JPS6236878A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6236878A
JPS6236878A JP60176542A JP17654285A JPS6236878A JP S6236878 A JPS6236878 A JP S6236878A JP 60176542 A JP60176542 A JP 60176542A JP 17654285 A JP17654285 A JP 17654285A JP S6236878 A JPS6236878 A JP S6236878A
Authority
JP
Japan
Prior art keywords
type layer
layer
type
gas
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60176542A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邉 金雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60176542A priority Critical patent/JPS6236878A/en
Publication of JPS6236878A publication Critical patent/JPS6236878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To contribute to an effective photoelectric conversion by forming a p-type layer and/or an n-type layer by photodecomposing raw gas which contains silicon compound gas, and forming the p-type and i-type layers by plasma decomposing the raw gas which contains silicon compound gas to obtain an impurity layer of high film quality. CONSTITUTION:A pin junction type photoactive layer 3 is formed of ultrafine crystal silicon formed by photodecomposing raw gas which contains doping gas such as B2H6, PH3 for controlling valency electron in silicon compound gas of SiH4, Si2H6, Si2F6 in a p-type layer 3p and an n-type layer 3n to effectively photoelectrically convert the p-type layer 3p, the i-type layer 3i and the n-type layer 3n as seen not only from the layer 3i but from all layers, i.e., from a photoreceiving electrode 2 side. The layer 3i is made of an amorphous silicon to be formed sufficiently in large thickness as compared with the layers 3p and 3n by plasma decomposing the raw gas.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 される。[Detailed description of the invention] (b) Industrial application fields be done.

(ロ)従来技術 この種光起電力装置の典型例として、光入射面を形成す
るガラス基板の背面側に順次透明電極、pin接合型半
導体層及び金属裏面電極ダ積層したものが存在I7、例
えば特開昭57−95677号公報にあっては、上記p
in接合型半導体層と15てシリコン化合物ガスのプラ
ズマ分解により得られる非晶質シリコン(a−5i)を
用いること、更には光入射側のp型層として非晶質シリ
コンカーバイド(a−5iC)を用いることを提案して
いる。即ち、従来の非晶質シリコンのp型層に代って非
晶質シリコンカーバイドを用いることにより斯るp型層
に於ける光吸収損失を減少させる所謂窓効果を得、発電
に寄り−するi型層への光照側量を増大さゼ光電変換効
率の上昇を図っている。
(B) Prior Art A typical example of this type of photovoltaic device is one in which a transparent electrode, a pin junction type semiconductor layer, and a metal back electrode are sequentially laminated on the back side of a glass substrate forming a light incident surface. In JP-A No. 57-95677, the above p.
Amorphous silicon (a-5i) obtained by plasma decomposition of silicon compound gas is used as the in-junction semiconductor layer 15, and amorphous silicon carbide (a-5iC) is used as the p-type layer on the light incident side. It is proposed to use . That is, by using amorphous silicon carbide in place of the conventional p-type layer of amorphous silicon, a so-called window effect is obtained that reduces light absorption loss in the p-type layer, which improves power generation. The aim is to increase the photoelectric conversion efficiency by increasing the amount of light that enters the i-type layer.

この様に非晶質シリコンカーバイドをp型層に用いるこ
とにより該p型層に於ける光吸収は減少するものの、未
だp型層及びまたはn型層は発電に寄与していないのが
実情である。
Although light absorption in the p-type layer is reduced by using amorphous silicon carbide for the p-type layer, the reality is that the p-type layer and/or the n-type layer still do not contribute to power generation. be.

(ハ)発明が解決しようとする問題点 本発明は上述の如く未だp型層及びまたはn型層が発電
に寄与していない点を解決しようとするものである。
(c) Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned problem that the p-type layer and/or the n-type layer do not yet contribute to power generation.

(ニ)問題点を解決するための手段 本発明は上記問題点を解決すべく、p型層及びまたはn
型層をシリコン化合物ガスを含む原料ガスの光分解によ
り形成すると共に、上記p型層及びn型層よりも膜厚の
大きいi型層をシリコン化合物ガスを含む原料ガスのプ
ラズマ分解により形成したことを特徴とする。
(d) Means for solving the problems In order to solve the above problems, the present invention provides a p-type layer and/or an n-type layer.
The mold layer is formed by photolysis of a raw material gas containing a silicon compound gas, and the i-type layer, which is thicker than the p-type layer and n-type layer, is formed by plasma decomposition of a raw material gas containing a silicon compound gas. It is characterized by

(ホ)作用 上述の60<p型層及びまたはn型層を光分解により形
成することによって、良質な膜質が得られ、光電変換に
有効に作用する。
(E) Effect By forming the above-mentioned 60<p-type layer and/or n-type layer by photolysis, a good film quality can be obtained and it acts effectively on photoelectric conversion.

(へ)実施例 第1図は本発明製造方法に基づいて製造された光起電力
装置であって、(1)はガラス等に代表される絶縁性月
つ透光性の支持基板、く2)は該基板(1)の−主面に
被着されたSnO2、ITOの単層或いは積層構造の受
光面電極、(3)は膜面に平行な実質的なpin接合を
持つ全ての層が光電変換に寄与するpin接合型光活性
層、(4)は該光活性層(3)の背面側に設けられたA
I! 、 Ag 、 AI!/TiAg 、 ITO/
 A g等の単層或いは積層構造の背面電極である。
(f) Example FIG. 1 shows a photovoltaic device manufactured based on the manufacturing method of the present invention, in which (1) is an insulating support substrate typified by glass, etc.; ) is a light-receiving surface electrode with a single layer or laminated structure of SnO2 or ITO deposited on the -main surface of the substrate (1), and (3) is a light-receiving surface electrode with a substantial pin junction parallel to the film surface. A pin junction type photoactive layer contributing to photoelectric conversion, (4) is A provided on the back side of the photoactive layer (3).
I! , Ag, AI! /TiAg, ITO/
The back electrode has a single layer or a laminated structure such as Ag.

一ヒ記pin接合型光活性層(3)はi型層(31)の
みならず全ての層、即ち受光面電極(2)側から見て、
p型層(3p)、i型層(31〉及びn型層(3n)が
有効に光電変換動作すへく、p型層(3p)及びn型層
(3n)は5iH+、Si、H,、Si*Fs等のシリ
コン化合物ガスに価電子制御用のB、)1.、PR,の
如きドーピングガスを適宜含む原料ガスの光分解く光C
VD法)により形成された微結晶シリコンから成る。
1) The pin junction type photoactive layer (3) includes not only the i-type layer (31) but also all layers, that is, viewed from the light-receiving surface electrode (2) side,
The p-type layer (3p), the i-type layer (31〉) and the n-type layer (3n) operate effectively for photoelectric conversion. , B for valence electron control in silicon compound gas such as Si*Fs,)1. , PR, photo-decomposition light C of a raw material gas containing an appropriate doping gas such as
It is made of microcrystalline silicon formed by the VD method.

原料ガスを光エネルギにより分解し、半導体薄膜を得る
光CDV法自体は既に知られており、例えは−ト記5i
x)laガスを光分解することにより非晶質シリコンが
得られることは第30回応用物理学関係連合講演回予稿
集345頁、6P−A −17に報告されている。即ち
、光CVD法による半導体薄膜の基本的製造方法とは、
第2図に示す如く、反応室(5)の天面を光照射窓とし
ての石英板(6)により閉本し、石英板(6)を介して
低圧水銀ランプ等の光源(7)により反応室(5)内に
紫外線を照射し、反応室(5)内に導入された原料ガス
を、上記紫外線のエネルギにより分解して反応室(5)
内の下端部にヒータ(8)によって加熱保持された支持
基板(1)上に上記原料ガスに応じた半導体薄膜が形成
される。
The optical CDV method itself for obtaining a semiconductor thin film by decomposing a raw material gas with light energy is already known.
x) The fact that amorphous silicon can be obtained by photolyzing La gas is reported in the proceedings of the 30th Applied Physics Conference, page 345, 6P-A-17. In other words, the basic method for manufacturing semiconductor thin films using the photo-CVD method is as follows:
As shown in Figure 2, the top of the reaction chamber (5) is closed with a quartz plate (6) serving as a light irradiation window, and a light source (7) such as a low-pressure mercury lamp is used for reaction through the quartz plate (6). The chamber (5) is irradiated with ultraviolet rays, and the raw material gas introduced into the reaction chamber (5) is decomposed by the energy of the ultraviolet rays to form the reaction chamber (5).
A semiconductor thin film corresponding to the raw material gas is formed on the support substrate (1) which is heated and maintained at the lower end thereof by a heater (8).

一方、i型層(31)は非晶質シリコンからなり、特公
昭53−37718号公報等に開示された如〈従来から
光!変換に寄与すべく原料ガスのプラズマ分解により一
ヒ記p型層(3p)及びn型層(3n)よりも十分膜厚
が大きく形成される。斯るi型層(31〉についてもp
型層(3p)及びn型層〈3n)と同様に光分解により
製造可能であるものの、光分解は紫外線を反応室(5〉
に照射せしめる石英板(6)の内面に膜が付着し、それ
が入射光である上記紫外光を吸収してしまうために、膜
厚が大きいi型Ji! (3i)の製造には多大な時間
を必要とし、工業的には不向きである。
On the other hand, the i-type layer (31) is made of amorphous silicon, and as disclosed in Japanese Patent Publication No. 53-37718, etc. In order to contribute to the conversion, a film thickness sufficiently larger than that of the p-type layer (3p) and n-type layer (3n) described above is formed by plasma decomposition of the source gas. For such an i-type layer (31〉, p
Like the type layer (3p) and n-type layer (3n), it can be produced by photolysis, but photolysis requires ultraviolet rays to be applied to the reaction chamber (5).
A film adheres to the inner surface of the quartz plate (6) that is irradiated to the i-type Ji! The production of (3i) requires a lot of time and is not suitable for industrial use.

〈以下余白) =4− 下表に上記pin接合型光活性層(3〉の基本的的反応
条件を記す。
(The following is a blank space) =4- The basic reaction conditions for the pin junction type photoactive layer (3) are listed in the table below.

斯る反応条件により製造されたpin接合型光活性層(
3)を備えた光起電力装置の光電変換効率を評価すべく
出力電流(1)−出力電圧(V)特性をソーラシュレー
タAM−1,100mW/cm2により測定したところ
第3図に於いて曲線(A)の結果を得た。
A pin junction type photoactive layer (
In order to evaluate the photoelectric conversion efficiency of the photovoltaic device equipped with 3), the output current (1) - output voltage (V) characteristics were measured using a solar insulator AM-1, 100 mW/cm2. Curve (A) results were obtained.

一方、比較例としてp型Ji! (3p>及びn型層(
3n)i型層(31)と同じくブラスマ分解により形成
すると共に、従来の技術の項で述べた如くp型層 (3
p)として膜厚150〜200人程度の非晶質シリコン
カーバイドを使用し、その窓効果を利用した光起電力装
置のI−V特性を測定したところ、第3図に於いて曲線
(B)の結果を得た。
On the other hand, as a comparative example, p-type Ji! (3p> and n-type layer (
3n) The i-type layer (31) is formed by plasma decomposition as well as the p-type layer (3n) as described in the prior art section.
When we measured the I-V characteristics of a photovoltaic device using the window effect using amorphous silicon carbide with a film thickness of about 150 to 200 layers as p), the curve (B) in Figure 3 was measured. The results were obtained.

この様に■−■特性に於いて、本発明実施例は比較例に
比して短絡電流Use(mA/cm2)、開放電圧vo
c(v)の両者共に上回っていることから、p型層(3
p)及びn型層(3n)がi型層(31)に加えて光電
変換に有効に寄与しているもと判断される。
As described above, in the ■-■ characteristics, the example of the present invention has a short circuit current Use (mA/cm2) and an open circuit voltage vo compared to the comparative example.
Since both c(v) exceeds the p-type layer (3
It is determined that the p) and n-type layers (3n) contribute effectively to photoelectric conversion in addition to the i-type layer (31).

一方、」−記反応条件により製造されたp型層(3p)
及びn型層(3n)は微結晶シリコンからなり、その平
均結晶粒径を測定したところ、80人であった。そこで
、pin接合型光活性層83)を形成後背面M極(4)
の形成に先立って、p型層(3p)及びn型層(3n)
の両面から低圧水銀ランプより波長253、7nmのハ
イパワーな紫外線光を照射することによって結晶粒径を
拡大し、光電変換に有効に動作すべき膜質を一層に改善
する。例えば波長253、7nmの紫外線光を輻射する
低圧水銀ランプを集光することにより」−記紫外線光を
100W / cm 2までパワーアップし、斯る10
0W / cm 2の紫外線光を10秒間照射したとこ
ろ、結晶粒径が80人から300人まで拡大した。そし
て、結晶粒径が拡大したn型層(3n)の背面に背面電
極く4)を形成しI−V特性を測定した結果、第3図(
C)の曲線を得た。即ち、結晶粒径の拡大により膜質が
改善されp型層(3p)及びn型層(3n)が光電変換
に有効に寄与していることが判明した。
On the other hand, the p-type layer (3p) produced under the reaction conditions
The n-type layer (3n) was made of microcrystalline silicon, and the average crystal grain size was measured to be 80. Therefore, after forming the pin junction type photoactive layer 83), the rear M pole (4)
Prior to the formation of p-type layer (3p) and n-type layer (3n)
By irradiating both sides of the film with high-power ultraviolet light with a wavelength of 253.7 nm from a low-pressure mercury lamp, the crystal grain size is expanded and the quality of the film, which must be effective for photoelectric conversion, is further improved. For example, by concentrating a low-pressure mercury lamp that emits ultraviolet light with a wavelength of 253.7 nm, the power of the ultraviolet light is increased to 100 W/cm2, and such 10
When irradiated with ultraviolet light of 0 W/cm2 for 10 seconds, the crystal grain size increased from 80 to 300. Then, a back electrode 4) was formed on the back side of the n-type layer (3n) with enlarged crystal grain size, and the IV characteristics were measured, as shown in Figure 3 (
A curve C) was obtained. That is, it was found that the film quality was improved by increasing the crystal grain size, and the p-type layer (3p) and n-type layer (3n) effectively contributed to photoelectric conversion.

尚、SiH*のみからなる分解により得られた非晶質シ
リコンはその原料ガス中に価電子制御用のドーピングガ
スを含まない状態であるにも拘ず、僅かながらn型の性
質を呈するために、本発明に於いて使用される実質的な
pin接合とは、i型層(31)が真のi型のみならず
、ノンドープな状態で製造された僅かなn型及びドーピ
ングガスを僅かに含む状態で製造されたp型も包含する
意味に於いて用いられている。
Note that amorphous silicon obtained by decomposition consisting only of SiH* exhibits slight n-type properties even though its raw material gas does not contain a doping gas for controlling valence electrons. , the substantial pin junction used in the present invention means that the i-type layer (31) contains not only true i-type but also a small amount of n-type produced in a non-doped state and a slight amount of doping gas. It is used in the sense that it also includes p-type produced in the state.

(ト〉 発明の効果 本発明製造方法は以上の説明から明らかな如く、少なく
とも一つの実質的なpin接合を形成するp型層及びま
たはn型層をシリコン化合物ガスを含む原料ガスの光分
解によって形成したので、良質な膜質の不純物層を得る
ことができ、斯る不純物層が有効に光電変換に寄与する
ことができる。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention forms a p-type layer and/or an n-type layer forming at least one substantial pin junction by photolysis of a raw material gas containing a silicon compound gas. As a result of this formation, an impurity layer of good film quality can be obtained, and such an impurity layer can effectively contribute to photoelectric conversion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製造方法に基づいて製造された光起電力
装置の断面図、第2図は光CVD法を説明するための概
念図、第3図は出力電流−出力電圧特性図、を夫々示し
ている。 (1〉・・・支持基板、(3)・・・pin接合型光活
性層、(3p〉・・・p型層、(31)・・・i型層、
(3n)・・・n型層、(5)・・・反応室、(7)・
・・光源。
Fig. 1 is a cross-sectional view of a photovoltaic device manufactured based on the manufacturing method of the present invention, Fig. 2 is a conceptual diagram for explaining the photoCVD method, and Fig. 3 is an output current-output voltage characteristic diagram. shown respectively. (1>...support substrate, (3)...pin junction type photoactive layer, (3p>...p type layer, (31)...i type layer,
(3n)...n-type layer, (5)...reaction chamber, (7)...
··light source.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一つの実質的なpin接合を含む光起
電力装置の製造方法であって、p型層及びまたはn型層
はシリコン化合物ガスを含む原料ガスの光分解により形
成されると共に、上記p型層及びn型層よりも膜厚の大
きいi型層はシリコン化合物ガスを含む原料ガスのプラ
ズマ分解により形成され、上記光分解により形成された
p型層及びまたはn型層は上記i型層と共に光電変換に
寄与することを特徴とした光起電力装置の製造方法。
(1) A method for manufacturing a photovoltaic device including at least one substantial pin junction, wherein the p-type layer and/or the n-type layer is formed by photolysis of a raw material gas containing a silicon compound gas, and the above-mentioned The i-type layer, which is thicker than the p-type layer and the n-type layer, is formed by plasma decomposition of a raw material gas containing a silicon compound gas, and the p-type layer and/or n-type layer formed by the photodecomposition is the i-type layer. A method for manufacturing a photovoltaic device characterized by contributing to photoelectric conversion together with a layer.
JP60176542A 1985-08-10 1985-08-10 Manufacture of photovoltaic device Pending JPS6236878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176542A JPS6236878A (en) 1985-08-10 1985-08-10 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176542A JPS6236878A (en) 1985-08-10 1985-08-10 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6236878A true JPS6236878A (en) 1987-02-17

Family

ID=16015409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176542A Pending JPS6236878A (en) 1985-08-10 1985-08-10 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6236878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319287A (en) * 1989-06-15 1991-01-28 Sanyo Electric Co Ltd Photoelectric transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319287A (en) * 1989-06-15 1991-01-28 Sanyo Electric Co Ltd Photoelectric transducer

Similar Documents

Publication Publication Date Title
JP3364180B2 (en) Amorphous silicon solar cell
JPS6273784A (en) Photovoltaic device
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
JPH0494172A (en) Amorphous photoelectric transfer device and its production
JPS60180175A (en) Photovoltaic element
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP2680579B2 (en) Photovoltaic device
JPS6236878A (en) Manufacture of photovoltaic device
JPS6111475B2 (en)
JPH0346377A (en) Solar cell
JPH0447453B2 (en)
TW200933908A (en) A silicon-based thin film solar-cell
JPS61135167A (en) Thin-film solar cell
JPH0262482B2 (en)
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPS6095977A (en) Photovoltaic device
JPS61242085A (en) Amorphous silicon photoelectric conversion element
JP3123816B2 (en) Method for producing amorphous silicon carbide layer and photovoltaic device using the same
JPS6193675A (en) Manufacture of photovoltaic device
JPS6284571A (en) Multilayer structure type amorphous solar cell
JPH0685292A (en) Manufacture of amorphous silicon solar cell
JP2002033499A (en) Photovoltaic device
JPS63289968A (en) Manufacture of amorphous solar cell
JPS62115785A (en) Semiconductor device
JPS58212127A (en) Manufacture of silicon thin film semiconductor device