JPH04256520A - Electric discharge machining - Google Patents

Electric discharge machining

Info

Publication number
JPH04256520A
JPH04256520A JP3031688A JP3168891A JPH04256520A JP H04256520 A JPH04256520 A JP H04256520A JP 3031688 A JP3031688 A JP 3031688A JP 3168891 A JP3168891 A JP 3168891A JP H04256520 A JPH04256520 A JP H04256520A
Authority
JP
Japan
Prior art keywords
discharge machining
workpiece
electrode
machining
electrical discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3031688A
Other languages
Japanese (ja)
Inventor
Kimihiro Wakabayashi
公宏 若林
Noriyuki Nehashi
根橋 紀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3031688A priority Critical patent/JPH04256520A/en
Publication of JPH04256520A publication Critical patent/JPH04256520A/en
Priority to US08/218,845 priority patent/US5498848A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To reduce wear of an electric discharge electrode to machine a work finely and accurately by setting the polarity of an electroconductive discharge electrode 1 to positive and the work to be machined comprising an electric resistant material to negative. CONSTITUTION:An insulating liquid 3 is provided between an electroconductive discharge machining electrode 1 and a work to be machined 2, and a voltage is applied between them to make electric discharge machining on the work to be machined 2. In this case, the discharge machining electrode 1 is set to positive and the electric resistant work to be machined 2 is set to negative. Thus the electric resistant work to be machined 2 can be machined finely and accurately.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はMn−Znフェライトな
どの抵抗性材料を絶縁性液体中での放電により放電加工
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of electrical discharge machining a resistive material such as Mn--Zn ferrite by electrical discharge in an insulating liquid.

【0002】0002

【従来の技術】従来ステンレス、鉄、アルミニウム等の
金属材料からなる微小形状に被加工物を放電加工する場
合、タングステンや超硬合金等からなる放電加工電極と
被加工物の間に絶縁性液体を介し、放電加工電極を負極
にし被加工物を正極にして放電加工が行われていた。こ
のような従来の放電加工方法では、Mn−Znフェライ
トなどの抵抗性材料からなる被加工物を放電加工するこ
とは非常に困難であった。また、セラミックなどの非導
電性材料を電気的に加工する方法としては、例えば、土
屋八郎「機械技術」32−12(1984)P77に述
べられている電解放電加工と呼ばれる方法が知られてい
る。しかし電解放電加工法は通常NaOH等の強アルカ
リ液を電解液として使用するので取り扱い難いなどの問
題がある。また、これらの欠点を改良した方法として、
NaNO3、NaCl等の中性塩電解液中のアーク放電
を用いた方法が特開昭63−229225号公報に示さ
れているが、この方法は工具電極の消耗が激しく、加工
精度が低いため、実用的な加工方法とは言い難い。
[Prior Art] Conventionally, when electrical discharge machining is performed on a workpiece made of metal materials such as stainless steel, iron, or aluminum into minute shapes, an insulating liquid is used between the electrical discharge machining electrode made of tungsten, cemented carbide, etc., and the workpiece. Electrical discharge machining was performed using the electric discharge machining electrode as a negative electrode and the workpiece as a positive electrode. With such conventional electric discharge machining methods, it is very difficult to perform electric discharge machining on a workpiece made of a resistive material such as Mn-Zn ferrite. Furthermore, as a method for electrically machining non-conductive materials such as ceramics, for example, a method called electrolytic discharge machining, which is described in Hachiro Tsuchiya, "Mechanical Engineering" 32-12 (1984), p. 77, is known. . However, the electrolytic discharge machining method usually uses a strong alkaline solution such as NaOH as an electrolyte, and therefore has problems such as being difficult to handle. In addition, as a method to improve these shortcomings,
A method using arc discharge in a neutral salt electrolyte such as NaNO3 or NaCl is disclosed in JP-A-63-229225, but this method causes severe wear of the tool electrode and low machining accuracy. It is hard to say that this is a practical processing method.

【0003】また、硬脆材料であるMn−Znフェライ
トを加工する方法としては、研削加工方法が使用可能で
あるが、平板状、丸棒状加工などの単純形状の加工に限
られる。また、同材料の脆い性質を利用して砥粒を用い
た超音波加工方法が使用可能であるが、加工工具との接
触によりクラックが発生し易く、板厚が0.5mm以下
の立体形状の加工は困難であった。さらに、Mn−Zn
フェライトの固有抵抗は5〜10Ωcm程度であり、従
来の放電加工方法ではほとんど放電加工が進行せず、放
電加工ができても熱衝撃によりクラックが発生し易く、
実用的な加工はほとんどできなかった。
Furthermore, as a method for processing Mn--Zn ferrite, which is a hard and brittle material, a grinding method can be used, but it is limited to processing simple shapes such as flat plate and round bar shapes. In addition, ultrasonic machining methods using abrasive grains can be used to take advantage of the brittle nature of the same material, but cracks are likely to occur due to contact with machining tools, and it is difficult to process three-dimensional shapes with a thickness of 0.5 mm or less. Processing was difficult. Furthermore, Mn-Zn
The specific resistance of ferrite is about 5 to 10 Ωcm, and with conventional electrical discharge machining methods, electrical discharge machining hardly progresses, and even if electrical discharge machining is possible, cracks are likely to occur due to thermal shock.
Almost no practical processing was possible.

【0004】0004

【発明が解決しようとする課題】この発明は、電気抵抗
性材料を加工することができる取り扱いの容易な放電加
工方法を提供するものである。また、特に従来放電加工
がほとんどできなかったMn−Znフェライト材料に対
して放電加工ができ、放電加工の特長である複雑で微細
な加工を可能とするものである。ここで微細な加工とは
、例えば放電電極として直径1〜2mm程度以下の放電
電極を用いて放電加工する場合のことである。
SUMMARY OF THE INVENTION The present invention provides an easy-to-handle electric discharge machining method that can process electrically resistive materials. In addition, electric discharge machining can be performed particularly on Mn-Zn ferrite materials, which conventionally could not be subjected to electric discharge machining, and the complicated and fine machining that is a feature of electric discharge machining is possible. Here, fine machining refers to the case of electrical discharge machining using, for example, a discharge electrode having a diameter of about 1 to 2 mm or less.

【0005】[0005]

【課題を解決するための手段】上記課題を達成するため
に本発明は、電気伝導性加工電極と被加工物の間に絶縁
性液を介して放電を起こし、前記被加工物を加工する放
電加工方法において、前記被加工物を電気抵抗性材料か
らなる被加工物とし、前記電気伝導性加工電極の極性を
正極とし前記電気抵抗性材料からなる被加工物を負極と
して前記電気抵抗性材料からなる被加工物を放電加工す
ることを特徴とする。特に被加工物がMn−Znフェラ
イトの場合に適しており、電気伝導性加工電極と被加工
物の間に絶縁性液を介して放電を起こし、前記被加工物
を加工する放電加工方法において、前記被加工物をMn
−Znフェライトからなる被加工物とし、前記電気伝導
性加工電極の極性を正極とし前記Mn−Znフェライト
からなる被加工物を負極として前記Mn−Znフェライ
トからなる被加工物を放電加工することを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned objects, the present invention creates a discharge between an electrically conductive machining electrode and a workpiece through an insulating liquid, and processes the workpiece. In the processing method, the workpiece is made of an electrically resistive material, the polarity of the electrically conductive processing electrode is a positive electrode, and the workpiece made of the electrically resistive material is a negative electrode. It is characterized by electrical discharge machining of a workpiece. In an electrical discharge machining method that is particularly suitable when the workpiece is Mn-Zn ferrite, the method involves machining the workpiece by causing electrical discharge between an electrically conductive machining electrode and the workpiece through an insulating liquid, The workpiece is Mn
- The workpiece is made of Zn ferrite, and the workpiece made of Mn-Zn ferrite is subjected to electrical discharge machining with the electrically conductive machining electrode set as a positive polarity and the Mn-Zn ferrite workpiece as a negative pole. Features.

【0006】ここで、電気抵抗性材料からなる被加工物
とは、被加工物の固有抵抗が1Ωcm程度以上の材料か
らなる被加工物である。また、電気伝導性加工電極とし
ては、タングステン(W)または超硬合金等の電気伝導
性材料からなる放電加工電極が使用できる。
[0006] Here, the workpiece made of an electrically resistive material is a workpiece made of a material having a specific resistance of about 1 Ωcm or more. Further, as the electrically conductive machining electrode, an electrical discharge machining electrode made of an electrically conductive material such as tungsten (W) or cemented carbide can be used.

【0007】[0007]

【作用】本発明は、放電加工時の加工速度が、被加工物
の体積固有抵抗に応じて変化するとともに、放電加工電
極と被加工物に印加する放電電圧の極性を変えることに
より被加工物の加工速度が異なるという事実に基づく。 すなわち、電気抵抗性材料からなる被加工物を放電加工
するには、放電加工電極を正極にし、電気抵抗性材料か
らなる被加工物を負極にすることにより、電気抵抗性材
料からなる被加工物の加工効率が大きくなり、放電加工
電極の消耗がすくなくなる。
[Operation] The present invention changes the machining speed during electrical discharge machining according to the volume resistivity of the workpiece, and changes the polarity of the discharge voltage applied to the electrical discharge machining electrode and the workpiece. Based on the fact that the machining speeds are different. In other words, in order to perform electrical discharge machining on a workpiece made of an electrically resistive material, the electrical discharge machining electrode is made the positive electrode and the workpiece made of the electrically resistive material is made the negative electrode. The machining efficiency is increased and the wear of the electrical discharge machining electrode is reduced.

【0008】[0008]

【実施例】図1に本発明の概略の構成を示す。電気伝導
性の放電加工電極1と電気抵抗性被加工物2を、加工槽
4内の絶縁性加工液3に浸した状態で、放電加工電極1
を放電加工電源5の正極に接続し、被加工物を負極に接
続して、放電加工電極1と被加工物2の間に絶縁性加工
液体3を介して放電を起こすことにより電気抵抗性被加
工物2が放電加工される。絶縁性加工液としては、ケロ
シンまたは純水等が使用できる。放電加工電源5として
は蓄勢式放電加工電源が使用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic structure of the present invention. The electrically conductive electrical discharge machining electrode 1 and the electrically resistive workpiece 2 are immersed in the insulating machining fluid 3 in the machining tank 4.
is connected to the positive electrode of the electric discharge machining power source 5, and the workpiece is connected to the negative electrode, and an electric discharge is generated between the electric discharge machining electrode 1 and the workpiece 2 through the insulating machining liquid 3, thereby creating an electrically resistive coating. Workpiece 2 is subjected to electrical discharge machining. Kerosene, pure water, or the like can be used as the insulating processing fluid. As the electric discharge machining power source 5, an energy storage type electric discharge machining power source can be used.

【0009】蓄勢式とは、放電のエネルギーを電源回路
中に電荷としてコンデンサに蓄積し、これを放電エネル
ギーとして放出し、再びコンデンサに蓄積し、放電させ
るというサイクルを高速に繰り返すものである。このよ
うなコンデンサを用いた放電電源回路は、例えば使用す
るコンデンサ容量を数100pFと小さくする事により
、トランジスタを用いた回路に比較して容易に1μJ程
度の極めて小さい放電エネルギーを得る事が出来る。
The energy storage type is one in which discharge energy is stored in a capacitor as an electric charge in a power supply circuit, this is released as discharge energy, the cycle is repeated at high speed, and the cycle is stored again in the capacitor and discharged. A discharge power supply circuit using such a capacitor can easily obtain an extremely small discharge energy of about 1 μJ compared to a circuit using a transistor by reducing the capacitance of the capacitor used to a small value of, for example, several hundred pF.

【0010】特に5〜10Ωcm程度の体積固有抵抗を
持つMn−Znフェライトに対しては、1〜100μJ
程度の放電エネルギー領域において放電加工を可能にす
るものである。例えば、例えば電圧100V,コンデン
サ容量5000pFの場合、約25μJ放電エネルギー
以下の領域において、放電加工を可能とするものである
。このような電源の正極に電気伝導性加工電極1を接続
し、負極に電気抵抗性材料あるいはMn−Znフェライ
トからなる被加工物2を接続し、絶縁性加工液3を介し
て放電を起こし、前記Mn−Znフェライトからなる被
加工物2を放電加工する。
[0010] In particular, for Mn-Zn ferrite having a volume resistivity of about 5 to 10 Ωcm, the
This enables electrical discharge machining in the discharge energy range of approximately For example, in the case of a voltage of 100 V and a capacitor capacity of 5000 pF, electrical discharge machining is possible in a region of approximately 25 μJ discharge energy or less. An electrically conductive machining electrode 1 is connected to the positive electrode of such a power source, a workpiece 2 made of an electrically resistive material or Mn-Zn ferrite is connected to the negative electrode, and an electric discharge is caused through the insulating machining fluid 3. The workpiece 2 made of Mn-Zn ferrite is subjected to electrical discharge machining.

【0011】[0011]

【実施例1】超硬合金からなる直径0.2mmの円筒形
の放電加工電極1、蓄勢式放電加工電源5および絶縁性
加工液3としてケロシンを用いて,体積固有抵抗が10
ΩcmのMn−Znフェライトからなる平板状の被加工
物2に放電加工を行った。この円筒形超硬合金の放電加
工電極1を正極とし、Mn−Zn−フェライトからなる
平板状の被加工物2を負極とし、蓄勢式放電加工電源5
の放電加工電圧を110V,コンデンサ容量を3300
pFとし,放電加工電極1の回転速度を3500rpm
とした場合、放電加工速度2μm/secでMn−Zn
フェライトからなる平板状の被加工物2に穴が形成され
た。形成された穴の加工面は極めてなめらかで、クラッ
クは観察されなかった。この際、放電加工電極はほとん
ど消耗せず、連続的に精度の高い加工が可能であった。
[Example 1] A cylindrical electrical discharge machining electrode 1 made of cemented carbide with a diameter of 0.2 mm, an energy storage type electrical discharge machining power source 5, and kerosene as the insulating machining fluid 3 were used, and the volume resistivity was 10.
Electrical discharge machining was performed on a flat workpiece 2 made of Mn-Zn ferrite with a diameter of Ωcm. The electric discharge machining electrode 1 made of cylindrical cemented carbide is used as a positive electrode, and the flat workpiece 2 made of Mn-Zn-ferrite is used as a negative electrode.
The electric discharge machining voltage is 110V, and the capacitor capacity is 3300V.
pF, and the rotation speed of the electrical discharge machining electrode 1 was 3500 rpm.
In this case, Mn-Zn at an electrical discharge machining speed of 2 μm/sec
A hole was formed in a flat workpiece 2 made of ferrite. The machined surface of the hole formed was extremely smooth and no cracks were observed. At this time, the electrical discharge machining electrode hardly wore out, and continuous high-precision machining was possible.

【0012】同様な条件で加工電圧の極性のみを逆にし
て比較した。すなわち、放電加工電極を負極とし、Mn
−Znフェライトからなる被加工物を正極とした場合は
、被加工物はほとんど放電加工されなかった。
Comparisons were made under similar conditions with only the polarity of the machining voltage reversed. That is, the electric discharge machining electrode is used as a negative electrode, and Mn
When the workpiece made of -Zn ferrite was used as the positive electrode, the workpiece was hardly subjected to electrical discharge machining.

【0013】[0013]

【実施例2】実施例1と同じ放電加工装置を用い、被加
工物2として体積固有抵抗が約1Ωcmのシリコンの単
結晶からなる平板状の被加工物に放電加工を行った。放
電加工電極1を正極とし、シリコンの単結晶からなる平
板状の被加工物を負極性とし、蓄勢式放電加工電源5の
加工電圧を110V,コンデンサ容量を3300pFと
し,加工電極1の回転速度を3500rpmとした場合
、放電加工速度1.8μm/sec程度でシリコンの単
結晶からなる平板状の被加工物に穴が形成された。ただ
し、Mn−Znフェライトの場合と異なり、放電加工電
極は、被加工物の加工量に対して約0.5体積パーセン
ト程度の消耗が認められた。
[Example 2] Using the same electrical discharge machining apparatus as in Example 1, electrical discharge machining was performed on a flat workpiece made of a single crystal of silicon having a volume resistivity of about 1 Ωcm as workpiece 2. The electric discharge machining electrode 1 is the positive electrode, the flat workpiece made of silicon single crystal is the negative polarity, the machining voltage of the energy storage electric discharge machining power supply 5 is 110 V, the capacitor capacity is 3300 pF, and the rotation speed of the machining electrode 1 is set as follows. When the speed was set to 3500 rpm, a hole was formed in a flat workpiece made of silicon single crystal at an electrical discharge machining speed of about 1.8 μm/sec. However, unlike the case of Mn-Zn ferrite, the electric discharge machining electrode was found to be consumed at a rate of approximately 0.5 volume percent relative to the amount of workpiece processed.

【0014】同様な条件で加工電圧の極性のみを逆にし
て比較した。すなわち、放電加工電極を負極とし、シリ
コンの単結晶からなる被加工物を正極とした場合は、被
加工物を負極とした場合に比べ、放電加工速度が25パ
ーセント程度低下した。また放電加工電極は、被加工物
の加工量に対して約5体積パーセント程度消耗し、被加
工物を負極とした場合に比べ放電加工電極の消耗が約1
0倍に増加した。従って、放電加工電極を正極とし、被
加工物を負極にする場合の方が放電加工効率が良好であ
る事がわかった。
Comparisons were made under similar conditions with only the polarity of the machining voltage reversed. That is, when the electrical discharge machining electrode was used as a negative electrode and the workpiece made of single crystal silicon was used as the positive electrode, the electrical discharge machining speed was reduced by about 25% compared to when the workpiece was used as the negative electrode. In addition, the electrical discharge machining electrode is consumed by about 5% by volume relative to the amount of workpiece machined, and compared to when the workpiece is a negative electrode, the electrical discharge machining electrode is consumed by about 1%.
It increased by 0 times. Therefore, it was found that the electric discharge machining efficiency is better when the electric discharge machining electrode is a positive electrode and the workpiece is a negative electrode.

【0015】[0015]

【比較例1】実施例1と同じ放電加工装置を用い、被加
工物2として体積固有抵抗が約2.8×10−2Ωcm
のSiCセラミックスからなる平板状の被加工物に放電
加工を行った。放電加工電極1を正極とし、SiCセラ
ミックスからなる平板状の被加工物を負極とし、蓄勢式
放電加工電源5の加工電圧を110V,コンデンサ容量
を3300pFとし,放電加工電極1の回転速度を35
00rpmとした場合、放電加工速度0.9μm/se
c程度でSiCセラミックスからなる平板状の被加工物
に穴が形成された。この時の放電加工電極の消耗は30
体積パーセント程度であった。
[Comparative Example 1] Using the same electric discharge machining apparatus as in Example 1, the workpiece 2 has a volume resistivity of approximately 2.8 x 10-2 Ωcm.
Electric discharge machining was performed on a flat plate-shaped workpiece made of SiC ceramics. The electrical discharge machining electrode 1 was used as a positive electrode, the flat workpiece made of SiC ceramics was used as a negative electrode, the machining voltage of the energy storage type electrical discharge machining power supply 5 was 110 V, the capacitor capacity was 3300 pF, and the rotation speed of the electrical discharge machining electrode 1 was 35.
When set to 00 rpm, the electrical discharge machining speed is 0.9 μm/se
A hole was formed in the flat workpiece made of SiC ceramics at about c. The consumption of the electrical discharge machining electrode at this time is 30
It was about volume percent.

【0016】同様な条件で放電加工電圧の極性のみを逆
にして比較した。すなわち、放電加工電極を負極とし、
SiCセラミックスからなる被加工物を正極とした場合
は、被加工物を負極とした場合に比べ、放電加工速度が
10パーセント程度大きくなった。また放電加工電極は
被加工物の加工量に対して約8体積パーセント程度消耗
し、被加工物を負極とした場合に比べ放電加工電極の消
耗が約1/4程度に低下した。従って、顕著な違いは無
いとはいえ、放電加工電極を負極とし、被加工物を正極
とする場合の方がわずかながら放電加工効率が良好であ
った。
Comparisons were made under similar conditions with only the polarity of the electrical discharge machining voltage reversed. That is, the electric discharge machining electrode is used as a negative electrode,
When the workpiece made of SiC ceramics was used as the positive electrode, the electrical discharge machining speed was approximately 10% higher than when the workpiece was used as the negative electrode. Further, the electric discharge machining electrode was consumed by about 8% by volume relative to the amount of workpiece processed, and the consumption of the electric discharge machining electrode was reduced to about 1/4 compared to when the workpiece was used as a negative electrode. Therefore, although there was no significant difference, the electrical discharge machining efficiency was slightly better when the electrical discharge machining electrode was the negative electrode and the workpiece was the positive electrode.

【0017】[0017]

【比較例2】実施例1と同じ放電加工装置を用い、被加
工物2として体積固有抵抗が約3.4×10−5Ωcm
のTiCNセラミックスからなる平板状の被加工物に放
電加工を行った。放電加工電極側1を正極とし、TiC
Nセラミックスからなる平板状の被加工物を負極性とし
、蓄勢式放電加工電源5の加工電圧を110V,コンデ
ンサ容量を3300pFとし,放電加工電極1の回転速
度を3500rpm、とした場合、放電加工速度0.7
μm/sec程度でTiCNセラミックスからなる平板
状の被加工物に穴が形成された。この時の放電加工電極
の消耗は被加工物の加工量に対して約150体積パーセ
ントであった。
[Comparative Example 2] Using the same electric discharge machining apparatus as in Example 1, the workpiece 2 has a volume resistivity of approximately 3.4 x 10-5 Ωcm.
Electric discharge machining was performed on a flat plate-shaped workpiece made of TiCN ceramics. The electrical discharge machining electrode side 1 is the positive electrode, and TiC
When a flat plate-shaped workpiece made of N ceramics has negative polarity, the machining voltage of the energy storage type electric discharge machining power source 5 is 110V, the capacitor capacity is 3300 pF, and the rotation speed of the electric discharge machining electrode 1 is 3500 rpm, electric discharge machining is performed. Speed 0.7
A hole was formed in a flat plate-shaped workpiece made of TiCN ceramics at a rate of approximately μm/sec. At this time, the consumption of the electric discharge machining electrode was approximately 150% by volume relative to the amount of workpiece processed.

【0018】同様な条件で放電加工電圧の極性のみを逆
にして比較した。すなわち、放電加工電極を負極とし、
TiCNセラミックスからなる被加工物を正極とした場
合は、被加工物を負極とした場合に比べ、放電加工速度
が50パーセント程度大きくなった。また放電加工電極
は被加工物の加工量に対して約10体積パーセント程度
消耗し、被加工物を負極とした場合に比べ放電加工電極
の消耗が約1/15に低下した。従って、放電加工電極
を負極とし、被加工物を正極とする場合の方放電加工効
率が良好であった。
Comparisons were made under similar conditions with only the polarity of the electrical discharge machining voltage reversed. That is, the electric discharge machining electrode is used as a negative electrode,
When the workpiece made of TiCN ceramics was used as the positive electrode, the electrical discharge machining speed was approximately 50% higher than when the workpiece was used as the negative electrode. Further, the electric discharge machining electrode was consumed by about 10% by volume relative to the amount of workpiece processed, and the consumption of the electric discharge machining electrode was reduced to about 1/15 compared to when the workpiece was used as a negative electrode. Therefore, the electric discharge machining efficiency was better when the electric discharge machining electrode was a negative electrode and the workpiece was a positive electrode.

【0019】以上の実施例1から比較例2までの関係を
図2に示す。縦軸は、各材料における放電電圧極性によ
る加工速度の比の対数である。すなわち、縦軸は、被加
工物が正極の場合の加工速度に対する被加工物が負極の
場合の加工速度の比の対数であり、次式で表される値で
ある。log(被加工物が正極時の加工速度/被加工物
が負極時の加工速度)横軸には被加工物材料の体積固有
抵抗を対数で表している。図2によれば、体積固有抵抗
が100Ωcm以上の電気抵抗性材料においては、放電
加工極性が電気伝導性被加工物の場合と逆になることを
示している。図2には、体積固有抵抗が5ΩcmのMn
−Znフェライトおよび体積固有抵抗が約1.0×10
−4Ωcmのステンレス(SUS304)の場合の結果
も示している。使用した装置は実施例1と同様であり、
詳細な説明は省略した。
FIG. 2 shows the relationship between Example 1 and Comparative Example 2. The vertical axis is the logarithm of the ratio of machining speed depending on discharge voltage polarity for each material. That is, the vertical axis is the logarithm of the ratio of the machining speed when the workpiece is a negative electrode to the machining speed when the workpiece is a positive electrode, and is a value expressed by the following equation. log (machining speed when the workpiece is a positive electrode/machining speed when the workpiece is a negative electrode) The horizontal axis represents the volume resistivity of the workpiece material in logarithm. FIG. 2 shows that in electrically resistive materials having a volume resistivity of 100 Ωcm or more, the electric discharge machining polarity is opposite to that in the case of electrically conductive workpieces. Figure 2 shows Mn with a volume resistivity of 5 Ωcm.
-Zn ferrite and volume resistivity is approximately 1.0×10
The results for −4 Ωcm stainless steel (SUS304) are also shown. The equipment used was the same as in Example 1,
Detailed explanation has been omitted.

【0020】さらに被加工物がMn−Znフェライトで
体積固有抵抗が5〜10Ωcm程度の場合でも、被加工
物を負極にすることにより放電加工が可能となることが
わかった。
Furthermore, it has been found that even when the workpiece is Mn--Zn ferrite and has a volume resistivity of about 5 to 10 Ωcm, electrical discharge machining is possible by using the workpiece as a negative electrode.

【0021】[0021]

【発明の効果】本発明によって、被加工物が抵抗性材料
の場合でも、放電電極の消耗が少なく高精度な微細加工
が可能になる。さらに本発明によって、従来の放電加工
方法では加工がほとんどできなかったMn−Znフェラ
イト材料に対しても高精度な微細加工が可能になる。
According to the present invention, even when the workpiece is made of a resistive material, highly accurate micromachining is possible with less wear and tear on the discharge electrode. Further, according to the present invention, it is possible to perform highly accurate micromachining even on Mn-Zn ferrite materials, which could hardly be machined using conventional electrical discharge machining methods.

【0022】[0022]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、本発明の概略構成図である。FIG. 1 is a schematic configuration diagram of the present invention.

【図2】図2は、本発明の放電加工方法による加工性を
示すデータである。
FIG. 2 is data showing machinability by the electrical discharge machining method of the present invention.

【符号の説明】[Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気伝導性加工電極と被加工物の間に絶縁
性液を介して放電を起こさせ、前記被加工物を加工する
放電加工方法において、前記被加工物を電気抵抗性材料
からなる被加工物とし、前記電気伝導性加工電極の極性
を正極とし前記電気抵抗性材料からなる被加工物を負極
として前記電気抵抗性材料からなる被加工物を放電加工
する放電加工方法。
1. An electric discharge machining method for machining the workpiece by causing an electric discharge between an electrically conductive machining electrode and the workpiece via an insulating liquid, wherein the workpiece is made of an electrically resistive material. An electrical discharge machining method for electrical discharge machining the workpiece made of the electrically resistive material, with the polarity of the electrically conductive machining electrode being the positive electrode and the polarity of the electrically resistive material being the negative electrode.
【請求項2】電気伝導性加工電極と被加工物の間に絶縁
性液を介して放電を起こさせ、前記被加工物を加工する
放電加工方法において、前記被加工物をMn−Znフェ
ライトからなる被加工物とし、前記電気伝導性加工電極
の極性を正極とし前記Mn−Znフェライトからなる被
加工物を負極として前記Mn−Znフェライトからなる
被加工物を放電加工する放電加工方法。
2. An electrical discharge machining method for machining the workpiece by causing an electrical discharge between an electrically conductive machining electrode and the workpiece through an insulating liquid, wherein the workpiece is made of Mn-Zn ferrite. An electrical discharge machining method for electrical discharge machining a workpiece made of Mn-Zn ferrite, with the polarity of the electrically conductive machining electrode being a positive electrode and the workpiece made of Mn-Zn ferrite being a negative electrode.
JP3031688A 1991-01-31 1991-01-31 Electric discharge machining Pending JPH04256520A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3031688A JPH04256520A (en) 1991-01-31 1991-01-31 Electric discharge machining
US08/218,845 US5498848A (en) 1991-01-31 1994-03-28 Method and apparatus for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031688A JPH04256520A (en) 1991-01-31 1991-01-31 Electric discharge machining

Publications (1)

Publication Number Publication Date
JPH04256520A true JPH04256520A (en) 1992-09-11

Family

ID=12338024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031688A Pending JPH04256520A (en) 1991-01-31 1991-01-31 Electric discharge machining

Country Status (2)

Country Link
US (1) US5498848A (en)
JP (1) JPH04256520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168913B2 (en) * 2009-05-28 2012-05-01 General Electric Company Electric discharge machining die sinking device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998563B1 (en) * 2005-02-28 2006-02-14 Hsin-Yuan Miao Carbon nanotube apparatus for surface discharge polishing
US20070284339A1 (en) * 2006-06-09 2007-12-13 Moore David O Plasma etching chamber parts made with EDM
CN102076454B (en) * 2008-07-24 2012-10-10 三菱电机株式会社 Electrical discharge machining device, electrical discharge machining method, and semiconductor substrate manufacturing method
EP2226689A1 (en) * 2009-03-02 2010-09-08 Montres Breguet SA Bridge or plate for a timepiece movement
US9114467B2 (en) * 2009-05-14 2015-08-25 Picodrill Sa Method of smoothing and/or bevelling an edge of a substrate
KR101356820B1 (en) * 2010-06-17 2014-01-28 서울대학교산학협력단 Conductive nanostructure and method of forming thereof and method of manufacturing field emission emitter using the same
EP2524834A1 (en) 2011-05-18 2012-11-21 Brusa Elektronik AG Device for inductive charging of at least one electrical energy storage device of an electric car
CN109986157B (en) * 2019-03-13 2020-06-05 大连汇智工大特种精密机械有限公司 Improved device based on electrochemical machining power supply leading-in device
CN109848496B (en) * 2019-03-13 2020-07-28 大连汇智工大特种精密机械有限公司 Electrochemical machining power supply leading-in device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358895A (en) * 1976-11-09 1978-05-27 Inoue Japax Res Inc Method for finishing curved surface
JPS62199317A (en) * 1986-02-27 1987-09-03 Toshiba Corp Method for electric discharge machining
JPH0192026A (en) * 1987-10-02 1989-04-11 Nippon Steel Corp Electric discharge machining method for insulating material
JPH04171118A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Electric discharge machining method for semiconductor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558843A (en) * 1967-04-17 1971-01-26 Oconnor Thomas John Means for and method of electrical machining with a heated electrode
JPS59169720A (en) * 1983-03-16 1984-09-25 Inoue Japax Res Inc Machining center for electric machining
JPS59214544A (en) * 1983-05-19 1984-12-04 Matsushita Electric Ind Co Ltd Microhole drilling apparatus
JPS6043179A (en) * 1983-08-19 1985-03-07 Nippon Denso Co Ltd Ignition distributor for internal-combustion engine
JPH0672051B2 (en) * 1985-03-30 1994-09-14 京セラ株式会社 Silicon carbide sintered body and method for producing the same
JPS62157729A (en) * 1985-12-27 1987-07-13 Matsushita Electric Ind Co Ltd Production of press mold for punching small hole
JPS62203717A (en) * 1986-03-03 1987-09-08 Hitachi Metals Ltd Electric discharge machining method for conductive sialon
JPS63127816A (en) * 1986-11-18 1988-05-31 Matsushita Electric Ind Co Ltd Electrode shaping device for electric discharge machining
DE3706124A1 (en) * 1987-02-25 1988-09-08 Agie Ag Ind Elektronik METHOD FOR ELECTROEROSIVELY MACHINING ELECTRICALLY LOW OR NON-CONDUCTIVE WORKPIECES, AND ELECTROEROSION MACHINE FOR IMPLEMENTING THE METHOD
JPH0794088B2 (en) * 1987-03-18 1995-10-11 工業技術院長 Processing method of non-conductive material by arc discharge in electrolyte
US4900890A (en) * 1987-09-07 1990-02-13 Matsushita Electric Industrial Co., Ltd. Electric discharge machining method and apparatus for machining a microshaft
JPH0236016A (en) * 1988-07-26 1990-02-06 Hoden Seimitsu Kako Kenkyusho Ltd Power source for micro process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358895A (en) * 1976-11-09 1978-05-27 Inoue Japax Res Inc Method for finishing curved surface
JPS62199317A (en) * 1986-02-27 1987-09-03 Toshiba Corp Method for electric discharge machining
JPH0192026A (en) * 1987-10-02 1989-04-11 Nippon Steel Corp Electric discharge machining method for insulating material
JPH04171118A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Electric discharge machining method for semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168913B2 (en) * 2009-05-28 2012-05-01 General Electric Company Electric discharge machining die sinking device
US8963041B2 (en) 2009-05-28 2015-02-24 General Electric Company Electric discharge machining die sinking device

Also Published As

Publication number Publication date
US5498848A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
Jain et al. On the machining of alumina and glass
US3873512A (en) Machining method
CN104742002A (en) Intelligent grinding device for short chip removing and cooling by means of pulse electric smelting
Qinjian et al. Study on electrical discharge and ultrasonic assisted mechanical combined machining of polycrystalline diamond
JPH04256520A (en) Electric discharge machining
CN204584931U (en) A kind of Intelligent grinding turning device of short pulse electric smelting chip removal cooling
US2805197A (en) Methods of electrolytic grinding and eroding
Tehrani et al. Overcut in pulsed electrochemical grinding
US3238114A (en) Cathode for electrolytic erosion of metal
Patel et al. Electrochemical grinding
Srivastava Review of dressing and truing operations for grinding wheels
Rana et al. Development and investigation of hybrid electric discharge machining electrode process
Gilmore Ultrasonic machining
US3475312A (en) Electrolytic lathe and grinding apparatus employing a homogeneous carbon electrode-tool
Dutta et al. Hybrid electric discharge machining processes for hard materials: a review
Chak Electro chemical discharge machining: process capabilities
US3357905A (en) Electrolyte composition and method of electrolytically removing stock from workpiece
CN112475491B (en) Bipolar electrode electric spark machining device and method suitable for insulating hard and brittle materials
CN114871519A (en) Machining system and method for electrolytic grinding plane
CN105522237A (en) Online electrospark sharpening method of metal base grinding wheel in reactive sintering SiC ceramic grinding process
US3355369A (en) Process using a fluoride electrolyte for the electrolytic and electrochemical working of metals
Zheng et al. The Influence of electric parameters on the surface quality of ceramic in internal grinding using the ultrasonic and ELID composite grinding
JP4451155B2 (en) EDM method
Govindan et al. Developments in electrical discharge grinding process: A review
CN114571247B (en) Electrochemical discharge-grinding combined machining tool and using method thereof