JPH09108852A - High density amorphous alloy junction body and cystallite alloy junction body - Google Patents

High density amorphous alloy junction body and cystallite alloy junction body

Info

Publication number
JPH09108852A
JPH09108852A JP29734295A JP29734295A JPH09108852A JP H09108852 A JPH09108852 A JP H09108852A JP 29734295 A JP29734295 A JP 29734295A JP 29734295 A JP29734295 A JP 29734295A JP H09108852 A JPH09108852 A JP H09108852A
Authority
JP
Japan
Prior art keywords
amorphous alloy
joined
laminated
bonded
ribbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29734295A
Other languages
Japanese (ja)
Inventor
Junji Saida
淳治 才田
Yasusuke Tanaka
庸介 田中
Yasushi Tanaka
康司 田中
Ayako Matsumoto
亜矢子 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29734295A priority Critical patent/JPH09108852A/en
Priority to DE1996600232 priority patent/DE69600232T2/en
Priority to EP96100557A priority patent/EP0723031B1/en
Publication of JPH09108852A publication Critical patent/JPH09108852A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous alloy joined body capable of keeping the amorphous structure and high in the density and strength. SOLUTION: In an amorphous alloy joined body, a plurality of amorphous alloy thin strips are laminated, and the adjacent amorphous alloy thin strips are joined with each other through a melted part dotted on the laminated interface. Fine crystals may be precipitated by the heat treatment of the joined body. Because the adjacent thin strips are joined with each other at the joined parts dotted in the laminated interface, the joined body high in the density and strength can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層した非晶質合金薄
帯を相互に接合した非晶質合金接合体及び熱処理により
微結晶を析出させた微結晶質合金接合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy bonded body in which laminated amorphous alloy ribbons are bonded to each other and a microcrystalline alloy bonded body in which fine crystals are precipitated by heat treatment.

【0002】[0002]

【従来の技術】非晶質合金は、合金溶湯を急冷凝固させ
て製造されるものであり、通常の溶解・鋳造法が採用で
きない。そのため、得られる非晶質合金の形態も、薄帯
或いは粉末状に限られ、薄帯状のものにあってはほとん
ど巻き回して使用されるに止まっていた。このような形
態からバルクを得る手段としては、複数の薄帯を接合し
て一体化する方法、粉末を焼結する方法等がある。焼結
法では、結晶化開始温度以下の温度で高圧下において非
晶質合金粉末を焼結することによってバルクを製造して
いる。このとき、粉末粒子の塑性変形及び構成元素の熱
拡散によって緻密化が進行する十分な高温に非晶質合金
粉末を加熱すると、結晶化反応が進行し、得られた焼結
体の物性が劣化する。そのため、焼結温度を低く設定せ
ざるをえず、高密度及び高強度をもった焼結体が得られ
なかった。
2. Description of the Related Art Amorphous alloys are manufactured by quenching and solidifying a molten alloy, and the usual melting / casting method cannot be adopted. Therefore, the form of the obtained amorphous alloy is also limited to a ribbon or a powder, and in the case of a ribbon, it is almost wound and used. As a means for obtaining a bulk from such a form, there are a method of joining and integrating a plurality of ribbons, a method of sintering powder, and the like. In the sintering method, a bulk is manufactured by sintering an amorphous alloy powder under a high pressure at a temperature equal to or lower than a crystallization start temperature. At this time, if the amorphous alloy powder is heated to a sufficiently high temperature that the densification proceeds due to the plastic deformation of the powder particles and the thermal diffusion of the constituent elements, the crystallization reaction proceeds and the physical properties of the obtained sintered body deteriorate. To do. Therefore, the sintering temperature had to be set low, and a sintered body having high density and high strength could not be obtained.

【0003】非晶質合金薄帯を接合してバルク化する方
法では、接合時の温度が問題となる。一般に、低温での
接合は非常に困難であり、得られたバルク体も十分な強
度を確保できない。接合温度を高温に設定すると、結晶
化が生じ、得られたバルク体の物性を劣化させる。その
ため、樹脂等の接着剤を使用して非晶質合金薄帯を接着
している実状であり、バルク体の相対密度が非常に低
く、工業的な特性を満足するまでには至っていない。
In the method of joining amorphous alloy ribbons into a bulk, the temperature at the time of joining becomes a problem. Generally, joining at low temperature is very difficult, and the obtained bulk body cannot secure sufficient strength. When the joining temperature is set to a high temperature, crystallization occurs and the physical properties of the obtained bulk body are deteriorated. Therefore, the amorphous alloy ribbon is adhered using an adhesive such as a resin, and the relative density of the bulk body is very low, so that the industrial characteristics are not satisfied.

【0004】[0004]

【発明が解決しようとする課題】非晶質合金薄帯を接合
したものでは、このようにそれ自体の機械的強度が十分
でなく、また層間に空隙部分が非常に多く、結果として
単位体積当りに有効な材料の割合が低いものであった。
たとえば、非晶質合金磁性体の場合、積層した薄帯を接
着することにより得られた部品の相対密度(占積率)は
80%程度であり、小型化等の要求に十分応えられなか
った。また、薄帯を圧接した部品でも、相対密度が僅か
に改善されるだけであり、接合体としての機械的強度が
極端に低いため、厚み0.1〜0.2mmの接合体とし
て使用することが限界であった。一方、非晶質合金薄帯
は、熱履歴を受けると結晶化し、特性が極端に低下す
る。そのため、たとえばスポット溶接法等による接合体
の作製は不可能である。また、微結晶合金についても、
特に磁性及び高強度が要求されるものでは、出発材料と
して非晶質合金を使用する場合が多い。この場合にも、
微結晶析出温度が比較的低く、また析出条件と接合条件
が異なることから、工業的な要求を満足する微結晶接合
体を得ることができなかった。
In the case of joining the amorphous alloy ribbons, the mechanical strength of the alloy itself is not sufficient as described above, and the number of voids between the layers is very large. The percentage of effective materials was low.
For example, in the case of an amorphous alloy magnetic body, the relative density (space factor) of the parts obtained by adhering the laminated ribbons is about 80%, and it has not been possible to sufficiently meet the demand for miniaturization and the like. . Further, even in the case where the thin strip is pressure-welded, the relative density is only slightly improved, and the mechanical strength of the bonded body is extremely low. Therefore, it should be used as a bonded body having a thickness of 0.1 to 0.2 mm. Was the limit. On the other hand, the amorphous alloy ribbon is crystallized when subjected to heat history, and the characteristics are extremely deteriorated. Therefore, it is impossible to manufacture a joined body by, for example, spot welding. Also, regarding microcrystalline alloys,
Especially when magnetism and high strength are required, an amorphous alloy is often used as a starting material. Again, in this case,
Since the microcrystal precipitation temperature is relatively low, and the precipitation conditions and the joining conditions are different, it is not possible to obtain a microcrystal joined body that satisfies industrial requirements.

【0005】しかしながら、非晶質合金材料や微結晶質
合金材料に対する工業的要求は強くなる一方であり、高
密度で且つ磁気特性,機械的特性等に優れた接合体に対
するニーズも高まっている。本発明は、このような要求
に応えるべく案出されたものであり、部分的に溶融した
界面を介して薄帯を接合することにより、非晶質構造や
微結晶質構造を破壊することなく、高密度で且つ磁気特
性,機械的特性等に優れた接合体を提供を目的とする。
However, the industrial demands for amorphous alloy materials and microcrystalline alloy materials are increasing, and there is an increasing need for a bonded body having a high density and excellent magnetic properties and mechanical properties. The present invention has been devised to meet such a demand, and by joining thin ribbons through a partially melted interface, without destroying an amorphous structure or a microcrystalline structure. The object is to provide a bonded body having high density and excellent magnetic properties and mechanical properties.

【0006】[0006]

【課題を解決するための手段】本発明の接合体は、その
目的を達成するため、複数の非晶質合金薄帯が積層さ
れ、積層界面に点在する溶融部を介して隣接する非晶質
合金薄帯が相互に接合されており、非接合部の積層界面
には酸化膜が残存していることを特徴とする。この接合
体は、熱処理によって微結晶を析出させた微結晶接合体
としても使用される。
In order to achieve the object, the bonded body of the present invention has a plurality of amorphous alloy ribbons laminated, and the amorphous alloys adjacent to each other via a fusion zone scattered at the lamination interface. The thin alloy ribbons are bonded to each other, and an oxide film remains at the non-bonded laminated interface. This bonded body is also used as a microcrystalline bonded body in which microcrystals are deposited by heat treatment.

【0007】[0007]

【作用】本発明の接合体は、積層した非晶質薄帯に高周
波の高電流,高電圧を短時間印加することにより製造さ
れる。この接合方法は、本発明者等が特願平7−222
88号として出願したものであるが、高周波の高電流,
高電圧の印加によるスキン効果で非晶質合金薄帯の表面
層が優先的に加熱溶融する。この状態で加圧するとき、
非晶質構造を維持したままで合金薄帯が相互に溶融した
界面を介して接合される。この方法で得られた接合体
は、接合部で積層界面が部分的に消失し、接合部以外の
積層界面には酸化膜が残存し、薄帯内部及び接合界面は
当初の非晶質構造となっている。この特殊な構造のた
め、接合強度が大きく、磁気特性も出発材料である非晶
質合金に比較してほとんど劣化していない。また、接合
体の密度も大きいため、従来構造の非晶質合金又は微結
晶合金にみられない優れた特性が発現する。また、接合
体に適宜の熱処理を施すと、微結晶相を析出させること
もできる。
The bonded body of the present invention is manufactured by applying high frequency high current and high voltage to the laminated amorphous ribbons for a short time. This joining method is disclosed by the present inventors in Japanese Patent Application No. 7-222.
It was filed as No. 88, but high frequency high current,
The surface layer of the amorphous alloy ribbon is preferentially heated and melted by the skin effect due to the application of high voltage. When pressurizing in this state,
While maintaining the amorphous structure, the alloy ribbons are bonded to each other through the melted interface. In the bonded body obtained by this method, the laminated interface partially disappears at the bonded portion, the oxide film remains on the laminated interface other than the bonded portion, and the inside of the ribbon and the bonded interface have the original amorphous structure. Has become. Due to this special structure, the bonding strength is high, and the magnetic properties are hardly deteriorated as compared with the amorphous alloy as the starting material. Moreover, since the density of the bonded body is high, excellent characteristics not found in the conventional amorphous alloy or microcrystalline alloy are exhibited. Further, the microcrystalline phase can be precipitated by subjecting the bonded body to an appropriate heat treatment.

【0008】積層した非晶質合金薄帯を接合する際、所
定の電圧に耐えるコンデンサーが使用される。コンデン
サーに充電した電力を放電することによって、非晶質合
金薄帯を通電加熱する。或いは、パルス電力発生器等で
得られた周波数1kHz以上の所定範囲にある電圧,電
流を50マイクロ秒〜500ミリ秒の短時間印加するこ
とによって非晶質合金薄帯を通電加熱する。通電された
非晶質合金にはスキン効果が発生し、電流は、主として
非晶質合金薄帯の表面を流れる。このとき、薄帯表面の
微細な凹凸や表層酸化膜により隣接薄帯間での接触抵抗
が局部的に異なるため、積層薄帯の界面が部分的に溶
融,接合する。この部分的な溶融・接合が極く短い時間
で起こり、且つ電気抵抗の低い界面以外の部分がヒート
シンクとして働くため、薄帯内部は勿論、接合部界面に
おいても非晶質構造が維持される。
When joining the laminated amorphous alloy ribbons, a capacitor that withstands a predetermined voltage is used. The amorphous alloy ribbon is electrically heated by discharging the electric power charged in the capacitor. Alternatively, the amorphous alloy ribbon is electrically heated by applying a voltage and current within a predetermined range of a frequency of 1 kHz or more obtained by a pulse power generator or the like for a short time of 50 microseconds to 500 milliseconds. A skin effect occurs in the energized amorphous alloy, and the current mainly flows on the surface of the amorphous alloy ribbon. At this time, the contact resistance between the adjacent ribbons is locally different due to the fine irregularities on the surface of the ribbon and the surface oxide film, so that the interface of the laminated ribbons is partially melted and joined. This partial melting / bonding occurs in a very short time, and the part other than the interface with low electric resistance acts as a heat sink, so that the amorphous structure is maintained not only inside the ribbon but also at the bond interface.

【0009】このように、材料全体を均一に加熱する従
来法と異なり、非晶質合金薄帯の表面部及び周辺部が集
中的に発熱し、内部はほとんど発熱しない。そのため、
通電による発熱は、非晶質合金薄帯の接合に効率よく消
費され、通電時間を極めて短時間に設定でき、非晶質構
造を劣化させることがない。更に、急激な加熱によって
接合部の酸化物が破壊され、隣接する薄帯が良好な強度
で接合される。実際、接合部を観察した結果では、界面
に酸化物等の不純物が存在しないことが確認された。こ
のようにして得られた接合体は、高い相対密度をもち、
且つ破壊強度も大きい。更に、薄帯が部分的に接合した
部位以外では表面酸化物が残存しているため、薄帯間の
電気抵抗の減少も極く僅かである。すなわち、隣接する
薄帯は、接合部を介して電気的に接続され、接合部以外
の界面では実質的に絶縁されている。このような構造の
結果、従来にない特性が得られる。たとえば、最も大き
な工業的用途である磁性部品への応用についてみると、
本発明の接合体は、直流磁気特性が出発材料である非晶
質合金薄帯と同等であり、鉄損等の高周波磁気特性もほ
ぼ同等である。そして、市販品の巻回し材に比較して相
対密度が15〜20%も向上しているので、単位体積当
りの磁気特性が15〜20%も改善され、各種磁性部品
の小型化が図られる。また、接合体の大きさや厚み等の
形状に加わる制約は、従来の熱圧接材に比較して格段に
緩和されており、電力トランス等の大型磁性部品への応
用も十分可能である。
As described above, unlike the conventional method of uniformly heating the entire material, the surface portion and the peripheral portion of the amorphous alloy ribbon are concentratedly heated, and the inside is hardly heated. for that reason,
The heat generated by energization is efficiently consumed for joining the amorphous alloy ribbons, the energization time can be set to an extremely short time, and the amorphous structure is not deteriorated. Further, the oxide in the joint is destroyed by the rapid heating, and the adjacent ribbons are joined with good strength. In fact, as a result of observing the joint, it was confirmed that impurities such as oxides were not present at the interface. The bonded body thus obtained has a high relative density,
Also, the breaking strength is high. Further, since the surface oxide remains at the portions other than the portions where the ribbons are partially joined, the decrease in the electrical resistance between the ribbons is very small. That is, the adjacent ribbons are electrically connected to each other through the joint, and are substantially insulated at the interface other than the joint. As a result of such a structure, characteristics which have not been obtained can be obtained. For example, looking at the application to magnetic parts, which is the largest industrial use,
The joined body of the present invention has direct current magnetic characteristics equivalent to those of the amorphous alloy ribbon as a starting material, and also has high frequency magnetic characteristics such as iron loss and the like. Since the relative density is improved by 15 to 20% as compared with the commercially available rolled material, the magnetic characteristics per unit volume are improved by 15 to 20%, and various magnetic parts can be miniaturized. . Further, the restrictions imposed on the shape such as the size and thickness of the bonded body are remarkably relaxed as compared with the conventional thermocompression bonding material, and the application to a large magnetic component such as a power transformer is sufficiently possible.

【0010】[0010]

【実施例】【Example】

実施例1:厚さ25μmで10mm角のFe78Si9
13(原子%)非晶質合金薄帯を絶縁性の型に100枚積
層し、表1の条件下で大気雰囲気中で非晶質合金薄帯を
接合した。得られた接合体の断面を光学顕微鏡で観察し
たところ、図1に示すように積層界面に点在する接合部
で隣接薄帯が接合され、被接合部では薄帯表面に酸化物
皮膜の残存が観察された。これに対し、巻き回したトロ
イダル状コアとして使用される市販品は、図2に示すよ
うに積層界面に連続した酸化物層が観察された。
Example 1 Fe 78 Si 9 B having a thickness of 25 μm and 10 mm square
100 13 (atomic%) amorphous alloy ribbons were laminated on an insulating mold, and the amorphous alloy ribbons were bonded in the atmosphere under the conditions shown in Table 1. When the cross section of the obtained joined body was observed with an optical microscope, as shown in FIG. 1, adjacent thin strips were joined at the joints scattered at the lamination interface, and the oxide film remained on the thin ribbon surface at the joined portion. Was observed. On the other hand, in the commercial product used as the wound toroidal core, a continuous oxide layer was observed at the lamination interface as shown in FIG.

【0011】 [0011]

【0012】得られた接合体は、通常の取扱いにおいて
層間剥離することがなく、また各種X線回折,組織観察
及び熱分析結果から接合後も非晶質構造が維持されてい
ることが判った。これは、図1に示すように、非晶質合
金薄帯の積層界面が消失した部分で局部的な溶融・接合
が行われ、この接合部が積層界面に点在することによ
り、隣接する薄帯相互が強固に接合されていることによ
る。また、接合部においても、急激な加熱・冷却の過程
を経るため、非晶質構造が維持されていた。本発明の接
合体は、このように市販品の断面組織(図2)と大きく
異なった断面組織をもっている。この断面構造から明ら
かなように、薄帯間の空隙部が大幅に減少しており、高
密度接合体であることが判る。実際、測定した結果で
は、接合体の相対密度は97%であった。しかも、接合
部以外の積層界面では、接合による電気抵抗の減少が極
く僅かであり、高周波特性に優れていることも図1の断
面組織から理解できる。
The obtained bonded body did not undergo delamination during normal handling, and it was found from various X-ray diffraction, structure observation and thermal analysis results that the amorphous structure was maintained after bonding. . This is because, as shown in FIG. 1, local melting / bonding is performed at a portion where the lamination interface of the amorphous alloy ribbon disappears, and the bonding portions are scattered at the lamination interface, so that adjacent thin films are formed. This is because the bands are firmly joined together. Further, even in the bonded portion, an amorphous structure was maintained because a rapid heating / cooling process was performed. As described above, the bonded body of the present invention has a cross-sectional structure greatly different from the cross-sectional structure of the commercially available product (FIG. 2). As is clear from this cross-sectional structure, the voids between the ribbons are significantly reduced, and it can be seen that this is a high-density bonded body. In fact, the measured result showed that the relative density of the bonded body was 97%. Moreover, it can be understood from the cross-sectional structure in FIG. 1 that the electric resistance due to the bonding is extremely small at the laminated interface other than the bonded portion, and the high frequency characteristics are excellent.

【0013】接合体の断面をEPMAで面分析した結果
を図3に示す。二次電子線像(a)と酸素の特性X線像
(b)とを比較すると、界面が消失した部位の酸素濃度
分析結果から、接合部では非接合部に比較して酸素濃度
が明らかに減少していることが判る。すなわち、接合部
は、薄帯の表面酸化膜が除去された状態で隣接薄帯が相
互に接合されている。このような知見に基づき、本発明
積層体の断面構造を図4に模式的に表す。すなわち、隣
接薄帯が接合部を介して接合され、非接合部では酸化膜
を介して対向している。しかも、層間界面は、従来の積
層体に比較して非常に薄くなっている。その結果、密度
及び接合強度が高く、優れた磁気特性が呈せられるもの
と推察される。
FIG. 3 shows the result of surface analysis of the cross section of the joined body by EPMA. When the secondary electron beam image (a) and the characteristic X-ray image of oxygen (b) are compared, the oxygen concentration analysis result at the site where the interface disappears reveals that the oxygen concentration at the joint is higher than that at the non-joint. You can see that it is decreasing. That is, in the bonding portion, the adjacent ribbons are bonded to each other with the surface oxide film of the ribbons removed. Based on such knowledge, the cross-sectional structure of the laminate of the present invention is schematically shown in FIG. That is, the adjacent ribbons are joined via the joining portion and face each other via the oxide film in the non-joining portion. Moreover, the interface between layers is very thin as compared with the conventional laminate. As a result, it is presumed that the density and the bonding strength are high and the excellent magnetic properties are exhibited.

【0014】実施例2:厚さ25μm,10mm角のF
78Si913(原子%)非晶質合金薄帯及びCo66
4 Ni1 Si1415(原子%)非晶質合金薄帯を実施
例1と同じ条件下で接合した。積層枚数を変化させ、積
層体の厚みが相対密度に及ぼす影響を調査した。調査結
果を示す図5にみられるように、接合体が厚くなっても
相対密度の減少はほとんど見られなかった。また、厚み
の増大に拘らず、図1に示した断面構造をもつ組織が維
持された。なお、本実施例では、最大厚み100mmま
での接合体を作製し、高い相対密度をもつ非晶質合金接
合体が製造されることを確認した。
Example 2: 10 μm square F with a thickness of 25 μm
e 78 Si 9 B 13 (atomic%) amorphous alloy ribbon and Co 66 F
An e 4 Ni 1 Si 14 B 15 (atomic%) amorphous alloy ribbon was bonded under the same conditions as in Example 1. The influence of the thickness of the laminated body on the relative density was investigated by changing the number of laminated layers. As shown in FIG. 5, which shows the investigation results, the relative density was hardly reduced even when the bonded body was thickened. Further, the structure having the cross-sectional structure shown in FIG. 1 was maintained regardless of the increase in thickness. In this example, a joined body having a maximum thickness of 100 mm was produced, and it was confirmed that an amorphous alloy joined body having a high relative density was produced.

【0015】実施例3:厚さ25μmのFe78Si9
13(原子%)非晶質合金薄帯及びCo66Fe4Ni1
1415(原子%)非晶質合金の薄帯を、外径20m
m,内径12mmのリング状に加工して積層し、実施例
1と同じ条件下で接合した。得られた接合体について、
保磁力,飽和磁束密度等の直流軸特性を調査した。調査
結果を接合体の厚みとの関係で整理したところ、それぞ
れ図6及び図7に示すように厚さに拘らず一定の保磁力
及び飽和磁束密度をもっていた。このことから、得られ
た接合体は、極めて良好な直流磁気特性を持っているこ
とが判る。なお、図6,図7における比較材は、市販品
の巻回し材を示す。また、接合体の厚みと単位体積当り
の鉄損との関係を調査したところ、図8に示すように厚
みが増加しても鉄損の増大がほとんど見られなかった。
すなわち、本実施例の接合体は、接合による電気抵抗の
減少が極く僅かに抑えられ、高密度化による効果が発現
されることから、優れた高周波磁気特性を示すことが判
る。図8の比較材も、市販品の巻回し材を示す。
Example 3: Fe 78 Si 9 B having a thickness of 25 μm
13 (atomic%) amorphous alloy ribbon and Co 66 Fe 4 Ni 1 S
i 14 B 15 (atomic%) Amorphous alloy ribbon with an outer diameter of 20 m
m and an inner diameter of 12 mm were processed and laminated, and joined under the same conditions as in Example 1. Regarding the obtained joined body,
The DC axis characteristics such as coercive force and saturation magnetic flux density were investigated. When the investigation results were arranged in relation to the thickness of the bonded body, they had a constant coercive force and a saturated magnetic flux density regardless of the thickness as shown in FIGS. 6 and 7, respectively. From this, it is understood that the obtained joined body has extremely good direct current magnetic characteristics. The comparative materials in FIGS. 6 and 7 are commercially available rolled materials. Further, when the relationship between the thickness of the joined body and the iron loss per unit volume was investigated, as shown in FIG. 8, almost no increase in iron loss was observed even if the thickness was increased.
That is, it can be seen that the joined body of the present example exhibits excellent high-frequency magnetic characteristics because the decrease in electric resistance due to joining is suppressed to a very small extent and the effect due to high density is exhibited. The comparative material of FIG. 8 also shows a commercially available rolled material.

【0016】実施例4:厚さ25μm,幅5mm,長さ
50mmのFe78Si913(原子%)非晶質合金薄帯
を、実施例1と同じ条件下で接合した。得られた接合体
を引張り試験に供し、積層面に平行な方向及び積層面に
直交する方向に沿った引張り強さを調査した。各方向の
引張り強さを接合体の厚みで整理したところ、図9に示
す関係が得られた。図9にみられるように、積層方向と
平行に接合体を引っ張ったとき、出発材料の非晶質合金
薄帯とほぼ同等の強度が得られた。この引張り強さは、
接合体の厚みが増してもほとんど変化することはなかっ
た。他方、積層方向に直交する方向の引張り強さは、お
よそ30〜50MPaであり、接合体の厚み増加に従っ
て僅かに減少する傾向を示した。しかし、積層面に直交
する方向の引張り強さは、従来の熱圧接材の引張り強さ
に比較すると格段に高いものであり、機械的強度に優れ
た接合体といえる。
Example 4 Fe 78 Si 9 B 13 (atomic%) amorphous alloy ribbons having a thickness of 25 μm, a width of 5 mm and a length of 50 mm were bonded under the same conditions as in Example 1. The obtained joined body was subjected to a tensile test, and the tensile strength was investigated along the direction parallel to the laminated surface and the direction orthogonal to the laminated surface. When the tensile strength in each direction was arranged by the thickness of the joined body, the relationship shown in FIG. 9 was obtained. As shown in FIG. 9, when the bonded body was pulled in parallel with the laminating direction, the strength substantially equal to that of the amorphous alloy ribbon as the starting material was obtained. This tensile strength is
Even if the thickness of the bonded body was increased, there was almost no change. On the other hand, the tensile strength in the direction orthogonal to the stacking direction was about 30 to 50 MPa, and it tended to slightly decrease as the thickness of the joined body increased. However, the tensile strength in the direction orthogonal to the laminated surface is significantly higher than the tensile strength of the conventional thermocompression bonding material, and it can be said that the bonded body has excellent mechanical strength.

【0017】実施例5:厚さ15μmのFe73.5Si
13.59 Cu1 Nb3 (原子%)非晶質合金薄帯を、外
径10mm,内径6mmのリング状に加工し積層したも
のを、実施例1と同じ条件下で接合し、種々の厚さの接
合体を得た。各接合体に550℃×1時間の熱処理を真
空中で施し、粒径10nm程度の微結晶を析出させた。
熱処理後の接合体について鉄損を調査し、接合体厚さと
単位体積当りの鉄損との関係を求めた。調査結果を、従
来品である巻回し材を比較材として図10に示す。図1
0にみられるように、本実施例の接合体は、厚みが増大
しても鉄損の増大がほとんどなく、何れの厚みにおいて
も比較材よりも優れた特性を示した。このことから、本
実施例の接合体は、従来法で製造された材料に比較して
高周波磁気特性に優れた材料であることが確認された。
Example 5: Fe 73.5 Si with a thickness of 15 μm
A 13.5 B 9 Cu 1 Nb 3 (atomic%) amorphous alloy ribbon was processed into a ring shape with an outer diameter of 10 mm and an inner diameter of 6 mm and laminated, and joined under the same conditions as in Example 1 to obtain various thicknesses. I got a joint of Sano. Each joined body was subjected to heat treatment at 550 ° C. for 1 hour in vacuum to precipitate fine crystals having a grain size of about 10 nm.
The iron loss of the joined body after heat treatment was investigated, and the relationship between the joined body thickness and the iron loss per unit volume was obtained. The results of the investigation are shown in FIG. 10 using the conventional rolled material as a comparative material. FIG.
As can be seen in No. 0, the joined body of the present example showed almost no increase in iron loss even if the thickness was increased, and exhibited superior characteristics to the comparative material at any thickness. From this, it was confirmed that the joined body of the present example is a material excellent in high frequency magnetic characteristics as compared with the material manufactured by the conventional method.

【0018】[0018]

【発明の効果】以上に説明したように、本発明の非晶質
合金薄帯接合体は、積層面に点在する接合部を介して隣
接薄帯が相互に接合され、接合部以外の積層界面には酸
化膜が残存する構造になっていることから、高密度で接
合強度も高く、非晶質合金本来の優れた磁気特性等も維
持される。したがって、電子部品としてのコア,ノイズ
フィルター,チョークコイル等の電子部品や電力用トラ
ンスに高機能材料として使用される。また、高耐食性,
高強度,意匠性部品等としても、広範囲な分野で使用さ
れる。
As described above, in the amorphous alloy ribbon bonded body of the present invention, the adjacent ribbons are bonded to each other through the bonding portions scattered on the laminated surface, and the laminated portions other than the bonding portion are laminated. Since the structure has an oxide film remaining at the interface, it has a high density and a high bonding strength, and the original excellent magnetic characteristics of the amorphous alloy are maintained. Therefore, it is used as a high-performance material for electronic parts such as cores, noise filters, choke coils, etc. as electronic parts and power transformers. Also, high corrosion resistance,
It is used in a wide range of fields as high-strength and designable parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られた接合体の断面光学顕微鏡
写真
FIG. 1 is a cross-sectional optical micrograph of the joined body obtained in Example 1.

【図2】 市販品である巻回し材の断面光学顕微鏡写真[Fig. 2] Cross-sectional optical micrograph of a commercially available rolled material.

【図3】 実施例1で得られた接合体のEPMAによる
接合界面の分析結果を示す二次電子線像(a)及び酸素
の特性X線像(b)
FIG. 3 shows a secondary electron beam image (a) and a characteristic X-ray image of oxygen (b) showing an analysis result of a bonding interface of the bonded body obtained in Example 1 by EPMA.

【図4】 実施例1で得られた接合体の断面組織の模式
FIG. 4 is a schematic diagram of a cross-sectional structure of the joined body obtained in Example 1.

【図5】 実施例2で得られた接合体の厚みと相対密度
との関係
FIG. 5: Relationship between thickness and relative density of the joined body obtained in Example 2

【図6】 実施例3で得られた接合体の厚みと直流での
保磁力の関係
FIG. 6 shows the relationship between the thickness of the bonded body obtained in Example 3 and the coercive force at direct current.

【図7】 実施例3で得られた接合体の厚みと直流での
飽和磁束密度との関係
FIG. 7 shows the relationship between the thickness of the joined body obtained in Example 3 and the saturation magnetic flux density at direct current.

【図8】 実施例3で得られた接合体の厚みと単位体積
当りの鉄損との関係
FIG. 8 shows the relationship between the thickness of the joined body obtained in Example 3 and the iron loss per unit volume.

【図9】 実施例4で得られた接合体の厚みと引張り強
さとの関係
FIG. 9: Relationship between thickness and tensile strength of the joined body obtained in Example 4

【図10】 実施例5で得られた接合体の厚みと単位体
積当りの鉄損との関係
FIG. 10 shows the relationship between the thickness of the joined body obtained in Example 5 and the iron loss per unit volume.

フロントページの続き (72)発明者 田中 庸介 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 (72)発明者 田中 康司 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 (72)発明者 松本 亜矢子 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内Front Page Continuation (72) Inventor Yosuke Tanaka 7-1 Takaya Shinmachi, Ichikawa City, Chiba Nisshin Steel Co., Ltd. (72) Inventor Koji Tanaka 7-1 Takaya Shinmachi, Ichikawa City, Chiba Nisshin Steel Co., Ltd. Company Technical Research Center (72) Inventor Ayako Matsumoto 7-1 Takaya Shinmachi, Ichikawa City, Chiba Nisshin Steel Co., Ltd. Technical Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の非晶質合金薄帯が積層され、積層
界面に点在する溶融部を介して隣接する非晶質合金薄帯
が相互に接合されており、非接合部の積層界面には酸化
膜が残存している非晶質合金接合体。
1. A plurality of amorphous alloy ribbons are laminated, and adjacent amorphous alloy ribbons are joined to each other through a melted portion scattered on the laminated interface, and a laminated interface of a non-joined portion is formed. An amorphous alloy bonded body in which an oxide film remains.
【請求項2】 請求項1記載の接合体を熱処理すること
により微結晶を析出させた微結晶質合金接合体。
2. A microcrystalline alloy joined body in which fine crystals are precipitated by heat-treating the joined body according to claim 1.
JP29734295A 1995-01-17 1995-10-20 High density amorphous alloy junction body and cystallite alloy junction body Withdrawn JPH09108852A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29734295A JPH09108852A (en) 1995-10-20 1995-10-20 High density amorphous alloy junction body and cystallite alloy junction body
DE1996600232 DE69600232T2 (en) 1995-01-17 1996-01-16 Sintered body with high density made of an amorphous alloy with high strength and magnetic properties and connection method for its production
EP96100557A EP0723031B1 (en) 1995-01-17 1996-01-16 High-density bulky body of amorphous alloy excellent in strength and magnetic property and joining method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29734295A JPH09108852A (en) 1995-10-20 1995-10-20 High density amorphous alloy junction body and cystallite alloy junction body

Publications (1)

Publication Number Publication Date
JPH09108852A true JPH09108852A (en) 1997-04-28

Family

ID=17845282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29734295A Withdrawn JPH09108852A (en) 1995-01-17 1995-10-20 High density amorphous alloy junction body and cystallite alloy junction body

Country Status (1)

Country Link
JP (1) JPH09108852A (en)

Similar Documents

Publication Publication Date Title
JP3822440B2 (en) Method for processing brittle thin metal strips and magnetic components comprising nanocrystalline alloy strips
US5830585A (en) Article made by joining two members together, and a brazing filler metal
US4025379A (en) Method of making laminated magnetic material
WO1996012336A1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
JP2018049921A (en) Layered magnetic core and method of producing the same
JPS598050B2 (en) Laminated magnetic material and laminated structure using the same
JPS6236862B2 (en)
JPH09108852A (en) High density amorphous alloy junction body and cystallite alloy junction body
EP0723031B1 (en) High-density bulky body of amorphous alloy excellent in strength and magnetic property and joining method for manufacturing thereof
JP3267565B2 (en) Method for producing metal sheet having fine composite structure by multi-layer hot rolling bonding of multiple materials
JP2721165B2 (en) Magnetic core for choke coil
JP2001332411A (en) Composite magnetic material
JPS6142114A (en) Method of fixing end portion of laminated amorphous magnetic alloy thin belt
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH08215861A (en) Joining method for amorphous alloy thin strip
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
TW202237394A (en) Laminate and method for manufacturing same
JPH03231412A (en) Manufacture of thin-film laminated core
US11763978B2 (en) Coil component
JPH06101403B2 (en) Magnetic core and manufacturing method thereof
JPS62189613A (en) Magnetic head and its production
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP4142770B2 (en) NbTi superconducting multilayer rolled plate and method for producing the same
JPH0530285B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107