JPS6236862B2 - - Google Patents

Info

Publication number
JPS6236862B2
JPS6236862B2 JP57184982A JP18498282A JPS6236862B2 JP S6236862 B2 JPS6236862 B2 JP S6236862B2 JP 57184982 A JP57184982 A JP 57184982A JP 18498282 A JP18498282 A JP 18498282A JP S6236862 B2 JPS6236862 B2 JP S6236862B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
amorphous
magnetic
furnace
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57184982A
Other languages
Japanese (ja)
Other versions
JPS5973943A (en
Inventor
Mitsuo Yoshizawa
Daigo Sumimoto
Hirohisa Ichihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57184982A priority Critical patent/JPS5973943A/en
Publication of JPS5973943A publication Critical patent/JPS5973943A/en
Publication of JPS6236862B2 publication Critical patent/JPS6236862B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアモルフアス合金積層体の製造法に関
する。 アモルフアス合金は溶融合金を超急冷すること
により、結晶構造をもたない箔帯として製造さ
れ、電気抵抗が高く、鉄損が低く、励磁特性も良
好であると言う優れた特性をもつていることから
鉄心材料として期待されている。 しかしながらアモルフアス合金はその製法上の
特徴から10〜50μm程度の厚さの箔帯として得ら
れるため取扱いが厄介であり、又加工等による変
形や歪により励磁特性が劣化しやすいと言う欠点
があつた。 そこで本発明者らは特願昭57−58015号(特開
昭58−175654号)にてこれらの問題の解決手段を
提供した。その手段の一つは高耐熱性高分子を主
成分とする接着剤をアモルフアス合金箔帯に塗布
し、これを積重ね加熱接着しアモルフアス合金帯
となし、このアモルフアス合金帯から積層鉄心、
巻鉄心などを製造し、次いで300〜500℃で磁場中
焼鈍しアモルフアス合金の積層体を製造する方法
である。 第1図はアモルフアス合金積層体製造方法の一
つを示すものであるが、例えば第1図イに示す如
くアモルフアス合金箔帯1,2,3,4,5には
コーテイングロール6,7,8によつて高耐熱性
高分子接着剤が塗布され、圧下ロール9にて圧着
され加熱炉10にて加熱接着されアモルフアス合
金帯11とされる。このアモルフアス合金帯11
は更に積層により積層体とされ、次いで第1図ロ
に示す励磁コイル12を有する磁場焼鈍炉13に
て励磁しながら乾燥硬化され積層鉄心14が製造
される。 ところがこの方法により製造された積層鉄心
は、アモルフアス合金箔帯に高耐熱性高分子接着
剤を塗布して積層し、加熱接着工程(加熱炉1
0)を経ずに300〜500℃にて加熱接着と同時に磁
場中焼鈍して製造された積層鉄心に較べ、その励
磁特性が劣る場合がある。即ち積層鉄心を励磁し
てその磁界強度に対する通過磁束量の関係を調査
すると、積層鉄心の製造に当り、加熱接着工程
(加熱炉10)を経て磁場焼鈍(第1図ロ)を行
つた場合、励磁特性が充分回復しておらず通過磁
束量が減少するものである。 本発明は加熱接着工程に電気炉を用いた場合に
生ずる前記の欠点を解決した磁場特性の優れたア
モルフアス合金積層体の製造方法を提供するもの
である。 本発明者等は高耐熱性高分子接着剤を塗布した
アモルフアス合金箔帯を加熱接着しアモルフアス
合金積層体となし、次いで磁場中焼鈍することに
より積層鉄心を製造する場合、アモルフアス合金
の励磁特性が充分に回復しない場合があるのは、
加熱接着工程において用いる加熱炉が原因である
ことをつきとめた。 即ち第1図イにおいて加熱炉を構成する発熱体
には通常交流電流が流れているが、この発熱体を
流れる交流電流によつて作られる複雑な磁界によ
つてアモルフアス合金の積層体が加熱接着時に無
秩序に励磁されるため、この影響で後工程の磁場
中焼鈍の効果が低減されることが原因である。 本発明は高耐熱性高分子を主成分とする接着剤
を塗布したアモルフアス合金積層体を電気炉中に
おいて磁気遮蔽体で遮蔽して加熱接着し、次いで
磁場中焼鈍することを特徴とする。 以下に本発明の構成を実施例に基ずき図面によ
つて詳細に説明する。 第2図イは本発明方法によりアモルフアス合金
積層体の加熱接着を行う場合の1実施例を示す図
である。接着剤を塗布したアモルフアス合金箔体
を加熱接着する管状電気加熱炉10′は、炉心管
10′aとそれに巻かれた発熱体10′bなどから
なり、更に炉心管10′aの内側に鉄パイプであ
る磁気遮蔽カバー15が装入されている(第2図
イ)。アモルフアス合金帯11′は磁気遮蔽カバー
15内を通過することにより発熱体に流れる交流
電流が作る複雑な磁界の影響を受けることなく加
熱接着される。この時磁気遮蔽カバー15は磁力
線を完全に遮断するために炉心管10′aの長さ
よりは長いことが望ましい。磁気遮蔽カバーとし
ては非磁性から強磁性までの金属材料およびフエ
ライトコアなどの非金属強磁性材料のような磁気
遮蔽効果を有する磁気遮蔽体が用いられる。なお
炉心管10′a自体が磁気遮蔽効果を有する場合
は炉心管自体が磁気遮蔽カバーとなる。 本発明の他の実施例として、第2図ロに示す加
熱炉は高耐熱性高分子接着剤を塗布したアモルフ
アス合金積層体14′を電気乾燥器などの電気炉
10″で加熱接着する場合の炉の断面図であり、
必要長さに切断されたアモルフアス合金積層体1
4′を電気炉10″の発熱体10″bに流れる交流
電流が作る磁界から遮蔽するように磁気遮蔽カバ
ー15′で蔽うことにより有害な磁界の影響を受
けることなく加熱接着される。この時磁気遮蔽カ
バー15′は当然ながらアモルフアス合金積層体
14′全体を包むようにすると効果が大となる。 以上詳述した如く本発明においては、アモルフ
アス合金の積層体を電気炉を用いて加熱接着する
際に、磁気遮蔽カバーを用いることにより、電気
炉の発熱体に流れる交流電流が作る磁界は前記の
磁気遮蔽カバーでさえぎられ、アモルフアス合金
積層体まで到達しないため励磁特性に全く悪影響
を与えない。従つて加熱接着後に行われる磁場中
焼鈍によつてアモルフアス合金本体の励磁特性は
充分に回復し、鉄心材料として著れた特性が得ら
れる。 本発明の実施例によるアモルフアス合金積層体
の製造条件および製造結果を従来法による場合と
比較して第1表に示す。
The present invention relates to a method for manufacturing an amorphous alloy laminate. Amorphous alloys are produced as foil strips with no crystalline structure by ultra-quenching molten alloy, and have excellent properties such as high electrical resistance, low iron loss, and good excitation characteristics. It is expected to be used as an iron core material. However, due to the characteristics of the manufacturing method, amorphous amorphous alloys are difficult to handle because they are obtained as foil strips with a thickness of about 10 to 50 μm, and they also have the disadvantage that their excitation characteristics are easily deteriorated due to deformation and distortion due to processing. . Therefore, the present inventors provided a solution to these problems in Japanese Patent Application No. 58015/1983 (Japanese Unexamined Patent Publication No. 175654/1982). One of the methods is to apply an adhesive containing a highly heat-resistant polymer as a main component to an amorphous amorphous alloy foil strip, stack them together and heat bond them to form an amorphous amorphous alloy strip, and then create a laminated iron core from this amorphous azure alloy strip.
This method involves manufacturing a wound core, etc., and then annealing it in a magnetic field at 300 to 500°C to manufacture a laminate of amorphous alloy. FIG. 1 shows one method for producing an amorphous alloy laminate. For example, as shown in FIG. A highly heat-resistant polymer adhesive is applied thereto, pressed by a pressure roll 9, and heat-bonded in a heating furnace 10 to form an amorphous alloy strip 11. This amorphous alloy strip 11
is further laminated to form a laminate, and then dried and hardened while being excited in a magnetic annealing furnace 13 having an excitation coil 12 shown in FIG. 1B to produce a laminated core 14. However, the laminated core manufactured by this method involves applying a highly heat-resistant polymeric adhesive to amorphous alloy foil strips and laminating them, and then applying a heat bonding process (heating furnace 1).
The excitation characteristics may be inferior to those of a laminated core manufactured by heat bonding and annealing in a magnetic field at 300 to 500° C. without going through the above steps. That is, when the laminated core is excited and the relationship between the magnetic field strength and the amount of passing magnetic flux is investigated, it is found that when manufacturing the laminated core, the magnetic field annealing (FIG. 1 b) is performed after the heat bonding process (heating furnace 10). The excitation characteristics have not fully recovered and the amount of passing magnetic flux decreases. The present invention provides a method for producing an amorphous alloy laminate with excellent magnetic field properties, which solves the above-mentioned drawbacks that occur when an electric furnace is used in the heat bonding process. The present inventors have discovered that when manufacturing a laminated iron core by heat-bonding amorphous aluminium alloy foil strips coated with a highly heat-resistant polymer adhesive to form an amorphous amorphous alloy laminate and then annealing in a magnetic field, the excitation characteristics of the amorphous amorphous alloy In some cases, recovery may not be adequate.
It was determined that the cause was the heating furnace used in the heat bonding process. In other words, in Figure 1A, an alternating current normally flows through the heating element that makes up the heating furnace, and the amorphous alloy laminate is bonded by heating due to the complex magnetic field created by the alternating current flowing through the heating element. This is because the magnetic field is sometimes excited in a disordered manner, which reduces the effect of magnetic field annealing in the subsequent process. The present invention is characterized in that an amorphous alloy laminate coated with an adhesive mainly composed of a highly heat-resistant polymer is heat-bonded in an electric furnace while shielded with a magnetic shield, and then annealed in a magnetic field. DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be explained in detail below based on embodiments and with reference to drawings. FIG. 2A is a diagram showing an example of heat bonding an amorphous alloy laminate by the method of the present invention. A tubular electric heating furnace 10' for thermally bonding amorphous alloy foil bodies coated with adhesive is composed of a furnace core tube 10'a and a heating element 10'b wound around the furnace core tube 10'a. A magnetic shielding cover 15, which is a pipe, is inserted (FIG. 2A). The amorphous alloy strip 11' passes through the magnetic shielding cover 15 and is heat-bonded without being affected by the complicated magnetic field created by the alternating current flowing through the heating element. At this time, it is desirable that the magnetic shielding cover 15 be longer than the length of the furnace tube 10'a in order to completely block the lines of magnetic force. As the magnetic shielding cover, a magnetic shielding body having a magnetic shielding effect such as a metal material ranging from nonmagnetic to ferromagnetic and a nonmetallic ferromagnetic material such as a ferrite core is used. In addition, when the furnace core tube 10'a itself has a magnetic shielding effect, the furnace tube itself serves as a magnetic shielding cover. As another embodiment of the present invention, the heating furnace shown in FIG. It is a cross-sectional view of the furnace,
Amorphous amorphous alloy laminate 1 cut to required length
4' is covered with a magnetic shielding cover 15' so as to shield it from the magnetic field created by the alternating current flowing through the heating element 10''b of the electric furnace 10'', so that heating and bonding can be performed without being affected by harmful magnetic fields. At this time, the magnetic shielding cover 15' is naturally more effective if it covers the entire amorphous alloy laminate 14'. As detailed above, in the present invention, when amorphous alloy laminates are heat-bonded using an electric furnace, by using a magnetic shielding cover, the magnetic field created by the alternating current flowing through the heating element of the electric furnace is Since it is blocked by the magnetic shielding cover and does not reach the amorphous alloy laminate, it does not have any adverse effect on the excitation characteristics. Therefore, the excitation characteristics of the amorphous alloy main body are sufficiently recovered by annealing in a magnetic field performed after heat bonding, and outstanding characteristics as an iron core material can be obtained. Table 1 shows the manufacturing conditions and manufacturing results of an amorphous alloy laminate according to an example of the present invention in comparison with a conventional method.

【表】【table】

【表】 本発明の方法によれば第1表に示す通り従来法
によつて製造された積層鉄心にくらべ高透磁率、
高磁束密度で更に損失が少ないという結果が得ら
れた。 以上詳述した如く、本発明によれば、アモルフ
アス合金積層体の電気炉による加熱接着に際し
て、磁気遮蔽体を用いることにより後工程の磁場
中焼鈍における励磁特性の劣化を防止し、高品質
のアモルフアス合金積層体を製造することができ
る。
[Table] According to the method of the present invention, as shown in Table 1, the magnetic permeability is higher than that of the laminated core manufactured by the conventional method.
The results showed that the loss was even lower at higher magnetic flux densities. As detailed above, according to the present invention, when amorphous amorphous alloy laminates are bonded by heating in an electric furnace, deterioration of excitation characteristics during post-process annealing in a magnetic field is prevented by using a magnetic shield, and high-quality amorphous Alloy laminates can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアモルフアス合金積層体の製造方法の
説明図でイは工程図、ロは磁場焼鈍炉、第2図は
本発明に係る加熱接着工程における電気加熱炉の
説明図で、イはオンラインにおける磁気遮蔽方法
の1実施例を示す図、ロはオフラインにおける磁
気遮蔽方法の1実施例を示す図である。
Fig. 1 is an explanatory diagram of the manufacturing method of an amorphous alloy laminate, A is a process diagram, B is a magnetic annealing furnace, Fig. 2 is an explanatory diagram of an electric heating furnace in the heat bonding process according to the present invention, and A is an online A diagram showing an example of a magnetic shielding method, and (b) a diagram showing an example of an off-line magnetic shielding method.

Claims (1)

【特許請求の範囲】[Claims] 1 高耐熱性高分子を主成分とする接着剤を塗布
したアモルフアス合金積層体を電気炉中におい
て、磁気遮蔽体で遮蔽して加熱接着し、次いで磁
場中焼鈍することを特徴とするアモルフアス合金
積層体の製造法。
1. An amorphous amorphous alloy laminate coated with an adhesive mainly composed of a highly heat-resistant polymer, which is heat-bonded in an electric furnace while shielding with a magnetic shield, and then annealed in a magnetic field. How the body is manufactured.
JP57184982A 1982-10-21 1982-10-21 Manufacture of amorphous alloy laminate Granted JPS5973943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184982A JPS5973943A (en) 1982-10-21 1982-10-21 Manufacture of amorphous alloy laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184982A JPS5973943A (en) 1982-10-21 1982-10-21 Manufacture of amorphous alloy laminate

Publications (2)

Publication Number Publication Date
JPS5973943A JPS5973943A (en) 1984-04-26
JPS6236862B2 true JPS6236862B2 (en) 1987-08-10

Family

ID=16162724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184982A Granted JPS5973943A (en) 1982-10-21 1982-10-21 Manufacture of amorphous alloy laminate

Country Status (1)

Country Link
JP (1) JPS5973943A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161847A (en) * 1984-09-04 1986-03-29 新日本製鐵株式会社 Manufacture of laminated adhesive amorphous alloy thin-band
JPH0684065B2 (en) * 1985-02-19 1994-10-26 株式会社雪ケ谷制御研究所 Lamination of thin metal plates
JP2721128B2 (en) * 1987-03-25 1998-03-04 平岡織染株式会社 Amorphous metal thin film laminate
JPH069911B2 (en) * 1987-03-25 1994-02-09 平岡織染株式会社 Electromagnetic wave shielding amorphous metal thin film laminated sheet
JP2721129B2 (en) * 1987-03-25 1998-03-04 平岡織染株式会社 Amorphous metal thin film laminate
WO2008075487A1 (en) * 2006-12-21 2008-06-26 Hitachi Industrial Equipment Systems Co., Ltd. Insulation transformer
JP2008177517A (en) * 2006-12-21 2008-07-31 Hitachi Industrial Equipment Systems Co Ltd Insulation transformer
JP6186827B2 (en) * 2013-04-16 2017-08-30 株式会社村田製作所 Manufacturing method and crimping method of wire wound electronic component
JP6064764B2 (en) * 2013-04-17 2017-01-25 株式会社村田製作所 Thermocompression bonding apparatus, wound electronic component manufacturing method, and crimping method

Also Published As

Publication number Publication date
JPS5973943A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US11723182B2 (en) Shielding film and method for producing a shielding film
KR102105390B1 (en) Magnetic powder and Coil electronic component
JP2007012969A (en) Laminated coil and method for manufacturing the same
JP2002538983A (en) Method for treating brittle thin metal strips and magnetic components consisting of nanocrystalline alloy strips
JPS6236862B2 (en)
US2488391A (en) Magnetic core structure
JPS58175654A (en) Manufacture of laminated bonded amorphous alloy band and iron core
JP2007281025A (en) Laminated chip coil
JP2007221869A (en) Laminate
CA2448503A1 (en) Impeder for manufacturing welded pipe
JP2007281314A (en) Soft magnetic alloy ribbon laminate and its manufacturing method
KR101631859B1 (en) Laminated high temperature supperconductor wire structure and manufacturing method thereof
TW200931455A (en) Inductance element, method for manufacturing inductance element, and switching power supply using inductance element
JP2009114511A (en) Method for manufacturing soft-magnetic metal-foil
JPH07298570A (en) Manufacture of spiral core
JP3021208B2 (en) Winding integrated magnetic element and method of manufacturing the same
JPS6345043A (en) Amorphous alloy thin-band laminated board and manufacture thereof
JP3711248B2 (en) Welded iron core with excellent iron loss characteristics
JPH066960A (en) Binding method for laminated core
JPS6142114A (en) Method of fixing end portion of laminated amorphous magnetic alloy thin belt
JP2017130569A (en) Common mode noise filter
JPS63170030A (en) Manufacture of high-durability magnetic material laminate
JPH11150895A (en) Magnetic steel sheet laminated core and its manufacture
JPH09108852A (en) High density amorphous alloy junction body and cystallite alloy junction body
JPS59210626A (en) High-frequency core