JPH04251605A - Method for automatically diagnosing hydraulic pressure control system - Google Patents

Method for automatically diagnosing hydraulic pressure control system

Info

Publication number
JPH04251605A
JPH04251605A JP2403591A JP2403591A JPH04251605A JP H04251605 A JPH04251605 A JP H04251605A JP 2403591 A JP2403591 A JP 2403591A JP 2403591 A JP2403591 A JP 2403591A JP H04251605 A JPH04251605 A JP H04251605A
Authority
JP
Japan
Prior art keywords
pressure
hydraulic pressure
control system
pressure control
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2403591A
Other languages
Japanese (ja)
Inventor
Kazuo Tajiri
田尻 一生
Hisao Kashimoto
樫本 久生
Sadami Deguchi
出口 貞味
Tomiichi Kono
幸野 富一
Shoji Mori
毛利 章司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2403591A priority Critical patent/JPH04251605A/en
Publication of JPH04251605A publication Critical patent/JPH04251605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To surely diagnose the abnormality of a general hydraulic pressure control system by a simple constitution regardless of during operation or suspension. CONSTITUTION:An actuator 5 and pressure detector 6 are provided in a bent circuit 43 of a reducing valve 42 which is provided on the hydraulic pressure control system 4 which is an object of diagnosis. A prescribed oil pressure is introduced into the bent circuit 43 with the actuator 5 and the fluctuation of pressure that is generated in the bent circuit 43 at this time is detected with the pressure detector 6. Both or one of the magnitude of amplitude of fluctuation in pressure that is detected with the pressure detector 6 and the length of time until the oil pressure is converged to a certain pressure is checked with a diagnostic device 7 and the abnormality of the hydraulic pressure control system 4 is quantitatively diagnosed based on that result. The operator is informed by properly indicating the diagnostic result with the diagnostic device 7 in an indicating part 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、所定の送給先への送給
圧を一定に保つ減圧弁及びこれのベント回路を備えた油
圧圧力制御系各部の状態を、例えば、正常(Good)
、注意(Caution)及び異常(Damage)の
3段階に定量化すべく自動診断する方法に関する。
[Industrial Application Field] The present invention allows the state of each part of a hydraulic pressure control system including a pressure reducing valve and a vent circuit thereof to maintain a constant supply pressure to a predetermined delivery destination to be normal (Good), for example.
The present invention relates to an automatic diagnosis method for quantifying into three stages: , Caution, and Damage.

【0002】0002

【従来の技術】圧延機の圧延ロールにより圧延材に所定
の圧下を加えるべく行われる圧下力制御系、及び、連続
鋳造設備のピンチロールにより鋳片に所定の引抜き力を
加えるべく行われる引抜き力制御系等、製鋼の各工程に
おいては、力の発生源となる油圧シリンダへの送給油圧
を制御し、該油圧シリンダの発生力により所定の仕事を
なさしめるべく油圧圧力制御系が構成されており、この
種の油圧圧力制御系においては、油圧の送給先となる油
圧シリンダと油圧源との間にベント回路を備えた減圧弁
を介装し、該減圧弁の動作により油圧シリンダへの送給
圧を安定化せしめると共に、この送給圧を前記ベント回
路の操作により外部から適宜に変更し得るようになした
構成が多く採用されている。
[Prior Art] A rolling force control system that applies a predetermined reduction to a rolled material by the rolling rolls of a rolling mill, and a drawing force that applies a predetermined drawing force to a slab by the pinch rolls of a continuous casting facility. In each process of steelmaking, such as control systems, hydraulic pressure control systems are configured to control the hydraulic pressure supplied to hydraulic cylinders, which are the sources of force, and to perform predetermined work using the force generated by the hydraulic cylinders. In this type of hydraulic pressure control system, a pressure reducing valve equipped with a vent circuit is interposed between the hydraulic cylinder, which is the destination of hydraulic pressure, and the hydraulic source, and the operation of the pressure reducing valve reduces the pressure to the hydraulic cylinder. Many configurations have been adopted in which the feed pressure is stabilized and this feed pressure can be changed as appropriate from the outside by operating the vent circuit.

【0003】ところで油圧圧力制御系においては、前記
油圧シリンダ、該油圧シリンダに連なる油圧配管、及び
該油圧配管の中途に配設された各種の制御弁等、系内各
部における封止性能の経時的な劣化に伴って作動油の漏
洩量が増す難点があり、これに起因する動作不良を未然
に回避するため、系内各部の定期的な保守,点検が不可
決である。
By the way, in a hydraulic pressure control system, the sealing performance of each part of the system, such as the hydraulic cylinder, the hydraulic piping connected to the hydraulic cylinder, and various control valves disposed midway through the hydraulic piping, changes over time. The problem is that the amount of hydraulic oil leaking increases as the system deteriorates, and in order to prevent malfunctions caused by this, regular maintenance and inspection of each part of the system is essential.

【0004】一般的にこの保守,点検作業は、定期的な
ライン休止時に、サーボバルブの抵抗値及び中立点電流
の測定、所定の送給圧下での油圧シリンダの発生力の測
定、更には、伝達関数解析装置を用いた系全体の動特性
の測定を人手により行い、これらの測定結果から系の異
常診断をなす手法により実施されているが、多大の作業
時間を要する難点があり、また、異常の有無のみならず
、異常程度の定量的な判定を行うには高度の熟練を要し
、実際には安全のために、異常程度が軽微な段階で構成
機器の交換を強いることとなり、無駄が多いという難点
があった。
[0004] Generally, this maintenance and inspection work involves measuring the resistance value and neutral point current of the servo valve, measuring the force generated by the hydraulic cylinder under a predetermined supply pressure, and furthermore, This method is implemented by manually measuring the dynamic characteristics of the entire system using a transfer function analyzer and diagnosing system abnormalities from these measurement results, but it has the disadvantage of requiring a large amount of work time. It requires a high level of skill to quantitatively judge not only the presence or absence of an abnormality, but also the degree of abnormality, and in practice, for safety reasons, component equipment must be replaced at a stage when the degree of abnormality is minor, resulting in unnecessary waste. The problem was that there were many.

【0005】これらの難点を解消すべく、従来から、油
圧圧力制御系の異常を人手によらず自動診断する方法と
して、次の2通りの方法が提案されている。第1の方法
は、特開昭61─111709号公報に開示されている
如く、油圧圧力制御系のサーボ部に適宜の診断用信号を
与え、これに伴うサーボ系の応答信号を捉えてこの信号
の波形を調べ、時定数、ゲイン、位相、及び所定波形と
の相関係数等の特定データを抽出して、油圧圧力制御系
の異常を定量的に判定しようとする方法であり、また第
2の方法は、特開昭63─172004号公報に開示さ
れている如く、サーボ部の動作中にこれの制御用入出力
信号から夫々、複数の診断項目用の特定信号を特定タイ
ミングにて取込み、これらを各別の判定基準値と比較し
て、油圧圧力制御系の動特性又は油圧圧力制御系の構成
機器の状態の良否を定量的に診断しようとする方法であ
る。
In order to overcome these difficulties, the following two methods have been proposed as methods for automatically diagnosing abnormalities in hydraulic pressure control systems without manual intervention. The first method, as disclosed in Japanese Unexamined Patent Publication No. 111709/1983, is to apply an appropriate diagnostic signal to the servo section of the hydraulic pressure control system, capture the accompanying response signal of the servo system, and then use the signal to generate the signal. This is a method that attempts to quantitatively determine abnormalities in the hydraulic pressure control system by examining the waveform of As disclosed in Japanese Unexamined Patent Publication No. 172004/1983, this method involves capturing specific signals for a plurality of diagnostic items at specific timings from the control input/output signals of the servo section during its operation, and This is a method for quantitatively diagnosing the quality of the dynamic characteristics of the hydraulic pressure control system or the condition of the components of the hydraulic pressure control system by comparing these with different determination reference values.

【0006】[0006]

【発明が解決しようとする課題】ところが第1の方法は
、従来から行われていた人手による診断方法と同様、ラ
イン休止中においてのみ実施可能な方法であり、ライン
の稼働中に発生する異常に対処し得ない難点があった。 これに対し第2の方法は、ラインの稼働中においても実
施可能であるという利点を有しているが、この方法の実
施に際しては、前述した信号処理のために複雑な構成の
演算装置が必要となり、実施のための所要コストが高く
、また、この演算装置の保守に多大の手間を要するとい
う難点があった。
[Problems to be Solved by the Invention] However, the first method, like the conventional manual diagnosis method, is a method that can be performed only when the line is stopped, and cannot be used to detect abnormalities that occur while the line is in operation. There were some difficulties that could not be addressed. On the other hand, the second method has the advantage that it can be implemented even while the line is in operation; however, when implementing this method, a computation device with a complex configuration is required for the signal processing described above. Therefore, the cost required for implementation is high, and the maintenance of this arithmetic device requires a great deal of effort.

【0007】またこれらの方法はいずれも、圧延機にお
ける圧下力制御系等、複雑な制御を実施するためのサー
ボ部を備えた油圧圧力制御系においてのみ実施可能な方
法であり、一般的な油圧圧力制御系への適用は不可能で
ある問題点があった。
Furthermore, all of these methods can only be implemented in a hydraulic pressure control system equipped with a servo unit for performing complex control, such as a rolling force control system in a rolling mill, and are not applicable to general hydraulic pressure control systems. There was a problem that it was impossible to apply it to a pressure control system.

【0008】本発明は斯かる事情に鑑みてなされたもの
であり、油圧圧力制御系における異常の自動診断を、ラ
インの動作中及び休止中の如何に拘わらず、簡略な装置
構成にて行い得ると共に、一般的な油圧圧力制御系への
適用が可能である油圧圧力制御系の自動診断方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and allows automatic diagnosis of abnormalities in the hydraulic pressure control system to be performed with a simple device configuration, regardless of whether the line is in operation or at rest. Another object of the present invention is to provide an automatic diagnosis method for a hydraulic pressure control system that can be applied to general hydraulic pressure control systems.

【0009】[0009]

【課題を解決するための手段】本発明に係る油圧圧力制
御系の自動診断方法は、油圧送給先への送給圧を一定に
保つ減圧弁及びこれのベント回路を備えた油圧圧力制御
系の各部に生じる異常を自動診断する方法において、前
記ベント回路に所定の油圧を導入し、このとき該ベント
回路に生じる変動圧力を検出して、この変動圧力の振幅
の大小及び/又は一定圧力に収束するまでの時間の長短
に基づいて前記異常の程度を判定することを特徴とする
[Means for Solving the Problems] An automatic diagnosis method for a hydraulic pressure control system according to the present invention is a hydraulic pressure control system equipped with a pressure reducing valve that keeps the supply pressure to a hydraulic pressure destination constant and a vent circuit thereof. In the method of automatically diagnosing abnormalities occurring in each part of the vent circuit, a predetermined hydraulic pressure is introduced into the vent circuit, the fluctuating pressure generated in the vent circuit at this time is detected, and the magnitude of the amplitude of the fluctuating pressure and/or the constant pressure is determined. The method is characterized in that the degree of the abnormality is determined based on the length of time until convergence.

【0010】0010

【作用】本発明においては、一般的な油圧圧力制御系に
備えられている減圧弁のベント回路に所定の油圧を導入
して、該ベント回路に生じる変動圧力を検出し、これの
振幅と一定圧力に収束するまでの時間との一方又は両方
を調べ、これらを各別の判定基準値と比較して異常状態
を定量的に診断する。従って、診断対象となる油圧圧力
制御系が稼働状態にあるか、又は休止状態にあるかの如
何に拘わらず、該油圧圧力制御系の経時的な状態変化を
主回路に影響を与えることなく確実に把握できる。また
、本発明の実施に必要な機器は、ベント回路に所定の油
圧を導入する作動器、ベント回路の圧力検出器、及び前
記診断を行う簡略な構成の診断装置のみである。
[Operation] In the present invention, a predetermined hydraulic pressure is introduced into the vent circuit of a pressure reducing valve provided in a general hydraulic pressure control system, and the fluctuating pressure generated in the vent circuit is detected, and the amplitude and the constant pressure are detected. The abnormal state is quantitatively diagnosed by examining one or both of the time required for the pressure to converge and comparing these with respective determination reference values. Therefore, regardless of whether the hydraulic pressure control system to be diagnosed is in operation or inactive, changes in the condition of the hydraulic pressure control system over time can be reliably detected without affecting the main circuit. can be grasped. Further, the only equipment necessary to carry out the present invention is an actuator that introduces a predetermined hydraulic pressure into the vent circuit, a pressure detector for the vent circuit, and a simple diagnostic device that performs the diagnosis.

【0011】[0011]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は、連続鋳造設備のピンチロールによ
る引抜き力制御系における本発明に係る油圧圧力制御系
の自動診断方法(以下本発明方法という)の実施状態を
示す模式的ブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to drawings showing embodiments thereof. FIG. 1 is a schematic block diagram showing an implementation state of an automatic diagnosis method for a hydraulic pressure control system (hereinafter referred to as the "method of the present invention") according to the present invention in a pull-out force control system using pinch rolls of continuous casting equipment.

【0012】図中1は鋳片であり、該鋳片1は、これの
両側に転接する一対のピンチロール2,2の回転により
、図示しない鋳型から連続的に引抜かれている。ピンチ
ロール2,2は、これらの支承位置に各別の油圧シリン
ダ3,3にて付加される油圧力により鋳片1の表面に押
し付けられており、鋳片1には、この押し付けに応じた
引抜き力が加えられるようになしてある。
In the figure, reference numeral 1 denotes a slab, and the slab 1 is continuously pulled out from a mold (not shown) by the rotation of a pair of pinch rolls 2, 2 that are in rolling contact with each other on both sides of the slab. The pinch rolls 2, 2 are pressed against the surface of the slab 1 by hydraulic pressure applied to these supporting positions by separate hydraulic cylinders 3, 3. It is arranged so that a pulling force can be applied.

【0013】油圧シリンダ3,3の動作油圧は、これら
の発生力、即ち、鋳片1に加わる引抜き力を一定に保つ
べく構成された油圧圧力制御系4から送給されている。 この油圧圧力制御系4は、油圧源40と油圧シリンダ3
,3の動作方向を切換える方向切換弁41との間に、ベ
ント回路43を備えた減圧弁42を介装してなる。
The operating oil pressure of the hydraulic cylinders 3, 3 is supplied from a hydraulic pressure control system 4 configured to keep the generated forces, that is, the pulling force applied to the slab 1 constant. This hydraulic pressure control system 4 includes a hydraulic power source 40 and a hydraulic cylinder 3.
, 3, and a pressure reducing valve 42 provided with a vent circuit 43 is interposed between the valve 41 and a directional switching valve 41 for switching the operating direction of the valves 41 and 3.

【0014】減圧弁42は公知の如く、油圧源40から
油圧の送給先である油圧シリンダ3,3に連なる主回路
の油圧が過度に上昇したとき、内蔵されたパイロット弁
の動作により過剰な油圧をタンクに開放すると共に、こ
れに伴う主弁の動作により主回路を遮断して、主回路の
油圧、即ち、油圧シリンダ3,3への送給油圧を一定に
保つ動作をなすものである。またこの減圧弁42に付随
せしめたベント回路43は、例えば図示の如く、前記パ
イロット弁への作用油圧が導入されるパイロット室をタ
ンクに開放する油路の中途に、中圧用のリリーフ弁44
と低圧用のリリーフ弁45とを並列をなして配し、これ
らと前記パイロット室との連通及び遮断を各別の電磁切
換弁 46,47にて行わせる構成となっている。
As is well known, the pressure reducing valve 42 prevents excessive pressure by operating a built-in pilot valve when the oil pressure in the main circuit connected to the hydraulic cylinders 3, 3, which are the destinations of oil pressure from the oil pressure source 40, increases excessively. The hydraulic pressure is released to the tank, and the main circuit is shut off by the accompanying operation of the main valve, thereby maintaining a constant hydraulic pressure in the main circuit, that is, the hydraulic pressure supplied to the hydraulic cylinders 3, 3. . Further, a vent circuit 43 attached to the pressure reducing valve 42 is provided with a medium pressure relief valve 44 in the middle of the oil path that opens the pilot chamber into which the hydraulic pressure applied to the pilot valve is introduced to the tank, as shown in the figure.
and a low-pressure relief valve 45 are arranged in parallel, and communication and isolation between these and the pilot chamber is performed by separate electromagnetic switching valves 46 and 47.

【0015】リリーフ弁44のリリーフ圧は、前記パイ
ロット弁の動作油圧よりも低く、またリリーフ弁45の
リリーフ圧は、リリーフ弁44のリリーフ圧よりも更に
低く設定してある。従って、電磁切換弁 46,47が
図示の切換え位置にある場合、即ち、前者が連通位置に
あり後者が遮断位置にある場合、パイロット弁の動作に
先立ってリリーフ弁44のリリーフ動作が生じ、これに
伴って減圧弁42の主弁が動作する結果、油圧シリンダ
3,3への送給油圧はリリーフ弁44のリリーフ圧以下
に制限される。また電磁切換弁 46,47が図示の位
置とは逆の切換え位置にある場合、油圧シリンダ3,3
への送給油圧は、リリーフ弁45のリリーフ動作により
これのリリーフ圧以下に制限される。更に電磁切換弁 
46,47が共に遮断位置にある場合、油圧シリンダ3
,3への送給油圧は、前記パイロット弁の動作油圧、換
言すれば、減圧弁42への設定油圧以下に制限される。
The relief pressure of the relief valve 44 is lower than the operating oil pressure of the pilot valve, and the relief pressure of the relief valve 45 is set lower than that of the relief valve 44. Therefore, when the electromagnetic switching valves 46 and 47 are in the illustrated switching position, that is, when the former is in the communicating position and the latter is in the blocking position, the relief valve 44 performs a relief operation prior to the operation of the pilot valve. As a result of the main valve of the pressure reducing valve 42 operating in accordance with this, the hydraulic pressure supplied to the hydraulic cylinders 3, 3 is limited to the relief pressure of the relief valve 44 or less. In addition, when the electromagnetic switching valves 46 and 47 are in the switching position opposite to that shown in the figure, the hydraulic cylinders 3 and 3
The hydraulic pressure supplied to the valve is limited to a value equal to or lower than the relief pressure of the relief valve 45 by the relief operation of the relief valve 45. Furthermore, solenoid switching valve
46 and 47 are both in the cutoff position, the hydraulic cylinder 3
, 3 is limited to the operating oil pressure of the pilot valve, in other words, the hydraulic pressure set to the pressure reducing valve 42 or less.

【0016】即ち、図示の如く構成されたベント回路4
3においては、電磁切換弁 46,47の切換えにより
、油圧圧力制御系4の主回路の油圧、即ち、油圧シリン
ダ3,3への送給油圧を、減圧弁42における設定圧力
とリリーフ弁 44,45夫々のリリーフ圧との3通り
に異なる圧力に設定し得ることになる。なおベント回路
43の構成はこれに限らず、更に多くのリリーフ弁を並
設して、より多段階での送給油圧の設定を行う等、他の
構成が可能であることは言うまでもない。
That is, the vent circuit 4 configured as shown in the figure
3, by switching the electromagnetic switching valves 46 and 47, the hydraulic pressure of the main circuit of the hydraulic pressure control system 4, that is, the hydraulic pressure supplied to the hydraulic cylinders 3, 3 is changed between the set pressure in the pressure reducing valve 42 and the relief valve 44, 45 relief pressures can be set to three different pressures. Note that the configuration of the vent circuit 43 is not limited to this, and it goes without saying that other configurations are possible, such as arranging more relief valves in parallel and setting the feed oil pressure in more stages.

【0017】以上の如く構成された油圧圧力制御系4に
おいて本発明方法は、前記ベント回路43の中途に、該
回路43に所定の油圧を導入する作動器5、及び該作動
器5の圧力変動を検出する圧力検出器6を夫々配して実
施される。作動器5の動作は診断装置7からの動作指令
に従って行われ、圧力検出器6の検出結果は診断装置7
に与えられており、この検出結果を用いて診断装置7は
、後述する手順にて油圧圧力制御系4の異常診断を行う
In the hydraulic pressure control system 4 configured as described above, the method of the present invention includes an actuator 5 that introduces a predetermined hydraulic pressure into the vent circuit 43 in the middle of the vent circuit 43, and a pressure fluctuation of the actuator 5. This is carried out by respectively disposing pressure detectors 6 to detect the pressure. The operation of the actuator 5 is performed according to the operation command from the diagnostic device 7, and the detection result of the pressure detector 6 is transmitted to the diagnostic device 7.
Using this detection result, the diagnostic device 7 diagnoses an abnormality in the hydraulic pressure control system 4 according to the procedure described later.

【0018】図2は診断装置7の内部構成を示すブロッ
ク図である。図示の如く診断装置7は、作動器5に動作
指令を発する指令器70、正常時に検出されるべき圧力
変動の基準波形が設定されている設定メモリ71、この
基準波形と圧力検出器6の検出結果とを比較して異常判
定をなす判定部72、及び該判定部72による判定結果
を逐次記憶する記憶部73を備えてなる。
FIG. 2 is a block diagram showing the internal configuration of the diagnostic device 7. As shown in FIG. As shown in the figure, the diagnostic device 7 includes a command device 70 that issues operation commands to the actuator 5, a setting memory 71 in which a reference waveform of pressure fluctuations that should be detected during normal operation is set, and a pressure detector 6 that detects this reference waveform. It is equipped with a determining section 72 that compares the results with each other to determine an abnormality, and a storage section 73 that sequentially stores the determination results by the determining section 72.

【0019】指令器70からの動作指令は、適宜の時間
間隔にて作動器5へ与えられており、この動作指令に従
って作動器5は、ベント回路43に所定の油圧を導入す
る。 これによりベント回路43には圧力変動が生じ、これが
圧力検出器6にて検出されて判定部72に入力される。 前記指令器70からの動作指令はまた、作動器5への出
力と同一タイミングにて設定メモリ71にも与えられて
おり、この指令に従って設定メモリ71は、記憶してい
る基準波形を判定部72に出力する。判定部72は、圧
力検出器6の検出結果と設定メモリ71から与えられる
基準波形とを、両者の振幅及び一定圧力に収束するまで
の時間の一方又は両方について比較し、この比較結果に
基づいて、例えば、正常(Good)、注意(Caut
ion)及び異常(Damage)の3段階の判定を行
う。
Operation commands from the command unit 70 are given to the actuator 5 at appropriate time intervals, and the actuator 5 introduces a predetermined hydraulic pressure into the vent circuit 43 in accordance with the operation commands. This causes a pressure fluctuation in the vent circuit 43, which is detected by the pressure detector 6 and input to the determination section 72. The operation command from the command unit 70 is also given to the setting memory 71 at the same timing as the output to the actuator 5, and according to this command, the setting memory 71 converts the stored reference waveform into the determination unit 72. Output to. The determination unit 72 compares the detection result of the pressure detector 6 and the reference waveform given from the setting memory 71 with respect to one or both of the amplitude of the two and the time until convergence to a constant pressure, and based on the comparison result, , for example, Good, Caution.
ion) and abnormality (Damage).

【0020】図3は、判定部72における判定手順の説
明図であり、図中の実線は圧力検出器6による検出波形
の一例を、また破線は、設定メモリ71から与えられる
基準波形を示している。減圧弁42は通常時には開放さ
れており、ベント回路43は油圧圧力制御系4の主回路
に連通しているから、作動器5の動作に伴ってベント回
路43に生じる圧力変動には、主回路各部における封止
性能の劣化、主回路中に配された図示しない各種機器の
異常の影響が現われる。従って、圧力検出器6による検
出波形は通常、前記基準波形よりも大きい振幅を有し、
また一定圧力に収束するまでの時間は長くなる。
FIG. 3 is an explanatory diagram of the determination procedure in the determination section 72, in which the solid line represents an example of the waveform detected by the pressure detector 6, and the broken line represents the reference waveform given from the setting memory 71. There is. The pressure reducing valve 42 is normally open, and the vent circuit 43 is in communication with the main circuit of the hydraulic pressure control system 4. Therefore, pressure fluctuations occurring in the vent circuit 43 due to the operation of the actuator 5 are handled by the main circuit. The deterioration of the sealing performance in each part and the effects of abnormalities in various devices (not shown) arranged in the main circuit appear. Therefore, the waveform detected by the pressure detector 6 usually has a larger amplitude than the reference waveform,
Furthermore, it takes a longer time to converge to a constant pressure.

【0021】前記判定部72は、検出波形と基準波形と
を比較して両者間の振幅差ΔP、及び収束までに要した
時間の差ΔT(いずれも図3参照)を調べ、これら夫々
を各別に設定された判定基準値と比較する。前述した如
き3段階の判定を行う場合、振幅差及び時間差の夫々に
対し大小各2種の判定基準値が設定してあり、判定部7
2は、得られた振幅差ΔP及び時間差ΔTが小なる基準
値を下回っているとき「正常」と判定し、また大小の基
準値間にあるとき「注意」と判定し、更に大なる基準値
を上回っているとき「異常」と判定する。なお、3種以
上の判定基準値を設定し、油圧圧力制御系4の状態を更
に細かく判定するようにしてもよく、逆に判定基準値を
1つとして、「正常」又は「異常」の2段階の判定を行
うようにしてもよい。
The determination unit 72 compares the detected waveform and the reference waveform, examines the amplitude difference ΔP between the two and the difference ΔT in time required for convergence (see FIG. 3 for both), and calculates each of these separately. Compare with a separately set judgment reference value. When performing the three-stage determination as described above, two types of determination reference values are set for each of the amplitude difference and the time difference, and the determination unit 7
2, when the obtained amplitude difference ΔP and time difference ΔT are less than a small reference value, it is determined as "normal", and when it is between the large and small reference values, it is judged as "caution", and when the obtained amplitude difference ΔP and time difference ΔT are below a small reference value, it is judged as "caution", and even larger reference value When the value exceeds the above, it is determined to be "abnormal". Note that three or more types of judgment reference values may be set to make a more detailed judgment of the state of the hydraulic pressure control system 4, or conversely, one judgment reference value may be set and two types of “normal” or “abnormal” may be set. It may also be possible to perform stage determination.

【0022】判定部72におけるこの判定は、指令器7
0からの指令に応じて作動器5が動作する都度行われ、
この判定結果は、夫々の場合における振幅差ΔP及び収
束に要する時間の差ΔTと共に記憶部73に与えられて
これに逐次記憶され、更に表示部8に与えられる。
This determination in the determination unit 72 is performed by the command unit 7
It is performed each time the actuator 5 operates according to a command from 0,
This determination result, together with the amplitude difference ΔP and the time difference ΔT required for convergence in each case, is provided to the storage section 73 and sequentially stored therein, and further provided to the display section 8.

【0023】表示部8は、図2に示す如く、警報器80
、プリンタ81及び CRTディスプレイ82等を備え
てなる。警報器80は、前記「異常」又は「注意」の判
定がなされた場合に判定部72から出力される動作指令
に応じて鳴動して、作業者に油圧圧力制御系4の異常を
報知する動作をなす。またプリンタ81は、判定部72
における前述した判定に用いられた振幅差ΔP及び時間
差ΔT、並びにこれらによる判定結果のハードコピーを
出力し、更に、 CRTディスプレイ82は、前記ΔP
及びΔTの変化状態を画面表示するようになしてあり、
これらの結果の視認により作業者は、油圧圧力制御系4
の経時的な状態変化を確認できるようになっている。な
お、異常の確実な報知と作業者による状態確認を可能と
すべく、表示部8には、必要に応じて更に多くの出力機
器を設置してもよい。
As shown in FIG. 2, the display unit 8 has an alarm 80
, a printer 81, a CRT display 82, and the like. The alarm 80 operates to notify the operator of an abnormality in the hydraulic pressure control system 4 by sounding in response to an operation command output from the determination unit 72 when the determination of "abnormality" or "caution" is made. to do. Further, the printer 81 has a determination unit 72
The CRT display 82 outputs the amplitude difference ΔP and time difference ΔT used in the above-mentioned determination, as well as a hard copy of the determination result based on these, and furthermore, the CRT display 82 displays the ΔP
The change state of ΔT and ΔT is displayed on the screen.
By visually checking these results, the operator can control the hydraulic pressure control system 4.
It is now possible to check changes in the state over time. In addition, more output devices may be installed on the display unit 8 as necessary to enable reliable notification of abnormality and status confirmation by the operator.

【0024】なお本実施例においては、連続鋳造設備の
ピンチロール2,2による引抜き力を一定に保つべく構
成された油圧圧力制御系4について説明したが、本発明
方法は、減圧弁42及びこれのベント回路43を備えた
あらゆる種類の油圧圧力制御系に適用できることはいう
までもない。
In this embodiment, the hydraulic pressure control system 4 has been described which is configured to keep the pulling force by the pinch rolls 2, 2 of the continuous casting equipment constant, but the method of the present invention Needless to say, the present invention can be applied to all kinds of hydraulic pressure control systems equipped with a vent circuit 43.

【0025】また本実施例においては、圧力検出器6に
よる圧力変動と正常時における基準波形とを比較し、振
幅の大小及び収束までの時間の長短の両方に基づいて異
常診断を行う場合について説明したが、いずれか一方に
より異常診断を行うことも可能である。
Furthermore, in this embodiment, a case will be explained in which the pressure fluctuation detected by the pressure detector 6 is compared with a reference waveform in normal conditions, and abnormality diagnosis is performed based on both the magnitude of the amplitude and the length of time until convergence. However, it is also possible to perform abnormality diagnosis using either one of them.

【0026】[0026]

【発明の効果】以上詳述した如く本発明方法においては
、送給先への送給油圧を一定に保つべく油圧圧力制御系
に一般的に備えられている減圧弁のベント回路に所定の
油圧を導入し、このとき該ベント回路に生じる圧力変動
を検出し、この変動の振幅及び/又は収束までの時間を
調べるという簡略な構成により、油圧圧力制御系におけ
る異常の自動診断を確実に行うことができ、またこの診
断は、油圧圧力制御系の稼働中及び休止中の如何に拘わ
らず可能であり、減圧弁及びこれのベント回路を備えた
あらゆる油圧圧力制御系において適用可能である等、本
発明は優れた効果を奏する。
Effects of the Invention As detailed above, in the method of the present invention, a predetermined hydraulic pressure is applied to the vent circuit of a pressure reducing valve, which is generally provided in a hydraulic pressure control system, in order to keep the hydraulic pressure supplied to the destination constant. To reliably automatically diagnose abnormalities in a hydraulic pressure control system by introducing a simple configuration in which pressure fluctuations occurring in the vent circuit are detected, and the amplitude and/or time until convergence of this fluctuation is investigated. This diagnosis is possible regardless of whether the hydraulic pressure control system is in operation or not, and can be applied to any hydraulic pressure control system equipped with a pressure reducing valve and its vent circuit. The invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ピンチロールによる引抜き力制御系における本
発明方法の実施状態を示す模式的ブロック図である。
FIG. 1 is a schematic block diagram showing the implementation state of the method of the present invention in a pull-out force control system using pinch rolls.

【図2】本発明方法に従って異常診断を行う診断装置の
内部構成の一例を示すブロック図である。
FIG. 2 is a block diagram showing an example of the internal configuration of a diagnostic device that performs abnormality diagnosis according to the method of the present invention.

【図3】本発明方法による異常判定の手順の説明図であ
る。
FIG. 3 is an explanatory diagram of a procedure for abnormality determination according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1  鋳片 2  ピンチロール 3  油圧シリンダ 4  油圧圧力制御系 5  作動器 6  圧力検出器 7  診断装置 8  表示部 42  減圧弁 43  ベント回路 1 Slab 2 Pinch roll 3 Hydraulic cylinder 4 Hydraulic pressure control system 5 Actuator 6 Pressure detector 7 Diagnostic equipment 8 Display section 42 Pressure reducing valve 43 Vent circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  油圧送給先への送給圧を一定に保つ減
圧弁及びこれのベント回路を備えた油圧圧力制御系の各
部に生じる異常を自動診断する方法において、前記ベン
ト回路に所定の油圧を導入し、このとき該ベント回路に
生じる変動圧力を検出して、この変動圧力の振幅の大小
及び/又は一定圧力に収束するまでの時間の長短に基づ
いて前記異常の程度を判定することを特徴とする油圧圧
力制御系の自動診断方法。
Claim 1. A method for automatically diagnosing abnormalities that occur in various parts of a hydraulic pressure control system that is equipped with a pressure reducing valve that maintains a constant supply pressure to a hydraulic power supply destination and a vent circuit thereof, wherein a predetermined Introducing hydraulic pressure, detecting the fluctuating pressure generated in the vent circuit at this time, and determining the degree of the abnormality based on the magnitude of the amplitude of the fluctuating pressure and/or the length of time until it converges to a constant pressure. An automatic diagnosis method for a hydraulic pressure control system characterized by:
JP2403591A 1991-01-23 1991-01-23 Method for automatically diagnosing hydraulic pressure control system Pending JPH04251605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403591A JPH04251605A (en) 1991-01-23 1991-01-23 Method for automatically diagnosing hydraulic pressure control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403591A JPH04251605A (en) 1991-01-23 1991-01-23 Method for automatically diagnosing hydraulic pressure control system

Publications (1)

Publication Number Publication Date
JPH04251605A true JPH04251605A (en) 1992-09-08

Family

ID=12127256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403591A Pending JPH04251605A (en) 1991-01-23 1991-01-23 Method for automatically diagnosing hydraulic pressure control system

Country Status (1)

Country Link
JP (1) JPH04251605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292316A (en) * 2007-06-21 2007-11-08 Kobelco Contstruction Machinery Ltd Self-diagnostic device for hydraulic circuit
JP2012097822A (en) * 2010-11-02 2012-05-24 Daikin Industries Ltd Hydraulic unit
JP2020158790A (en) * 2019-03-25 2020-10-01 Jfeスチール株式会社 Detecting method of dust accumulation in water seal portion of converter skirt seal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292316A (en) * 2007-06-21 2007-11-08 Kobelco Contstruction Machinery Ltd Self-diagnostic device for hydraulic circuit
JP2012097822A (en) * 2010-11-02 2012-05-24 Daikin Industries Ltd Hydraulic unit
JP2020158790A (en) * 2019-03-25 2020-10-01 Jfeスチール株式会社 Detecting method of dust accumulation in water seal portion of converter skirt seal device

Similar Documents

Publication Publication Date Title
EP1379803B1 (en) Method for detecting broken valve stem
US6167749B1 (en) Method and apparatus for automatically detecting gas leak, and recording medium for leak detection
CN103493033B (en) High-integrity protective system and test thereof and method of operating
JPH04251605A (en) Method for automatically diagnosing hydraulic pressure control system
JPH08166309A (en) Differential-pressure measuring apparatus with clogging-diagnosing mechanism of connecting pipe
JP3129638B2 (en) Decompression system and inspection method thereof
CN106970145A (en) The sensor adjusting method and device of strip Inner Defect Testing device
US11739771B2 (en) Failure detection apparatus for a hydraulic system
JPH06281542A (en) Device and method for testing opening/closing durability of door
JPH07119862A (en) Diagnosing device for air motor valve
JPH07261834A (en) Plant equipment monitor device
JPH01109235A (en) Monitoring means for valve leak
JPH05106613A (en) Diagnotic method for hydraulic device
JPH1190519A (en) Hydraulic rolling-down controller for rolling mill
JP2826409B2 (en) Dry etching equipment
JP4057896B2 (en) Abnormal helium leak detector
JPH07281736A (en) Facility diagnostic device
JPH04221733A (en) Differential pressure type leak tester with self-diagnostic function
JPS61133412A (en) Fault diagnostic device
JPH06294500A (en) Gas leak position automatic cutoff device
JPH05296824A (en) State monitoring apparatus for pipe flow passage
JPH11230118A (en) Wear and leakage detecting device for atmospheric pressure actuator system and abnormal wear and leakage detecting method therefor
JPH0261843B2 (en)
JPS6238709A (en) Abnormality diagnosing device for hydraulic rolling down device of rolling mill
JPS62174810A (en) Fault predicting device