JPS6238709A - Abnormality diagnosing device for hydraulic rolling down device of rolling mill - Google Patents

Abnormality diagnosing device for hydraulic rolling down device of rolling mill

Info

Publication number
JPS6238709A
JPS6238709A JP60177541A JP17754185A JPS6238709A JP S6238709 A JPS6238709 A JP S6238709A JP 60177541 A JP60177541 A JP 60177541A JP 17754185 A JP17754185 A JP 17754185A JP S6238709 A JPS6238709 A JP S6238709A
Authority
JP
Japan
Prior art keywords
rolling
value
diagnosis
hydraulic
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60177541A
Other languages
Japanese (ja)
Other versions
JPH0679732B2 (en
Inventor
Hiromichi Okubo
大久保 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60177541A priority Critical patent/JPH0679732B2/en
Publication of JPS6238709A publication Critical patent/JPS6238709A/en
Publication of JPH0679732B2 publication Critical patent/JPH0679732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the operating rate of a rolling mill and to improve the yield of a rolled product by combining the constant diagnosis during tthe operation of a rolling installation such as prior to start of or during rolling and the periodic diagnosis in the stop state of rolling. CONSTITUTION:A servocontrol valve 13 is driven by the output from a servocontrol amplifier 12 to feed oil to a rolling down jack 14 and discharge the oil therefrom, by which the gap between work rolls is increased or decreased. The displacement of the jack 14 is detected by a draft position detector 15 and the valve 13 is driven through amplifiers 11, 12 until the deviation value DELTAS1 between the detected value S1 and target value S0 of the draft position is made zero. An abnormality diagnosis device 30 is provided and in the constant diagnosis, a device 34 discriminates the presence or absence of the abnormality of a rolling down device from the magnitude of the integrated value M of the draft position deviation DELTAS of an integrator 32. A reference wave signal suitable for the diagnosis is inputted from a generator 31 and the dynamic characteristic of the rolling down device by said input and the reference dynamic characteristic are compared, then whether the difference is within a permissible value or not is discriminated. All the results of the discrimination are displayed on a device 35.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は圧延機の圧下機構を油圧によって作動させる所
謂圧延機油圧圧下装置の異常などの診断を行う装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for diagnosing abnormalities in a so-called rolling mill hydraulic rolling device that operates a rolling mill rolling mechanism using hydraulic pressure.

【発明の背景〕[Background of the invention]

従来、油圧圧下装置を備える圧延機の圧延操作は、運転
員或いは保守員が油圧圧下装置用の制御盤内の各種ポイ
ントの電圧など種々の値を読み取り、経験に基づき独自
に判断して各部の調整を行      :って圧延操作
可能状態を確保した上で圧延操作を開始するという手法
を採っていた。しかしこのような手法では油圧圧下装置
の特性変化状況の把握が定性的であり、定量的な保守管
理ができないともあった。゛油圧圧下装置を構成する各
種要素例え      U共に、圧延される製品の板厚
精度低下などの影響ば流量制御弁にあたるサーボ弁の性
能や特性の経      2、ン I?″′&(t:&ff1liL・“0ゝ1′−1“e
     L把握すると共に、異常の有無を診断するこ
とが設      1−で 備稼動率を向上する為にも、また生産される製品   
   ゛″の品質向上の為にも重要なことである。従来
こり種の異常診断の方法には、例えば特開昭58−21
3227号公報に示されるように、作動油の圧力・流量
・摩耗粒子濃度・作動部材の変位などを検出し、これら
検出値相互の関係を予め設定した基準値および許容偏差
と比較して、異常の有無を診断する方法が知られている
Conventionally, rolling operations on a rolling mill equipped with a hydraulic reduction device were carried out by operators or maintenance personnel who read various values such as the voltage at various points in the control panel for the hydraulic reduction device, and made independent judgments based on their experience to control each part. The method used was to make adjustments and ensure that the rolling operation was possible before starting the rolling operation. However, with this method, the changes in the characteristics of the hydraulic pressure reduction device can only be grasped qualitatively, and quantitative maintenance management is not possible.゛Examples of the various elements that make up a hydraulic rolling down device In both U and I, if the accuracy of the plate thickness of the rolled product decreases, the performance and characteristics of the servo valve, which is the flow control valve, will be affected. ″′&(t:&ff1liL・“0ゝ1′-1”e
In addition to understanding the L value, it is also necessary to diagnose the presence or absence of abnormalities.
This is also important for improving the quality of
As shown in Publication No. 3227, the pressure, flow rate, wear particle concentration, displacement of operating members, etc. of hydraulic oil are detected, and the relationship between these detected values is compared with preset reference values and tolerance deviations to detect abnormalities. There are known methods for diagnosing the presence or absence of.

この方法は油圧機器内部の損耗・劣化・摩耗などによる
機械的損傷の状態を自動的に推定して異常の有無を診断
する為、油圧機器が機能を停止する以前に故障発生を予
知することができるが、圧延機の油圧圧下装置のように
圧延される製品の歩留り向上などを図るために、サーボ
弁などの特性・性能変化を把握する異常診断には不向き
である。
This method automatically estimates the state of mechanical damage due to wear, deterioration, wear, etc. inside the hydraulic equipment and diagnoses the presence or absence of abnormalities, making it possible to predict failures before the hydraulic equipment stops functioning. However, it is not suitable for abnormality diagnosis to understand changes in the characteristics and performance of servo valves, etc., in order to improve the yield of rolled products such as in the hydraulic reduction device of a rolling mill.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、油圧圧下式圧延機の稼動率を向上させ
ると共に、圧延製品の歩留りを向上させる圧延機油圧圧
下装置用異常診断装置を提供することにある。
An object of the present invention is to provide an abnormality diagnosis device for a hydraulic reduction device of a rolling mill that improves the operating rate of a hydraulic reduction rolling mill and improves the yield of rolled products.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するため、圧延開始前または
圧延中など圧延設備稼動中に、設備稼動時における通常
の動きをさせたままで行う常時診断と、圧延を停止した
状態で油圧圧下装置に基準波信号を入力し油圧圧下装置
に基準波信号に応じた動きをさせて、その動特性を予め
定めている基準動特性と比較することによる定期診断と
を有することを特徴とする。これは圧延製品を圧延して
いる状態において、異常診断のために特別な動きをさせ
ることなく、圧延のための通常の動きをさせたままで継
続的に診断することと、設備全体の定期点検時など圧延
中とは異る動きをさせても差し支え無い状態で、診断に
適した基準波信号を入力して、より詳細でより確実な診
断を継続的に行うことを図ったものである。
In order to achieve the above-mentioned object, the present invention provides constant diagnosis that is performed while the rolling equipment is in operation, such as before the start of rolling or during rolling, while the equipment is kept in its normal motion, and when the hydraulic rolling device is operated while rolling is stopped. It is characterized by having a periodic diagnosis by inputting a reference wave signal, causing the hydraulic pressure lowering device to move in accordance with the reference wave signal, and comparing its dynamic characteristics with a predetermined reference dynamic characteristic. This is done by continuously diagnosing a rolled product while it is being rolled, without making any special movements to diagnose abnormalities, while maintaining normal rolling movements, and during periodic inspections of the entire equipment. The aim is to continuously perform more detailed and reliable diagnosis by inputting a reference wave signal suitable for diagnosis in a state where there is no problem in making movements different from those during rolling.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第7図は本発明の係わる異常診断装置を適用するたるに
構成した油圧圧下装置の概略構成図で、圧延機1スタン
ド分を示す。圧延設備の中にはこれら圧延機スタンドを
複数個(例えば6スタンド)タンデムに配置することも
ある。
FIG. 7 is a schematic diagram of a hydraulic rolling down device configured in a barrel to which the abnormality diagnosis device according to the present invention is applied, and shows one stand of a rolling mill. In some rolling equipment, a plurality of these rolling mill stands (for example, six stands) may be arranged in tandem.

圧延機油圧圧下装置は、一般に圧延機1スタンド分が操
作側と駆動側の2系統から構成される。
A rolling mill hydraulic rolling device generally includes two systems for one stand of a rolling mill: an operation side and a drive side.

例えば操作側を例にとって説明すると、被圧延材1を直
接圧延する1対の作業ロール2a・2b、中間ロール3
a・3b、補強ロール4a・4b。
For example, taking the operating side as an example, a pair of work rolls 2a and 2b that directly roll the material 1 to be rolled, and an intermediate roll 3
a and 3b, reinforcing rolls 4a and 4b.

圧下ラム14aと圧下シリンダー14bとからなる圧下
ジヤツキ14、圧下ジヤツキ14へ送る油の量を制御す
るためのサーボ弁13.サーボ弁13を駆動するための
サーボアンプ12.閉ループ位置サーボ系の前向きゲイ
ンを調整するためのアンプ11、圧下ジヤツキ14を変
位を検出するための圧下位置検出器15、圧下位置検出
器15によって検出された圧下ジヤツキ14の変位を電
気的数値信号として出力するための圧下位置受信器16
などで構成される。6は油タンク、7は油圧ポンプ、5
はこれらの油圧機器を搭載した油圧パワーユニットであ
る。またサーボ弁13には3系統の配管が接続されてい
る。即ち油圧ポンプ7から高圧油が供給される第1の配
管、圧下ジヤツキ14へ高圧油を送り込んだり逆に戻し
たりするための第2の配管、圧下ジヤツキ14から油タ
ンク6への排油通路にあたる第3の配管の合計3系統の
配管がサーボ弁13に接続されている。
A reduction jack 14 consisting of a reduction ram 14a and a reduction cylinder 14b, a servo valve 13 for controlling the amount of oil sent to the reduction jack 14. Servo amplifier 12 for driving servo valve 13. An amplifier 11 for adjusting the forward gain of the closed loop position servo system, a lowering position detector 15 for detecting the displacement of the lowering jack 14, and an electric numerical signal indicating the displacement of the lowering jack 14 detected by the lowering position detector 15. Press down position receiver 16 for outputting as
It consists of etc. 6 is an oil tank, 7 is a hydraulic pump, 5
is a hydraulic power unit equipped with these hydraulic devices. Further, three systems of piping are connected to the servo valve 13. That is, a first pipe to which high-pressure oil is supplied from the hydraulic pump 7, a second pipe to send high-pressure oil to the reduction jack 14 and vice versa, and an oil drainage passage from the reduction jack 14 to the oil tank 6. A total of three lines of piping, including the third piping, are connected to the servo valve 13.

次に上記構成からなる油圧圧下装置の動作につ−いて説
明する。
Next, the operation of the hydraulic pressure lowering device constructed as described above will be explained.

圧下位置目標値Soを与えると、圧下位置受信器16か
ら出力される圧下ジヤツキ14の変位(以下圧下位置検
出値という)S工との間に偏差値ΔS1が生じ、このΔ
S1にアンプ11による前向きゲインが乗じられ、サー
ボアンプ12によってサーボ弁13を駆動するに足る電
気的パワーにパワー増幅して、サーボ弁13を駆動する
。ここでサーボ弁13は例えば第2図に示すような直動
型油圧サーボ弁であり得る。このサーボ弁は、マグネッ
ト41および可動コイル42から構成されるフォースモ
ータによってスプール43を軸方向(図示上の横方向)
に駆動する方式のもので、可動コイル42に流す電流値
によってスプール43の変位量が定まるようになってい
る。スプール43の変位量は検出器45によって検出さ
れ、後述するサーボ弁異常診断に使用することができる
。ポートP8には油圧ポンプからの配管が接続され、ポ
ートPaには油タンクへの配管が接続される。またポー
トPC1とPczは配管によって結合され圧下ジヤツキ
に接続される。今可動コイル42にプラスの電流が流さ
れ、スプール43が図示上の右方向に移動したとすると
、ポートPs とPetとの間に油が流れる経路が形成
され油圧ポンプから送られる高圧油が圧下ジヤツキへ向
って流れる。逆に可動コイル42にマイナスの電流が流
されるとスプール43は前記とは逆の左方向に移動して
ポートPctとP4との間に油の流れる経路が形成され
、油は圧下ジヤツキ側の圧力によって圧下ジヤツキから
大気圧にほぼ近い圧力の油タンクへ向って流れる。サー
ボ弁はスリーブ44とスプール43との重複量を多きく
すれば、可動コイルに電流を流していない状態(即ち電
流ゼロの状態)では油がどちらの方向へも流れなくする
ことがで゛きるが、これは可動コイルに流した電流iと
その結果生じる弁開度Aとの関係をみたとき、第3図に
点線で示すようにデッドバンドを有することになる。高
答逆応の閉ループ位置サーボ系を構成し、高い歩留りの
圧延製品を生産しようとするとき系の中にデッドバンド
要素が存在することはこれらの目的に対する阻害要因と
なるため、極力第3図の実線のような特性即ち電流に敏
感に呼応して弁が開くことが要請され、スリーブ44の
エツジ部とスプール43のエツジ部が微妙に接近してい
る状態となるように製作される。尚第3図の実線のよう
な状態を継続的に確保することは実際上は困難で、第4
図の実線酸るいは点線のような状態で使用されることが
多い。
When the target value So of the reduction position is given, a deviation value ΔS1 occurs between the displacement of the reduction jack 14 (hereinafter referred to as detection value of the reduction position) S output from the reduction position receiver 16, and this Δ
S1 is multiplied by the forward gain of the amplifier 11, and the servo amplifier 12 amplifies the electrical power to enough electrical power to drive the servo valve 13, thereby driving the servo valve 13. Here, the servo valve 13 may be, for example, a direct acting hydraulic servo valve as shown in FIG. This servo valve moves a spool 43 in the axial direction (horizontal direction in the drawing) by a force motor composed of a magnet 41 and a moving coil 42.
The amount of displacement of the spool 43 is determined by the value of the current flowing through the moving coil 42. The amount of displacement of the spool 43 is detected by the detector 45, and can be used for servo valve abnormality diagnosis, which will be described later. Piping from a hydraulic pump is connected to port P8, and piping to an oil tank is connected to port Pa. Further, ports PC1 and Pcz are coupled by piping and connected to a pressure jack. If a positive current is now applied to the moving coil 42 and the spool 43 moves to the right in the drawing, a path for oil to flow will be formed between the ports Ps and Pet, and the high pressure oil sent from the hydraulic pump will be reduced. Flows towards Jajatsuki. Conversely, when a negative current is applied to the moving coil 42, the spool 43 moves in the opposite direction to the left, forming a path for oil to flow between ports Pct and P4, and the oil flows under the pressure on the reduction jack side. This causes the oil to flow from the reduction jack to the oil tank, which has a pressure close to atmospheric pressure. In the servo valve, by increasing the amount of overlap between the sleeve 44 and the spool 43, oil can be prevented from flowing in either direction when no current is flowing through the moving coil (i.e., zero current). However, when looking at the relationship between the current i passed through the moving coil and the resulting valve opening A, there is a dead band as shown by the dotted line in FIG. When constructing a closed-loop position servo system with high response and reverse response to produce rolled products with a high yield, the presence of deadband elements in the system will be an impediment to these objectives, so we will try our best to develop the system shown in Figure 3. The valve is required to open in response to the characteristic shown by the solid line, that is, the current, and is manufactured so that the edge of the sleeve 44 and the edge of the spool 43 are slightly close to each other. In addition, it is difficult in practice to continuously maintain the state shown by the solid line in Figure 3.
It is often used as shown in the solid line or dotted line in the figure.

再び第7図に戻って、油圧圧下装置の動作についての説
明を継続する。サーボアンプ12の出力によってサーボ
弁13が駆動され、圧下ジヤツキ14に油が送り込まれ
ると、圧下ラム14aが押し上げられ、補強ロール4b
・中間ロール3b・を通して作業ロール2bが押し上げ
られ、上側作業ロール2aとの間隙が減少する。サーボ
弁13が逆方向に駆動されると、゛圧下ジヤツキ14内
の油が排出される方向に流れ、圧下ラム14aが下がっ
て前記とは逆に上側作業ロール2aと下側非業ロール2
bとの間隙が拡大する。圧下ジヤツキ14の変位は圧下
位置検出器15によって検出され、圧下位置受信器16
によって電圧的数値信号として出力される。圧下位置検
出値S1の変化の方向は、偏差値ΔS1が減少する方向
であり、この偏差値ΔSsがゼロになるまでアンプ11
およびサーボアンプ12を通してサーボ弁13が駆動さ
れ、圧下ラム14aが駆動される。圧下ラム14aが動
きその結果偏差値ΔS1がゼロになると、サーボ弁13
に流す電流がゼロとなり圧下ラム14aの動きが停止す
る。閉ループ位置サーボ系は第5図に示すように、圧下
位置目標値Soと圧下位置検出値Sとの偏差値ΔSを制
御盤110によってサーボ弁駆動用電流iに変換し、サ
ーボ弁駆動用電流iをサーボ弁13によって油の単位時
間当り流量Qに変換し、油の単位時間当り流量Qを圧下
ジヤツキ14によって変位に変換し、圧下ジヤツキ14
の変位を検出11160にて検出・フィードバックして
閉ループを構成する。そして偏差値ΔSがゼロになるよ
うに制御することが特徴である。そして圧延機油圧圧下
装置の場合には被圧延材の板厚をミクロン単位で制御す
ることを特徴としている。これに対し参考までにスピー
ド制御系の例を考えてみると、第6図に示すようにスピ
ード指令Noとスピードのフィードバック値Nとの差C
に前向前ゲイン要素50のゲインGを乗じて電動機51
の回転速度指令を出力し、その回転速度をタコジェネレ
ータ52で検出してフィードバックして閉ループを構成
する。この場合差膨は理論的に完全なゼロにはなり得す
成る微小な値となることが閉ループ位置サーボ系と相違
する点である。
Returning again to FIG. 7, the explanation of the operation of the hydraulic pressure lowering device will be continued. When the servo valve 13 is driven by the output of the servo amplifier 12 and oil is sent to the reduction jack 14, the reduction ram 14a is pushed up and the reinforcing roll 4b is pushed up.
- The work roll 2b is pushed up through the intermediate roll 3b, and the gap with the upper work roll 2a is reduced. When the servo valve 13 is driven in the opposite direction, the oil in the reduction jack 14 flows in the direction to be discharged, the reduction ram 14a is lowered, and the upper work roll 2a and the lower non-work roll 2 are moved in the opposite direction.
The gap with b increases. The displacement of the screw down jack 14 is detected by the screw down position detector 15, and the displacement of the screw down jack 14 is detected by the screw down position detector 15.
is output as a voltage numerical signal. The direction of change in the detected roll position S1 is the direction in which the deviation value ΔS1 decreases, and the amplifier 11 is changed until the deviation value ΔSs becomes zero.
The servo valve 13 is driven through the servo amplifier 12, and the reduction ram 14a is driven. When the reduction ram 14a moves and as a result, the deviation value ΔS1 becomes zero, the servo valve 13
The current flowing through the ram 14a becomes zero, and the movement of the reduction ram 14a stops. As shown in FIG. 5, the closed-loop position servo system converts the deviation value ΔS between the target roll position value So and the detected roll position value S into a servo valve driving current i using the control panel 110. is converted into an oil flow rate Q per unit time by the servo valve 13, and the oil flow rate Q per unit time is converted into displacement by the reduction jack 14.
The displacement is detected and fed back at the detection 11160 to form a closed loop. The feature is that the deviation value ΔS is controlled to be zero. In the case of a rolling mill hydraulic reduction device, the thickness of the material to be rolled is controlled in microns. On the other hand, if we consider an example of a speed control system for reference, as shown in Figure 6, the difference C between the speed command No. and the speed feedback value N
The electric motor 51 is multiplied by the gain G of the forward gain element 50.
A rotation speed command is output, and the rotation speed is detected by the tacho generator 52 and fed back to form a closed loop. In this case, the difference from a closed loop position servo system is that the differential expansion is a very small value that theoretically cannot be completely zero.

第1図は本発明の圧延機油圧圧下装置用異常診断装置の
一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an abnormality diagnosis device for a rolling mill hydraulic rolling device according to the present invention.

第1図において、30が異常診断装置、その中で31は
基準波信号発生装置、32は積分器。
In FIG. 1, 30 is an abnormality diagnosis device, 31 is a reference wave signal generator, and 32 is an integrator.

33はその積分器に対して積分の開始・終了や積分値の
保持・リセットなどを指令する指令回路、34は異常の
有無を判断する判定装置、35はその判定結果を運転員
に知らせる為の表示装置である。異常診断は、圧延開始
前または圧延中など圧延設備稼動中に、油圧圧下装置に
対しては圧延操業中における動作と特に異る動きをさせ
ることなく行う常時診断と1診断に適した基準波信号を
入力してその動特性を観測して行う定期診断とに大別す
る。
33 is a command circuit that instructs the integrator to start and end integration, hold and reset the integral value, etc. 34 is a determination device that determines the presence or absence of an abnormality, and 35 is a circuit for notifying the operator of the determination result. It is a display device. Abnormality diagnosis is carried out before the start of rolling or during rolling equipment operation, without making the hydraulic rolling device perform any movement that is particularly different from that during rolling operation, and by using a reference wave signal suitable for one diagnosis. This can be broadly divided into periodic diagnosis, which is performed by inputting the information and observing its dynamic characteristics.

常時診断は、油圧圧下装置に対し圧延操業のための動き
をさせたまま行うために、異常診断装置側から油圧圧下
装置に対し基準波信号を入力するなどの能動的な働きか
けはせず、圧延操業のための通常の動きの中の信号を取
り込んで診断を行う。
Continuous diagnosis is performed while the hydraulic rolling device is in motion for rolling operation, so the abnormality diagnosis device does not actively influence the hydraulic rolling device by inputting a reference wave signal, etc. Diagnosis is performed by capturing signals during normal operation operations.

閉ループ位置サーボ系においては前述の如く、位置目標
値と位置検出値との偏差をゼロにすべく制御するが、高
応答を必要とする圧延機油圧圧下装置においては各コン
ポーネントも高応答のものを使用する必要があり1例え
ば前述のようにサーボ弁は入力電流に敏感に呼応するよ
うにして使用される。このため偏差ΔSがゼロでサーボ
弁への電流入力がゼロの状態のときサーボ弁開度は必ず
しも完全なゼロではなく、油はいずれかの方向(油ポン
プから圧下ジヤツキへの方向成るいは、圧下ジヤツキか
ら油タンクへの方向のうちいずれかの方向)へ流れ、圧
下ジヤツキが変位する。圧下ジヤツキが変位すると偏差
ΔSがゼロ以外の成る有限な値となり、サーボ弁に電流
を流し偏差ΔSをゼロとする方向へ圧下ジヤツキを変位
させる。しかし偏差ΔSが完全にゼロになるまで圧下ジ
ヤツキ変位が戻るのではなく、成る微小な大きさの偏差
ΔSが存在しこの偏差ΔSに基づいたサーボ弁電流が流
れた状態で圧下ジヤツキの変位は停止する。これはサー
ボ弁に若干の電流を流し、スプールが若干変位した状態
のところに、圧下ジヤツキへの油の流入および流出が無
い状態が存在することを意味している6そしてこの圧下
ジヤツキに向っての油の流入および圧下ジヤツキからの
油の流出の無い状態を作り出す為のサーボ弁電流(以下
これをNull電流という)は、同一のサーボ弁であっ
てもスプールやスリーブの摩耗などによって経時的変化
がある。常時診断はこのNull電流が存在することと
それが経時的に変化することを利用して行う。
As mentioned above, the closed-loop position servo system is controlled so that the deviation between the position target value and the detected position value is zero, but in the rolling mill hydraulic rolling device, which requires high response, each component must also have high response. For example, as mentioned above, servo valves are used in a manner that responds sensitively to the input current. Therefore, when the deviation ΔS is zero and the current input to the servo valve is zero, the servo valve opening is not necessarily completely zero, and the oil flows in either direction (from the oil pump to the reduction jack, or The oil flows in either direction (from the reduction jack to the oil tank), and the reduction jack is displaced. When the reduction jack is displaced, the deviation ΔS becomes a finite value other than zero, and current is applied to the servo valve to displace the reduction jack in a direction that makes the deviation ΔS zero. However, the displacement of the screw down does not return until the deviation ΔS becomes completely zero, but there is a small deviation ΔS, and the displacement of the screw down stops when the servo valve current based on this deviation ΔS flows. do. This means that when a small amount of current is applied to the servo valve and the spool is slightly displaced, there is a state in which oil does not flow into or out of the reduction jack6. The servo valve current (hereinafter referred to as the "Null current"), which is used to create a state in which there is no inflow of oil or outflow of oil from the reduction jack, may change over time due to wear of the spool or sleeve, etc., even if the servo valve is the same. There is. Continuous diagnosis is performed by utilizing the presence of this null current and its change over time.

常時診断の動作を第1図に加えて第8図を併用して説明
する。指令回路33は圧下位置目標値Soを取り込み、
(第8図(A))その変化状況(即ち変化率)を監視す
る。そしてその変化率がゼロでない間は積分器32に向
けて指令する積分指令mをOFFとし、同図(B)変化
率がゼロとなったならばその直前の変化率をもとに閉ル
ープ位置サーボ系が所期の性能で動作した場合必要とす
る過渡応答整定時間を推定して、変化率がゼロになって
のち前記時間後に積分指令mをONさせる。圧下位置目
標値Soが変化している間はその変化によって位置偏差
ΔSがゼロ以外の成る値となる。しかしこの間は積分指
令mがOFFのため、積分器32は積分は行わずそれ以
前の積分値を保持する。圧下位置目標値Soの変化が停
止し積分指令mがONになる時点においては、閉ループ
位置サーボ系が所期の性能であれば、若干の位置偏差が
存在しく同図(C))若干のN ull電流が流れた状
態となる。ここで積分器32は積分動作を開始し1位置
偏差値ΔSを積分する(回向(D))。
The operation of constant diagnosis will be explained using FIG. 8 in addition to FIG. 1. The command circuit 33 takes in the lowering position target value So,
(FIG. 8(A)) The state of change (ie, rate of change) is monitored. Then, while the rate of change is not zero, the integral command m directed to the integrator 32 is turned OFF, and when the rate of change becomes zero (see figure (B)), the closed-loop position servo is controlled based on the rate of change just before that. The transient response settling time required when the system operates with the desired performance is estimated, and the integral command m is turned on after the above-mentioned time after the rate of change becomes zero. While the target rolling position value So is changing, the position deviation ΔS becomes a value other than zero due to the change. However, during this time, since the integration command m is OFF, the integrator 32 does not perform integration and holds the previous integration value. If the closed loop position servo system has the expected performance at the time when the target value So of the reduction position stops changing and the integral command m turns ON, there will be some position deviation (Figure (C)). A state is reached where a ull current flows. Here, the integrator 32 starts an integration operation and integrates one position deviation value ΔS (turn (D)).

積分器32の出力Mは圧下位置制御装置へ送られ。The output M of the integrator 32 is sent to the lowering position control device.

圧下位置制御装置側で適当なゲイン調整を行った後閉ル
ープに加算する6サーボ弁電流(同図(E))は位置偏
差値ΔSに基づく分と積分器出力Mに基づく分との合計
となり、圧下ジヤツキを更に変位させ位置偏差値ΔSを
ゼロにもって行く0位置偏差値ΔSがゼロとなるまでは
積分値Mは増加し、位置偏差値ΔSがゼロとなった後は
この積分値MがN ull電流を確保する。サーボ弁の
スプールやスリーブの摩耗が少く、あまり大きなN u
ll電流を流す必要が無い状態では積分値Mはあまり大
きくならず、判定装@34が異常の有無を判定するレベ
ル(今仮に図示上の点線のレベルとする)に達せず判定
装置34は異常無しと判定する。ところがサーボ弁のス
プールやスリーブの摩耗が進行し、N ull電流を多
く流さねばならなくなって来るとそのような状態での積
分値Mは第8図とは異り、大きな値となって判定装置3
4の判定結果は異常有りとなる。またサーボ弁をはじめ
とする閉ループ位置サーボ系内の各要素の性能が低下す
ると、閉ループ位置サーボ系としての過渡応答特性が変
るので、実際に過渡応答が整定しないうちに積分指令m
がONになって、過渡応答中の位置偏差値ΔSを積分し
て積分値Mが異常値となる。サーボ弁を新品と交換した
り機械的に調整した場合には運転員からの入力により、
指令回路33を経由して積分器32の積分値Mをリセッ
ト(即ちゼロクリア)する1判定回路34はこのリセッ
トを行った時から警報レベルに達するまでの時間を計測
し、これが一定値より短い場合には調整のみでは処置し
きれない状態数新品との交換を要する旨の案内を表示装
[35に表示させる。さらにサーボ弁のスプールがロッ
クした場合や圧下位置検出器が故障した場合などにおい
ては、位置偏差値ΔSが異常に大きくなるので、積分値
Mが急激且つ異常に大きくなる0判定装9134は積分
値Mの変化量と変化率を監視し、予め定めた基準値より
もいずれもが大きい場合1重大異常である旨を表示装置
35に表示させ併せて圧下位置制御装置へもそれを知ら
せる信号を送り、圧延設備を破損したり圧延製品を不良
品にしたりすることが無いような措置を構じさせる。
The six servo valve currents ((E) in the same figure) added to the closed loop after appropriate gain adjustment on the reduction position control device side are the sum of the part based on the position deviation value ΔS and the part based on the integrator output M, The integral value M increases until the position deviation value ΔS becomes zero by further displacing the reduction jack to bring the position deviation value ΔS to zero, and after the position deviation value ΔS becomes zero, this integral value M increases to N. Ensure ull current. There is less wear on the servo valve spool and sleeve, and there is less wear on the servo valve's spool and sleeve.
In a state where there is no need to flow current, the integral value M does not become very large, and does not reach the level at which the determination device @34 determines the presence or absence of an abnormality (temporarily assumed to be the level indicated by the dotted line in the diagram), and the determination device 34 detects an abnormality. It is determined that there is no such thing. However, as the servo valve's spool and sleeve wear progresses, and it becomes necessary to flow a large amount of null current, the integral value M under such conditions becomes a large value, unlike that shown in Fig. 8, and the determination device 3
The determination result of 4 indicates that there is an abnormality. In addition, if the performance of each element in the closed-loop position servo system, including the servo valve, deteriorates, the transient response characteristics of the closed-loop position servo system will change, so the integral command m
is turned ON, the position deviation value ΔS during the transient response is integrated, and the integral value M becomes an abnormal value. When the servo valve is replaced with a new one or mechanically adjusted, the
A judgment circuit 34 that resets the integral value M of the integrator 32 (that is, clears it to zero) via the command circuit 33 measures the time from when this reset is performed until the alarm level is reached, and if this is shorter than a certain value. If there are conditions that cannot be treated with adjustment alone, a message will be displayed on the display [35] to the effect that replacement with a new one is required. Furthermore, in cases such as when the spool of the servo valve is locked or when the reduction position detector is broken, the position deviation value ΔS becomes abnormally large, so the integral value M suddenly and abnormally increases. The amount of change and the rate of change of M are monitored, and if both are larger than predetermined reference values, a message indicating that there is a serious abnormality is displayed on the display device 35, and a signal is also sent to the lowering position control device to notify the same. Measures will be taken to prevent rolling equipment from being damaged and rolled products from becoming defective.

定期診断は、基準波信号発生装置31から診断に適した
基準波信号を入力して行う。基準波信号としては例えば
第9図に示す入力信号(同図(A))のような波形のも
ので、この入力に対し閉ループ位置サーボ系が動作し圧
下シリンダーが変化(同図(B))するとその動きにつ
れてΔSが図示の如く変化する。デッドタイムt1・立
上り時間t2、整定時間taそれに偏差ΔS(同図(C
))の積分値(同図(D))等を把握し、予め定めた基
準値と比較してその差が許容値以下であるかどうかを判
定する。立上り時間t2が基準値より長い場合は系のゲ
インが低下していると判定し、また逆に立上り時間ti
が基準値より短かかったり整定時間taが基準値より長
い場合は系が不安定になっていると判、定する。デッド
タイムtlが基準値より長い場合サーボ弁等の摩耗が進
行していると判定、積分値についてもこれら判定の補助
情報として使用する0以上の診断により異常の有無や異
常状態へ向かっての進行状況を判定し1表示装置によっ
て運転員に知らせる。ここで異常有りと判定した場合さ
らにサーボ弁単体の診断に移行する。
Periodic diagnosis is performed by inputting a reference wave signal suitable for diagnosis from the reference wave signal generator 31. The reference wave signal has a waveform such as the input signal shown in Fig. 9 ((A) in the same figure), and in response to this input, the closed-loop position servo system operates and the reduction cylinder changes ((B) in the same figure). Then, as the movement progresses, ΔS changes as shown in the figure. Dead time t1, rise time t2, settling time ta, and deviation ΔS (same figure (C)
)) and the like ((D) in the same figure) are ascertained and compared with a predetermined reference value to determine whether the difference is less than or equal to an allowable value. If the rise time t2 is longer than the reference value, it is determined that the gain of the system has decreased;
If the settling time ta is shorter than the reference value or the settling time ta is longer than the reference value, it is determined that the system is unstable. If the dead time tl is longer than the reference value, it is determined that the wear of the servo valve, etc. is progressing.The integral value is also used as auxiliary information for these determinations.Diagnosis of 0 or more is used to determine whether there is an abnormality or progress toward an abnormal state. Determine the situation and notify the operator using the display device. If it is determined that there is an abnormality here, the process proceeds to diagnosis of the servo valve itself.

サーボ弁単体定期診断は例えばサーボ弁入力電流iとし
て正弦波信号を入力し、スプール変位信号を取り込んで
、第10図に示すようなヒステリシス特性を観測し、予
め定めた基準特性と比較してその差が許容値以内かを判
定し1判定結果を表示装置に表示する0表示内容は例え
ば異常なしてか、ラバースプリングを使用しているサー
ボ弁であるならばラバースプリングを新品と交換するこ
とを促す表示などである。さらにサーボ弁単体定期診断
としては、サーボ弁の圧下ジヤツキ側出口の圧力とスプ
ール変位量との関係を示す圧力ゲイン特性についても診
断を行い、スプールやスリーブのエツジの摩耗状態を定
量的に推定し、表示装置に表示し、スプールやスリーブ
の新品との交換時期の目安を与える。
For periodic diagnosis of a single servo valve, for example, input a sine wave signal as the servo valve input current i, take in the spool displacement signal, observe the hysteresis characteristic as shown in Figure 10, and compare it with a predetermined reference characteristic. Determines whether the difference is within the allowable value and displays the result of the 1 judgment on the display device.The content displayed as 0 indicates that there is no abnormality, or that if the servo valve uses a rubber spring, the rubber spring should be replaced with a new one. This may include a display that prompts you to do so. Furthermore, as a periodic diagnosis of the servo valve itself, we also diagnose the pressure gain characteristic, which shows the relationship between the pressure at the servo valve's reduction jack side outlet and the amount of spool displacement, and quantitatively estimate the wear state of the edges of the spool and sleeve. , is displayed on the display device to give an indication of when to replace the spool or sleeve with a new one.

以上のように本実施例によれば、常時診断によって油圧
圧下装置の異常に起因する重大事故を未然に防止できる
と共に、常時診断および定期診断によって圧延機油圧圧
下装置の圧下動特性が定量的に把握できるので、圧延操
作を継続しても圧延製品の板厚歩留りの低下をきたすこ
とが無いか判断でき圧延製品の板厚歩留りの維持向上に
効果がある。また油圧圧下装置の中の重要構成要素であ
るところのサーボ弁に対し定期診断を施すことにより、
サーボ弁を構成する部品1例えばスプール・スリーブ・
ラバースプリングなどの寿命を予知でき、設備が故障し
てしまう前の所謂予防保全が可能となる。
As described above, according to this embodiment, serious accidents caused by abnormalities in the hydraulic rolling device can be prevented by constant diagnosis, and rolling dynamic characteristics of the hydraulic rolling machine rolling machine can be quantitatively determined by constant diagnosis and periodic diagnosis. Since it can be ascertained, it can be determined whether or not the thickness yield of the rolled product will decrease even if the rolling operation is continued, which is effective in maintaining and improving the thickness yield of the rolled product. In addition, by conducting periodic diagnosis of the servo valve, which is an important component in the hydraulic pressure reduction device,
Parts that make up a servo valve 1 For example, spool, sleeve,
It is possible to predict the lifespan of rubber springs and the like, making it possible to perform so-called preventive maintenance before equipment breaks down.

わず閉ループ位置サーボ系のオフセット値を定量   
    ′−〔発明の効果〕 本発明によれば、圧延開始前および圧延中を間約に把握
できるので、油圧圧下装置の各構成要素の保守・調整が
計画的に行え、また油圧圧下装置の圧下動特性も定量的
に把握できるので、圧延される製品の板厚に関する歩留
りの維持・向上ができる。加えて油圧圧下装置に係わる
設備の故障や事故が未然に防止できる。
Quantify the offset value of a closed-loop position servo system without any hassle.
'- [Effects of the Invention] According to the present invention, since it is possible to grasp the rolling process before the start of rolling and during rolling, maintenance and adjustment of each component of the hydraulic rolling device can be carried out in a planned manner, and the rolling of the hydraulic rolling device can be carried out in a planned manner. Since the dynamic characteristics can also be grasped quantitatively, it is possible to maintain and improve the yield regarding the thickness of rolled products. In addition, equipment failures and accidents related to the hydraulic pressure reduction device can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図中の1構成要素であるサーボ弁の構造図、第3図
、第4図はサーボ弁の入力電流と弁開度の関係を示す特
性図、第5図は閉ループ位置サーボ系ブロック図、第6
図はスピード制御系ブロック図、第7図は本発明の診断
装置を適用する圧延機油圧圧下装置の概略構成図、第8
図(A)〜(E)は本発明の一実施例のうちの常時診断
の動作を示すタイムチャート、第9図(A)〜(D)は
本発明の一実施例のうちの定期診断の動作を説明する為
の特性図、第1o図はサーボ弁単体の定期診断の一例を
説明するための特性図である。 1・・・被圧延材、11・・・アンプ、12・・・サー
ボアンプ、13・・・サーボ弁、14・・・圧下ジヤツ
キ、15・・・圧下位置検出器、3o・・・異常診断装
置、31・・・基準波信号発生器、32・・・積分器、
34・・・判定装置、35・・・表示装置、So・・・
圧下位置目標値、S・・・圧下位置検出値、ΔS・・・
圧下位置偏差、′−代理人 弁理士 小川勝男  −一
・′高2図 も3図 名4図 帛″1図 第8図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a structural diagram of a servo valve, which is one component in Fig. 1, and Figs. 3 and 4 show the input current of the servo valve and the valve. Characteristic diagram showing the relationship between opening degrees. Figure 5 is a block diagram of the closed loop position servo system. Figure 6 is a block diagram of the closed loop position servo system.
The figure is a speed control system block diagram, Figure 7 is a schematic configuration diagram of a rolling mill hydraulic reduction device to which the diagnostic device of the present invention is applied, and Figure 8
Figures (A) to (E) are time charts showing the operation of constant diagnosis in one embodiment of the present invention, and Figures 9 (A) to (D) are time charts showing the operation of regular diagnosis in one embodiment of the present invention. A characteristic diagram for explaining the operation, FIG. 1o is a characteristic diagram for explaining an example of periodic diagnosis of a single servo valve. DESCRIPTION OF SYMBOLS 1... Rolled material, 11... Amplifier, 12... Servo amplifier, 13... Servo valve, 14... Rolling jack, 15... Rolling down position detector, 3o... Abnormality diagnosis Device, 31... Reference wave signal generator, 32... Integrator,
34... Determination device, 35... Display device, So...
Rolling down position target value, S... Rolling down position detection value, ΔS...
Rolling position deviation, '-Representative Patent Attorney Katsuo Ogawa -1・'High 2nd figure also 3 figure name 4 figure '1 figure 8 figure

Claims (1)

【特許請求の範囲】[Claims] 1、圧延機の圧下位置を検出してフィードバック信号と
し圧下位置目標値とで圧下位置制御の閉ループサーボ系
を構成する圧延機油圧圧下装置において、圧下位置目標
値と圧下位置検出値との偏差値または、その偏差値の積
分値を演算する手段と、該演算手段の出力信号の大きさ
によつて圧延機油圧圧下装置の異常状態の有無を診断す
る診断手段と、圧延機油圧圧下装置に任意の大きさの基
準波信号を入力し、その入力による圧延機油圧圧下装置
の動特性と予め定めた基準動特性とを比較する比較手段
と該圧延機油圧圧下装置の異常診断をあらかじめ定めら
れた周期で定期的に行うために圧下位置目標値として微
小量圧下位置目標値を変化せしめる手段を含む定期診断
手段とを具備したことを特徴とする圧延機油圧圧下装置
の異常診断装置。
1. In a rolling mill hydraulic rolling device that detects the roll position of the rolling mill and uses it as a feedback signal and the roll position target value to form a closed loop servo system for roll position control, the deviation value between the roll position target value and the roll position detected value is Alternatively, a means for calculating the integral value of the deviation value, a diagnostic means for diagnosing the presence or absence of an abnormal condition in the hydraulic rolling machine of the rolling mill based on the magnitude of the output signal of the calculating means, and an optional means for the hydraulic rolling machine of the rolling mill. Comparison means for inputting a reference wave signal having a magnitude of 1. An abnormality diagnosis device for a hydraulic rolling machine of a rolling mill, characterized in that it comprises periodic diagnostic means including means for changing a target rolling position value by a minute amount as a target rolling position value in order to periodically perform the rolling mill hydraulic rolling device.
JP60177541A 1985-08-14 1985-08-14 Abnormality diagnostic device for rolling mill hydraulic pressure reduction device Expired - Lifetime JPH0679732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177541A JPH0679732B2 (en) 1985-08-14 1985-08-14 Abnormality diagnostic device for rolling mill hydraulic pressure reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177541A JPH0679732B2 (en) 1985-08-14 1985-08-14 Abnormality diagnostic device for rolling mill hydraulic pressure reduction device

Publications (2)

Publication Number Publication Date
JPS6238709A true JPS6238709A (en) 1987-02-19
JPH0679732B2 JPH0679732B2 (en) 1994-10-12

Family

ID=16032746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177541A Expired - Lifetime JPH0679732B2 (en) 1985-08-14 1985-08-14 Abnormality diagnostic device for rolling mill hydraulic pressure reduction device

Country Status (1)

Country Link
JP (1) JPH0679732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050943A (en) * 2014-08-29 2016-04-11 フルークコーポレイションFluke Corporation Method and system for testing valve
JP2016050785A (en) * 2014-08-29 2016-04-11 Jfeスチール株式会社 Trouble diagnosing method, and device, for servo valves under hydraulic pressure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219409A (en) * 1985-03-25 1986-09-29 Hitachi Ltd Device for diagnosing abnormality of hydraulic rolling reduction device of rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219409A (en) * 1985-03-25 1986-09-29 Hitachi Ltd Device for diagnosing abnormality of hydraulic rolling reduction device of rolling mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050943A (en) * 2014-08-29 2016-04-11 フルークコーポレイションFluke Corporation Method and system for testing valve
JP2016050785A (en) * 2014-08-29 2016-04-11 Jfeスチール株式会社 Trouble diagnosing method, and device, for servo valves under hydraulic pressure

Also Published As

Publication number Publication date
JPH0679732B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
KR100501624B1 (en) Elevator vibration reducing device
JP6112085B2 (en) Fault diagnosis method and apparatus for hydraulic pressure reduction servo valve
US4481800A (en) Cold rolling mill for metal strip
JPS6238709A (en) Abnormality diagnosing device for hydraulic rolling down device of rolling mill
JP2615291B2 (en) Hydraulic device diagnostic method
JPH0261843B2 (en)
JP3171212B2 (en) Tandem rolling mill and method for estimating cause of abnormal thickness in tandem rolling mill
KR100874063B1 (en) Apparatus and method for displaying trouble of position detector for coil box uncoiling side guide
JPS6127110A (en) Fault diagnosing method of hydraulic rolling reduction type rolling mill
KR200301646Y1 (en) A controller for maintaining center of strip
JP2024004611A (en) Rolling mill and rolling method
JPH04251605A (en) Method for automatically diagnosing hydraulic pressure control system
CN109292632A (en) A kind of multimachine wisdom crane and working method
KR102045645B1 (en) Error Detection Method of Work-roll Alignment of Rolling Mill
JPS6188309A (en) Method for detecting faulty location of hydraulic servo system
JPS6343714A (en) Abnormality diagnostics for oil film bearing system of roll for rolling mill
JPH0335006B2 (en)
JPH01154811A (en) Control device for hydraulic rolling reduction
JP2022049523A (en) Abnormality occurrence prediction system and abnormality occurrence prediction method, and steel manufacturing method
KR19990026373U (en) Hydraulic cylinder control loop switching device of rolling equipment
KR20200075432A (en) Rolling mill
JP2000084608A (en) Method for measuring positional deviation of axial center of roll in rolling mill and method for adjusting position of axial center of roll
JPH02220705A (en) Equipment diagnostic method for hydraulic screw down device of rolling mill
WO2024193901A1 (en) Squeezing roller having an internal drive for a cold rolling system
JPH01295003A (en) Diagnostic apparatus for rolling machine