prevention. Figure 3 shows the voltage and current waveform diagram when using a coaxial couple with inductance, and (a) is The voltage waveform (b) is the current waveform. Comparing FIG. 2 and FIG. 3, it can be easily determined that the repetition frequency has increased.
ところが、低インダクタンスの同軸ケーブルはキャパシ
タンスが大きい。そのため、低面粗度加工においてはキ
ャパシタンスの影響が大きく、1〜3μRmaxの面粗
度が得られない場合もあった。すなわち、荒加工・中加
工の加工速度を速くするように低インダクタンスケーブ
ルを使用すると、低面粗度加工が不可能となっていた。However, low-inductance coaxial cables have large capacitance. Therefore, in low surface roughness processing, the influence of capacitance is large, and there are cases where a surface roughness of 1 to 3 μRmax cannot be obtained. That is, when a low inductance cable is used to increase the processing speed in rough machining and semi-machining, it has become impossible to perform low surface roughness machining.
この現象を第4図について説明すると、同図(a)は仕
上加工時の電圧波形、同図(b)は同電流波形である。This phenomenon will be explained with reference to FIG. 4. FIG. 4(a) shows the voltage waveform during finishing processing, and FIG. 4(b) shows the same current waveform.
電圧印加時に、まず低インダクタンスクープルの浮遊容
量にチャージされ、放電が発生すると、浮遊容量により
コンデンサ放電が発生し、その後パルス電流が供給され
る。すなわち、パルス電流をいかに小さくして低面粗度
を得ようとしても、浮遊容量によるコンデンサ放電のた
め面粗度は悪くなシ、低面粗度加工は不可能となる。When a voltage is applied, the stray capacitance of the low-inductance scoop is first charged, and when discharge occurs, the stray capacitance causes a capacitor discharge, and then a pulse current is supplied. In other words, no matter how small the pulse current is to obtain low surface roughness, the surface roughness is poor due to capacitor discharge due to stray capacitance, and low surface roughness processing becomes impossible.
本発明は前述した従来の課題に鑑み為されたものであシ
、その目的は荒加工・中加工の加工速度の向上を図ると
共に低面粗度加工の可能な加工用電源を提供することに
ある。The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to improve the machining speed of rough machining and semi-machining, and to provide a power source for machining that is capable of machining with low surface roughness. be.
上記目的を達成するために、本発明は荒・中加工用回路
と仕上加工用回路を有する放電加工装置の加工用電源に
おいて、上記荒・中加工用回路の出力は低インダクタン
スフィーダを介して極間に供給印加し、上記仕上加工用
回路の出力は低キヤパシタンスフィーダを介して極間に
供給印加するように構成し、仕上加工時如は上記低イン
ダクタンスフィーダをしゃ断する電磁開閉器を極間近く
に設けたことを特徴とする放電加工装置の加工用電源。In order to achieve the above object, the present invention provides a machining power supply for an electric discharge machining device having a rough/medium machining circuit and a finishing machining circuit, in which the output of the rough/medium machining circuit is transmitted through a low-inductance feeder. The output of the finishing circuit is configured to be applied between the poles via a low capacitance feeder, and when finishing is done, an electromagnetic switch that cuts off the low inductance feeder is connected to the pole. A machining power source for an electric discharge machining device characterized by being installed nearby.
以下、図面に基づいて本発明の好適な実施例を説明する
。第5図は前記第1図と同一部分に同一符号を伺した本
発明加工用電源の回路構成図を示すもので、抵抗22.
24は低インダクタンスケーブル・38及び極間近くに
設けた電磁開閉器4゜を介して電極34に接続し、抵抗
26は低キヤパシタンスケーブル42を介して電極34
に夫々接続した構成である。Hereinafter, preferred embodiments of the present invention will be described based on the drawings. FIG. 5 shows a circuit diagram of the power supply for machining according to the present invention, in which the same parts as in FIG. 1 are denoted by the same reference numerals.
24 is connected to the electrode 34 via a low inductance cable 38 and an electromagnetic switch 4° provided near the poles, and the resistor 26 is connected to the electrode 34 via a low capacitance cable 42.
The configuration is such that the two are connected to each other.
本発明の実施例は以上の構成から成シ、以下にその作用
を説明する。荒加工・中加工時にはパルス発振器36の
出力でトランジスタ16.18をオンさせ、電磁開閉器
40を閉成して極間に電圧を印加する。このとき、加工
電流は低インダクタンスケーブル38を通して流れるた
め、極間の電圧波形及び電流波形は第3図(a)、(b
)の波形となシ、前述のごとく加工速度を速くすること
ができる。The embodiment of the present invention consists of the above configuration, and its operation will be explained below. During rough machining and semi-machining, the output of the pulse oscillator 36 turns on the transistors 16 and 18, closes the electromagnetic switch 40, and applies a voltage between the poles. At this time, since the machining current flows through the low inductance cable 38, the voltage and current waveforms between the electrodes are
), the machining speed can be increased as described above.
次に1仕上加工、つまシ低面粗度加工時には、電磁開閉
器40を開成にして低インダクタンスクープル38を切
シ離す。すなわち、低キヤパシタンスケーブル42を通
してのみ極間に電圧を印加して放電を発生させる。この
仕上加工時における極間の電圧波形及び同電流波形は第
6図(a)、(b)の波形となシ、同図(b)の電流波
形は、従来とは異なってパルス状となシ、放電エネルギ
は所望の値に制御されて低面粗度加工が可能となってい
る。このとき、低キヤパシタンスクープル42のインダ
クタンスLの影響は抵抗26の抵抗値ルが充分に大きい
ため無視される。−例を上げると、低キヤパシタンスケ
ーブルのインダクタンスL=101IH。Next, during the first finishing process, machining to reduce the surface roughness of the bevel, the electromagnetic switch 40 is opened to disconnect the low inductance scoop 38. That is, voltage is applied between the poles only through the low capacitance cable 42 to generate discharge. The voltage waveform and current waveform between the electrodes during this finishing process are different from the waveforms shown in Figures 6(a) and (b), and the current waveform in Figure 6(b) is different from the conventional one and is pulse-shaped. Furthermore, the discharge energy is controlled to a desired value, making it possible to perform machining with low surface roughness. At this time, the influence of the inductance L of the low capacitance scoop 42 is ignored because the resistance value L of the resistor 26 is sufficiently large. - For example, the inductance L of a low capacitance cable = 101IH.
抵抗几0=250Ωとすると、時定数は0.04sec
となシ充分に無視される。なお、ここで、仕上加工時に
低インダクタンスケーブル42を極間の近くにて切シ離
すのは、低インダクタンスクープル42が極間に接続さ
れていると、この浮遊容量のため低面粗度加工が不可能
になるからである。If the resistance value is 0=250Ω, the time constant is 0.04sec.
Tonashi is completely ignored. Note that the reason why the low inductance cable 42 is cut off near the gap during the finishing process is that if the low inductance scoop 42 is connected between the lines, this stray capacitance will cause a low surface roughness process. This is because it becomes impossible.
以上詳述したごとく、本発明は荒加工・中加工時には低
インダクタンスクープルを介して極間に電圧を印加し、
仕上加工っまシ低面粗度加工時には低キヤパシタンスク
ープルを介して極間に電圧を印加し、かつ低インダクタ
ンスクープルを極間近くにて電磁開閉器等で切シ離すよ
うにしたから、荒加工・中加工時の加工速度を向上させ
ると共に仕上加工時の面粗度を良好に行うことができる
効果が得られる。As detailed above, the present invention applies voltage between poles through a low inductance scoop during rough machining and semi-machining,
During finishing and low surface roughness machining, voltage is applied between the poles via a low capacitance scoop, and the low inductance scoop is separated near the pole using an electromagnetic switch, etc. Therefore, it is possible to improve the machining speed during rough machining and semi-machining, and to improve the surface roughness during finishing machining.
第1図は従来の放電加工装置の加工用電源の回路構成図
、第2図はその加工用電源における荒加工・中加工時の
電圧・電流波形図、第3図は上記加工電源において、低
インダクタンスケーブルを使用したときの荒加工・中加
工時の電圧、電流波形図、第4図は上記低インダクタン
スケーブルを使用したときの仕上加工時の電圧・電流波
形図、第5図は本発明加工用電源の一実施例を示す回路
構成図、第6図は本発明加工用電源における仕上加工時
の電圧・電流波形図である。
各図中同一部材には同一符号を付し、10は直流、12
はフィーダ、14は被加工物、16〜20はトランジス
タ、22〜26は抵抗、28〜32はダイオード、34
は電極、36はパルス、38.42はフィーダ(クープ
ル)、40は電磁開閉器である。
代理人 弁理士 葛 野 信 −(はか1名)
165−
第2図
第3図
第4図
第6図
(b)Figure 1 is a circuit configuration diagram of a machining power supply of a conventional electric discharge machining device, Figure 2 is a voltage/current waveform diagram during rough machining and semi-machining in the machining power supply, and Figure 3 is a diagram of the machining power supply with low power consumption. Figure 4 is a voltage and current waveform diagram during rough machining and semi-machining when using an inductance cable. Figure 4 is a voltage and current waveform diagram during finishing machining when using the above low inductance cable. Figure 5 is a diagram of the voltage and current waveforms during finishing machining using the low inductance cable. FIG. 6 is a circuit configuration diagram showing an embodiment of the power supply for processing, and FIG. 6 is a diagram of voltage and current waveforms during finishing processing in the power supply for processing of the present invention. Identical members in each figure are given the same reference numerals, 10 is DC, 12
is a feeder, 14 is a workpiece, 16 to 20 are transistors, 22 to 26 are resistors, 28 to 32 are diodes, 34
is an electrode, 36 is a pulse, 38.42 is a feeder (couple), and 40 is an electromagnetic switch. Agent Patent attorney Shin Kuzuno - (1 person) 165- Figure 2 Figure 3 Figure 4 Figure 6 (b)
Claims (1)
電加工装置の加工用電源において、上記荒・中加工用回
路の出力は低インダクタンスフィーダを介して極間に供
給印加し、上記仕上加工用回路の出力は低キヤパシタン
スフィーダを介して極間に供給印加するように構成し、
仕上加工時には上記低インダクタンスフィーダをしゃ断
する電磁開閉器を極間近くに設けたことを特徴とする放
電加工装置の加工用電源。(1) In a machining power source for an electrical discharge machining device that has a rough/medium machining circuit and a finishing machining circuit, the output of the rough/medium machining circuit is supplied between the machining holes via a low inductance feeder, and The output of the finishing circuit is configured to be applied between the poles via a low capacitance feeder,
A machining power source for an electric discharge machining device, characterized in that an electromagnetic switch is provided near the machining gap to shut off the low inductance feeder during finishing machining.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18421382A JPS5973226A (en) | 1982-10-20 | 1982-10-20 | Machining power supply of electric discharge machining device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18421382A JPS5973226A (en) | 1982-10-20 | 1982-10-20 | Machining power supply of electric discharge machining device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5973226A true JPS5973226A (en) | 1984-04-25 |
Family
ID=16149340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18421382A Pending JPS5973226A (en) | 1982-10-20 | 1982-10-20 | Machining power supply of electric discharge machining device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973226A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152618A (en) * | 1985-12-26 | 1987-07-07 | Hitachi Seiko Ltd | Wire electric discharge machine |
US5019685A (en) * | 1989-04-13 | 1991-05-28 | Sodick Co., Ltd. | Discharge working machine |
EP0659514A1 (en) * | 1993-12-24 | 1995-06-28 | Sodick Co., Ltd. | Electric discharge machining apparatus |
CN103433577A (en) * | 2013-08-12 | 2013-12-11 | 清华大学 | Pulse power supply applied to electric spark discharge machining |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5219359A (en) * | 1975-08-05 | 1977-02-14 | Takagi Seisakusho:Kk | Cattle turd dryer |
-
1982
- 1982-10-20 JP JP18421382A patent/JPS5973226A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5219359A (en) * | 1975-08-05 | 1977-02-14 | Takagi Seisakusho:Kk | Cattle turd dryer |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152618A (en) * | 1985-12-26 | 1987-07-07 | Hitachi Seiko Ltd | Wire electric discharge machine |
JPH046489B2 (en) * | 1985-12-26 | 1992-02-06 | Hitachi Seiko Kk | |
US5019685A (en) * | 1989-04-13 | 1991-05-28 | Sodick Co., Ltd. | Discharge working machine |
EP0659514A1 (en) * | 1993-12-24 | 1995-06-28 | Sodick Co., Ltd. | Electric discharge machining apparatus |
US5572003A (en) * | 1993-12-24 | 1996-11-05 | Sodick Co. Ltd. | Electric discharge machining apparatus with pairs of low inductance and low capacitance conductors |
CN1059372C (en) * | 1993-12-24 | 2000-12-13 | 沙迪克株式会社 | Electric discharge machining apparatus |
CN103433577A (en) * | 2013-08-12 | 2013-12-11 | 清华大学 | Pulse power supply applied to electric spark discharge machining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4447695A (en) | Inverter-type power supply circuit for electrical machining | |
US4347425A (en) | Wire-cut, electric-discharge machining power source | |
JP2983139B2 (en) | Power supply circuit for electric discharge machining and electric discharge machine | |
CA2020816C (en) | Power supply circuit for discharge machining | |
WO1985003894A1 (en) | Power source for electric discharge machining | |
US4443682A (en) | Superimposed high striking voltage power supply circuit for electrical discharge machining | |
JPS5973226A (en) | Machining power supply of electric discharge machining device | |
JPWO2002067410A1 (en) | Discharge pulse generator | |
US3492530A (en) | Circuit arrangement for electro-erosion impulse generator | |
US3485988A (en) | Electrical discharge machining power supply circuit | |
JPH11347842A (en) | Electric discharge machining method and device | |
US4719327A (en) | Electrical discharge machining power supply | |
US3329866A (en) | Electrical discharge machining power supply apparatus and method | |
JPH0431805B2 (en) | ||
US2887561A (en) | Control for spark machining apparatus | |
US3211882A (en) | Electrical discharge machining power circuit | |
JPH059209B2 (en) | ||
US4056702A (en) | Electrical discharge machining power circuit | |
JPS63154B2 (en) | ||
US3485989A (en) | Electrical discharge machining power supply circuit | |
JPS61260916A (en) | Power source for electric discharge machining | |
JPH048165B2 (en) | ||
JPH01234115A (en) | Power supply device for spark erosion machining | |
JPH0351064Y2 (en) | ||
JPH11333632A (en) | Electrical discharging device |