JPS59210626A - High-frequency core - Google Patents

High-frequency core

Info

Publication number
JPS59210626A
JPS59210626A JP8438083A JP8438083A JPS59210626A JP S59210626 A JPS59210626 A JP S59210626A JP 8438083 A JP8438083 A JP 8438083A JP 8438083 A JP8438083 A JP 8438083A JP S59210626 A JPS59210626 A JP S59210626A
Authority
JP
Japan
Prior art keywords
core
cut
laminated
resin
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8438083A
Other languages
Japanese (ja)
Inventor
Yukihiko Oota
幸彦 太田
Hidenori Kakehashi
英典 掛橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8438083A priority Critical patent/JPS59210626A/en
Publication of JPS59210626A publication Critical patent/JPS59210626A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Abstract

PURPOSE:To remove the layer short of a cut surface, and to reduce the high-frequency iron loss of a high-frequency core by a method wherein the laminated core formed by laminating a magnetic thin belt having high specific permeability and by impregnating with resin between the layers is cut, and the cut surfaces of the core body are finished to the surfaces removed with flashes generated at cutting time. CONSTITUTION:An amorphous magnetic thin belt is wound round elliptically to form a laminated core, and the laminated core is heat-treated. Then to fix the respective layers of the laminated amorphous magnetic thin belt with resin 6, the neighborhood of the central part of the long side of the laminated core is heated to be percolated with microcrystalline wax extending over about 20mm.. Then the laminated core impregnated with the resin 6 is cut by a GC microcutter to obtain a core body 1 of cut core. Then the shaded parts shown in the figure of the cut surfaces 2 are abraded by a proper abrasive plate up to obtain electric resistance of 0.3OMEGA/mm., and flashes 5 are removed. The fellow cut surfaces 2 are joined using two pieces of the core bodies 1 consisting of the U-type cut cores obtained in such a way to obtain the desired high-frequency core. Accordingly, the layer short of the cut surfaces to be generated according to the flashes 5 can be removed, and the high-frequency core reduced especially with high-frequency iron loss can be produced.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は非晶質等の磁性薄帯を用いて形成せるカットコ
アからなる高同波コアに関するものである0 〔背景技術〕 一般に非晶質合金の電気抵抗率は室温で50〜350μ
Ω・mで、結晶質合金の電気抵抗率に比べて10〜10
0倍はど大きい。特にトランスのコアに適した鉄基非晶
質合金では129〜140μΩ・画の範囲のものが多い
[Detailed Description of the Invention] [Technical Field] The present invention relates to a high frequency core consisting of a cut core formed using an amorphous magnetic ribbon. [Background Art] Generally, the electrical resistance of an amorphous alloy is Rate is 50-350μ at room temperature
In Ω・m, the electrical resistivity is 10 to 10 compared to that of crystalline alloys.
0 times is huge. In particular, iron-based amorphous alloys suitable for transformer cores often have a resistance of 129 to 140 μΩ.

ところで、鉄損の成分の中でのうず電流損は次式で表わ
される〇 但し、α(m):リボ:71枚の厚さ Bm(T):最大磁束密度 ρ(Ω・m):電気抵抗率 f(KHz):同波数 鉄損は、しステリシス曲線を一局する磁化を行なつ比曲
線で囲まれた面積に相当する仕事が熱になって強磁性体
内で失われるしステリシス損と交番磁束が生じている磁
心中に生じるうず電流%によるジュール熱のうず電流損
及び異常うず電流損とに分けられる。特に高同波コアの
場合は、しステリシス損がflに比例するのに較べうず
電流損が戸に比例するので後者が主である。
By the way, the eddy current loss among the components of iron loss is expressed by the following formula: α (m): Ribbon: Thickness of 71 sheets Bm (T): Maximum magnetic flux density ρ (Ω・m): Electricity Resistivity f (KHz): The same wave number iron loss is that work corresponding to the area surrounded by the magnetization ratio curve that makes the steresis curve become heat is lost in the ferromagnetic body, and the steresis loss Eddy current loss is divided into Joule heat eddy current loss and abnormal eddy current loss, which are determined by the percentage of eddy current generated in the magnetic core where alternating magnetic flux is generated. Particularly in the case of a high-frequency core, the latter is the main factor because the eddy current loss is proportional to the steresis loss, which is proportional to fl, while the steresis loss is proportional to fl.

第1図は非晶質磁性薄帯を巻回積層した後切断して得ら
れた所謂力・シトコアである]ア体il+を示し、この
コア体+1+又は切断面(2)で接触するか近接した別
のコア体に交番磁界を印加すると、切断面の少なくとも
′一部(@1図のz−7面の一部)が第2図のように2
次元的にレアーショートされる状態であれば極めて大き
いンず電流がその面に於て生じ、うず電流損の増大、従
ってコア鉄損の増大を招く。
Figure 1 shows a so-called force core obtained by winding and laminating amorphous magnetic ribbons and then cutting them. When an alternating magnetic field is applied to another core body, at least a part of the cut surface (part of the z-7 plane in Figure 1) becomes
If the layer is dimensionally short-circuited, an extremely large eddy current will occur on that surface, leading to an increase in eddy current loss and, therefore, an increase in core iron loss.

今、アライドケミカル社製のMetglas 2605
5−3(商品名)なる鉄基非晶質磁性薄帯を巻回し、熱
処理後切断した状態で突き合せたU型コア体(1)<磁
路長110■、断面積s o mrrz>の鉄損Weは
20KHz、3 K Gauss の交番磁界で励磁し
た場合900mw/c c ((J−関数計による測定
)となり、フェライトコアの数倍に達した。そこでコア
体+1)の切断面(2)を顕微鏡で調べてみると約80
%の面積がレアーショートした状態であった。尚切断前
の鉄損値け300mw/ccであった。ところで、コア
体i11に使用した非晶質磁性薄帯は第2図の如く、厚
みαけ一般に20〜50μm程度で単0−ルで作成され
た場合、自由面に数μmの山(3)を生じ、ロール面に
は数〜十数μmのホール(4)を生じていて、表面が粗
く、コア休4.11七して巻取りされたものは自由面の
山(3)と、相隣るD−ル面とが点接触で積層されてい
る。これを熱処理すると、積層されたコア体+11各層
の磁性薄帯表面が軽く酸化ないし窒化されるか、又は後
に樹脂含浸を行なえばわずかに絶縁される。前述のコア
体(1)のx−z面を低電圧印加で、電気抵抗を測定す
ると、0,1〜1Ω/m であった。一方切断面(2)
のレアーショートした部分は0.001Ω/m以下であ
った。コア材質の電気抵抗はほとんど切断によるぼり(
6)によって生じたもので、切断面(2)の電気抵抗が
層間の1/100以Fとなる(熱処理した非晶質金属の
場合)ので、うず電流損が増大する原因となる。
Currently, Metglas 2605 manufactured by Allied Chemical Co.
5-3 (trade name), an iron-based amorphous magnetic ribbon is wound, heat treated, cut, and butted together to form a U-shaped core body (1) <magnetic path length 110cm, cross-sectional area s o mrrz>. When excited with an alternating magnetic field of 20 KHz and 3 K Gauss, the iron loss We was 900 mw/cc (measured using a J-function meter), which was several times that of the ferrite core. ) was examined under a microscope and found to be approximately 80
% of the area was in a state of layer short circuit. The iron loss value before cutting was 300 mw/cc. By the way, as shown in Fig. 2, the amorphous magnetic ribbon used for the core body i11 has a thickness α generally of about 20 to 50 μm, and when it is made with a single wire, there are ridges (3) of several μm on the free surface. The roll surface has holes (4) of several to tens of micrometers in size, and the surface is rough, and the core is wound up with holes (3) on the free surface. Adjacent D-rule surfaces are laminated with point contact. When this is heat-treated, the surface of the magnetic ribbon of each layer of the laminated core body +11 is lightly oxidized or nitrided, or if impregnated with resin afterwards, it is slightly insulated. When the electrical resistance of the core body (1) was measured in the x-z plane by applying a low voltage, it was 0.1 to 1 Ω/m 2 . One side cut surface (2)
The layer shorted portion was 0.001Ω/m or less. The electrical resistance of the core material is mostly due to cutting (
6), and the electrical resistance of the cut surface (2) becomes 1/100 F or more between the layers (in the case of heat-treated amorphous metal), which causes an increase in eddy current loss.

〔発明の目的〕[Purpose of the invention]

本発明けt述の欠点に鑑みて為されたもので、その目的
とするところは切断面のレアーショートがなく、鉄損、
特に高同波鉄損が低減し念高問波コアを提供するにある
This invention has been made in view of the drawbacks mentioned above, and its purpose is to eliminate rare shorts on the cut surface, reduce iron loss,
In particular, the purpose is to provide a high frequency core with reduced high frequency core loss.

〔発明の開示〕[Disclosure of the invention]

(実施例1) まず非晶質磁性薄帯として、抵抗率が125μΩ・cy
++ (7) ’P 5イドケ三力ル社製Metgla
s 26058−3(商品名)の35μm(厚さ)、1
0閣(巾)のものを用い、該磁性薄帯を楕円形に巻回し
、磁路長120■、断面積50 mrr?の積層コアを
形成し、450℃、歯カス中の雰囲気で50分間積層コ
アり熱処理を行なう。次に積層した非晶質磁性薄帯の各
層を樹脂(6)で固定するためにマイクロブリスタリン
ワックスで積層コアの長辺の中央部附近を約20福に亘
って加熱浸透させる。この場合樹脂含浸は層間深部に樹
脂を浸透させることができるが、鉄基非晶質の場合、硬
化収縮時の応力の影響が大で、特性劣化するため、積層
コアの外局のモールドだけにしてもよい。
(Example 1) First, as an amorphous magnetic ribbon, the resistivity was 125μΩ・cy
++ (7) 'P 5 Metgla manufactured by Idoke Sanrikiru Co., Ltd.
s 26058-3 (product name) 35 μm (thickness), 1
The magnetic ribbon was wound in an oval shape, with a magnetic path length of 120 cm and a cross-sectional area of 50 mrr. A laminated core is formed, and a laminated core heat treatment is performed at 450° C. for 50 minutes in the atmosphere of a tooth scum. Next, in order to fix each layer of the laminated amorphous magnetic thin strips with resin (6), the vicinity of the center of the long side of the laminated core is heated and infiltrated with microblisterlin wax for about 20 degrees. In this case, resin impregnation allows the resin to penetrate deep into the interlayers, but in the case of iron-based amorphous materials, the effects of stress during curing and shrinkage are large, resulting in deterioration of properties, so only the outer mold of the laminated core is used. It's okay.

このように樹脂(り含浸した積層コアをGCマイクロ九
ツタ−で切断して所謂カットコアなるコア体+41が第
1図のように得られるわけである。この場合GCマイク
ロカッターを高速回転させて積層コアをa断すると、抑
圧摩擦により切断面(2)にGCマイクロカッターの回
転方向に沿って第3図に示すようにぼり(5)が生じ、
第2図の拡大断面図のように土層の磁性薄帯のぼり(5
)の先端は下層の磁性薄帯の切断面に押圧されて前述し
た電気抵抗のレアーショート部を発生させる。そこで、
適宜な通常の研摩板で、切断面(2)の2軸方向(第3
図の斜線部分)を電気抵抗が0.3Ω/−になるまで研
摩してぼり(5)を除去したのである。
The laminated core impregnated with resin is cut with a GC micro cutter to obtain a core body +41, which is a so-called cut core, as shown in Fig. 1. In this case, the GC micro cutter is rotated at high speed. When the laminated core is cut a, a bulge (5) is generated on the cut surface (2) along the rotational direction of the GC microcutter due to suppressing friction, as shown in Fig. 3.
As shown in the enlarged cross-sectional view of Figure 2, there are magnetic ribbons (5
) is pressed against the cut surface of the lower layer magnetic ribbon, generating the above-mentioned layer short portion of electrical resistance. Therefore,
Use a suitable ordinary abrasive plate to polish the cut surface (2) in two axial directions (third
The burr (5) was removed by polishing the area (shaded area in the figure) until the electrical resistance became 0.3Ω/-.

しかして上述のように形成せられたU型カット〕アから
なるコア体filを2個用いて切断面(2)同士を接合
して所望の高同波コアを得たのである。このようにして
得られ比高同波コアを20KHzで、去していない従来
例に比較して鉄損Weを極めて少なくできた。
Thus, the desired high-frequency core was obtained by using two core bodies fil made of the U-shaped cut [a] formed as described above and joining the cut surfaces (2) to each other. The specific high frequency core obtained in this way has an extremely low iron loss We at 20 KHz compared to the conventional example in which the core is not removed.

(実施例2) 次に磁性薄帯゛として、組成がFe C072B16 
Si9で、30μm(厚み)、10簡(巾)の磁性薄帯
を用いて、該磁性薄帯を円形に巻回し、磁路長100m
  、断面・積4 (jm−の積層コアを形成する。こ
の形成した積層コア350℃の真空において20分間熱
処理を施し、この熱処理後エポキシ樹脂(ナノSガイ甲
−社製アラルタイト(商品名)CY221とハードナー
HY2967とを100:35に混合したもの)を積層
コアの層間に減圧含浸させ、その後100℃、3時間で
含浸樹脂(6)を硬化させた。
(Example 2) Next, as a magnetic ribbon, the composition was Fe C072B16.
Using a Si9 magnetic ribbon of 30 μm (thickness) and 10 strips (width), the magnetic ribbon was wound in a circle to create a magnetic path length of 100 m.
A laminated core with a cross section and area of 4 (jm-) is formed.The formed laminated core is heat treated in a vacuum at 350°C for 20 minutes. and hardener HY2967 at a ratio of 100:35) was impregnated between the layers of the laminated core under reduced pressure, and then the impregnated resin (6) was cured at 100° C. for 3 hours.

次にこのように樹脂含浸硬化させた積層コアをGC刃を
回転させて例えばC字状に切断し、コア体+1+を得る
のである。このコア体il+の切断面(2)にははり(
6)があるため、本実施例では電解研摩を行なってぼり
(5)を除去するのである。この場合少なくともコア体
il+の切断面(2)から数調のX軸方向の深さには樹
脂含浸を施して、電解研摩に用いる導電液が毛管現象に
より層間深部へ浸透するのを防ぐ必要がある。つまり導
電液が層間深部に浸透すると層間の電気抵抗の低下を招
き、うず電流損が増大する恐れがある。また電解条件が
過大になると、コア体(1)の磁性薄帯が更に薄くなっ
て、その部分で失効磁束密度が増大し、上記の式により
鉄損Weが増大するので注意が必要である。
Next, the resin-impregnated and hardened laminated core is cut into, for example, a C-shape by rotating a GC blade to obtain a core body +1+. The cut surface (2) of this core body il+ has a beam (
6), therefore, in this embodiment, electrolytic polishing is performed to remove the burrs (5). In this case, it is necessary to impregnate the core body il+ with resin at least at a depth in the X-axis direction from the cut surface (2) to prevent the conductive liquid used for electrolytic polishing from penetrating deep into the interlayers due to capillary action. be. In other words, if the conductive liquid penetrates deep into the interlayers, the electrical resistance between the layers may decrease, leading to an increase in eddy current loss. Further, if the electrolytic conditions become excessive, the magnetic ribbon of the core body (1) becomes even thinner, and the expiration magnetic flux density increases in that part, and the iron loss We increases according to the above equation, so care must be taken.

しかして本実施例では切断面(2)のZ軸方向の電気抵
抗が0.5Ω/哩 となるまで電気研摩を行ない、ばり
(5)の除去を行なった。このようにして得たカットコ
アたるコア体filを2個用いて切断面(2)同士を接
合し、50 KHzで2 K Gaus6の交番磁界を
加え、U関数計によって鉄損We ′fr測定すると 
4gQmw/ccという小さな値であった。尚非研摩状
態では鉄損Weの値はB 00 mw/c c  とい
う大きな値であった。
In this example, however, the burr (5) was removed by performing electric polishing until the electrical resistance of the cut surface (2) in the Z-axis direction became 0.5 Ω/k. Using two core bodies fil, which are the cut cores obtained in this way, the cut surfaces (2) are joined together, an alternating magnetic field of 2 K Gaus6 at 50 KHz is applied, and the iron loss We'fr is measured using a U function meter.
It was a small value of 4 gQmw/cc. In addition, in the non-polished state, the value of iron loss We was a large value of B 00 mw/cc.

尚1記実施例に用いた磁性薄帯以外に、例えば非晶質磁
性薄帯としては次の表のような組成のものがある。
In addition to the magnetic ribbons used in Example 1, there are, for example, amorphous magnetic ribbons having compositions as shown in the following table.

以下余白 勿論上記表以外に強磁性の無数の配合例がありに、記表
及び実施例に限定されない。
There are, of course, countless examples of ferromagnetic formulations other than the above table, and the present invention is not limited to the table and examples.

またt記非晶質磁性薄帯としての熱処理の温度とし゛て
は使用目的によって異なっており、次の表にその例を示
す。
Furthermore, the temperature at which the amorphous magnetic ribbon is heat-treated varies depending on the purpose of use, and examples thereof are shown in the following table.

また含浸樹脂(6)としてはと述の実施例以外にポリエ
ステル樹脂、シリコン樹脂等を用いてもよい。特に鉄基
非晶質磁性板の場合磁歪が大きいので、線膨張率の小さ
い樹脂を選定する必要がある。
Further, as the impregnating resin (6), polyester resin, silicone resin, etc. may be used in addition to the above-mentioned embodiments. In particular, in the case of an iron-based amorphous magnetic plate, the magnetostriction is large, so it is necessary to select a resin with a small coefficient of linear expansion.

また含浸樹脂(6)は切断後のぼり(6)除去時の研摩
時の固定やエツチング、電解研摩時の固定の手段として
の役割を持っており、ぼり除去後は必要に応じて溶融除
去してもよい。
In addition, the impregnated resin (6) serves as a means of fixing during polishing and etching when removing the burrs (6) after cutting, and fixing during electrolytic polishing, and can be melted and removed as necessary after removing the burrs. Good too.

〔発明の効果〕〔Effect of the invention〕

本発明は高比透磁率を有する磁性薄帯を積層すると共に
層間に樹脂を含浸させた積層コアを切断して形成せるコ
ア体の切断面を、切断時に生じるばりを除去した面さし
であるので、ぼりによる積層せる磁性薄帯のレアーショ
ートを無くすことが −でキl?Iに高周波によって励
磁する場合にレアーショートにより生じるうず電流の、
増・大を防止でき、その結果鉄損を小さくすることが可
能なものであって、高周波を用いるトラシジスタイシバ
ータ等のトランスやチョークに用いても高効率に使用す
ることも可能であり、またと述のように含浸樹脂によっ
て層間の絶縁も図れ、更に研摩や切断時の層の固定手段
となって切断、研摩の作業がやり易いという効果を奏す
る。
The present invention is a face cutter in which burrs generated during cutting are removed from the cut surface of a core body formed by cutting a laminated core in which magnetic ribbons having high relative magnetic permeability are laminated and resin is impregnated between the layers. Therefore, it is necessary to eliminate the layer short in the laminated magnetic thin strips due to the bending. The eddy current caused by layer short when I is excited by high frequency,
It is possible to prevent iron loss from increasing or increasing, and as a result, it is possible to reduce iron loss, and it is also possible to use it with high efficiency in transformers and chokes such as transistor inverters that use high frequencies. In addition, as mentioned above, the impregnated resin can provide insulation between layers, and also serves as a means for fixing the layers during polishing and cutting, making cutting and polishing operations easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカットコアたるコア体の斜視図、第2図は従来
例の要部の説明図、第3図は本発明の一実施例の要部の
説明図であり、11)はコア体、12)は切断面、(5
1はばり、(6)は含浸樹脂である。 代理人 弁理士  石 1)長 七
FIG. 1 is a perspective view of a core body as a cut core, FIG. 2 is an explanatory diagram of the main parts of a conventional example, FIG. 3 is an explanatory diagram of the main parts of an embodiment of the present invention, and 11) is a diagram of the core body. , 12) is the cut plane, (5
1 is the burr, and (6) is the impregnated resin. Agent Patent Attorney Ishi 1) Choshichi

Claims (1)

【特許請求の範囲】[Claims] +11高比透磁率を有する磁性薄帯を積層すると共に層
間に樹脂を含浸させた積層コアを切断して形成せるコア
体の切断面を、切断時に生じるばりを除去した面として
成ることを特徴とする高量波コア0
+11 The core body is formed by cutting a laminated core in which magnetic ribbons having a high relative magnetic permeability are laminated and resin is impregnated between the layers, and the cut surface is a surface from which burrs generated during cutting are removed. high-volume core 0
JP8438083A 1983-05-14 1983-05-14 High-frequency core Pending JPS59210626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8438083A JPS59210626A (en) 1983-05-14 1983-05-14 High-frequency core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8438083A JPS59210626A (en) 1983-05-14 1983-05-14 High-frequency core

Publications (1)

Publication Number Publication Date
JPS59210626A true JPS59210626A (en) 1984-11-29

Family

ID=13828937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8438083A Pending JPS59210626A (en) 1983-05-14 1983-05-14 High-frequency core

Country Status (1)

Country Link
JP (1) JPS59210626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120821A (en) * 1989-09-29 1991-05-23 American Teleph & Telegr Co <Att> Method of manufacturing integrated circuit device
JP2017103417A (en) * 2015-12-04 2017-06-08 東芝産業機器システム株式会社 Transformer iron core
JP2021005645A (en) * 2019-06-26 2021-01-14 学校法人トヨタ学園 Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120821A (en) * 1989-09-29 1991-05-23 American Teleph & Telegr Co <Att> Method of manufacturing integrated circuit device
JP2017103417A (en) * 2015-12-04 2017-06-08 東芝産業機器システム株式会社 Transformer iron core
JP2021005645A (en) * 2019-06-26 2021-01-14 学校法人トヨタ学園 Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core

Similar Documents

Publication Publication Date Title
US7235910B2 (en) Selective etching process for cutting amorphous metal shapes and components made thereof
US6737951B1 (en) Bulk amorphous metal inductive device
US6873239B2 (en) Bulk laminated amorphous metal inductive device
US6784588B2 (en) Low core loss amorphous metal magnetic components for electric motors
JP2003518903A (en) Bulk amorphous metal magnetic member for electric motor
JP2003519904A (en) Bulk type amorphous metal magnetic parts
US2387943A (en) Magnetic core structure
US4621248A (en) Amorphous cut core
JPS59210626A (en) High-frequency core
JPS6178111A (en) Manufacture of magnetic core
JPS6236862B2 (en)
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
KR100701902B1 (en) Magnetic core insulation
JPS59172957A (en) Manufacture of wound core
JPS6047408A (en) Method for producing magnetic core
JPS59210620A (en) High-frequency core
SU1077022A1 (en) Process for manufacturing magnetic circuit
JPS61237404A (en) Manufacture of amorphous cut core
JPS5922747A (en) Manufacture of laminate consisting of foil band of metallic magnetic material
JPS60132308A (en) Magnetic core
JPS6012713A (en) Manufacture of magnetic core
JPH0532887B2 (en)
JPH05198451A (en) Laminated magnetic core and its manufacturing method
JPS6047401A (en) Magnetic core
JPS59172959A (en) Manufacture of core