JPS6236323B2 - - Google Patents

Info

Publication number
JPS6236323B2
JPS6236323B2 JP1122282A JP1122282A JPS6236323B2 JP S6236323 B2 JPS6236323 B2 JP S6236323B2 JP 1122282 A JP1122282 A JP 1122282A JP 1122282 A JP1122282 A JP 1122282A JP S6236323 B2 JPS6236323 B2 JP S6236323B2
Authority
JP
Japan
Prior art keywords
nanbo
oriented
ultra
ceramic
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1122282A
Other languages
Japanese (ja)
Other versions
JPS58165208A (en
Inventor
Yasuyoshi Torii
Tadashi Sekya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57011222A priority Critical patent/JPS58165208A/en
Publication of JPS58165208A publication Critical patent/JPS58165208A/en
Publication of JPS6236323B2 publication Critical patent/JPS6236323B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は配向性NaNbO3成膜の製造法に関する
ものである。NaNbO3は高誘電率を示すBaTiO3
同様のペロブスカイト型構造をとり、更に強誘電
性を示すので、誘電圧電材料として有望な素材と
なつている。一般にセラミツクス焼結体は微結晶
の集合体であり、粒界が存在し、各微結晶の結晶
軸はランダムに配列しているために、その物性は
各結晶軸の平均値を示す。酸化物誘電材料では、
結晶配向化することによつて誘電率や圧電性が大
きくなつたりまた結晶粒界の減少によつて機械的
強度が増すことが知られている。セラミツクス材
料の結晶配向化技術は工業的な観点からも最近の
重要な課題となつている。セラミツクス焼結材料
の電磁的性質に異方性をもたらす手段として、 () 磁場中での成形 () トポタキシヤル効果の利用 () ホツトプレスによる熱間加工 などがあるが、()の方法は材料が強磁性体が
フエリ磁性体である必要があり、()では出発
物質の一部が顕著な形状異方性を持つものでなけ
ればならない。また()の方法は高温で加圧す
るので、量産に適さない欠点があり、更にセラミ
ツク薄膜を作ることは困難である。その点本発明
は従来の方法とは全く異なつており誘電率などの
電気的性質を有効的にならしめるための配向性
NaNbO3成膜法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing oriented NaNbO 3 films. NaNbO 3 has a perovskite structure similar to BaTiO 3 which exhibits a high dielectric constant, and also exhibits ferroelectricity, making it a promising material as a dielectric voltage material. Generally, a ceramic sintered body is an aggregate of microcrystals, grain boundaries exist, and the crystal axes of each microcrystal are arranged randomly, so that its physical properties indicate the average value of each crystal axis. In oxide dielectric materials,
It is known that crystal orientation increases dielectric constant and piezoelectricity, and mechanical strength increases by reducing crystal grain boundaries. Crystal orientation technology for ceramic materials has recently become an important issue from an industrial perspective. Methods for bringing anisotropy to the electromagnetic properties of sintered ceramic materials include () forming in a magnetic field, () utilizing the topaxial effect, and () hot working by hot pressing. The magnetic material must be a ferrimagnetic material, and in (), a part of the starting material must have significant shape anisotropy. Furthermore, since the method () requires pressurization at high temperatures, it has the disadvantage that it is not suitable for mass production, and furthermore, it is difficult to produce ceramic thin films. In this respect, the present invention is completely different from conventional methods.
This is a NaNbO 3 film formation method.

本発明の配向性NaNbO3成膜法はNaNbO3ある
いはそれに酸化ホウ素、ホウ砂、ケイ酸ナトリウ
ムなどのような融剤を若干量加えたものを白金ノ
ズル中で1300〜1700℃の温度で完全に溶融し、第
1図に示すようなゴムローラーで狭まれた2枚の
急冷板でその融体を圧延及び超急冷することによ
つて、リボン状の配向したニオブ酸ナトリウム膜
を得るものである。セラミツクス融体からの急冷
処理は、材料組成などの条件に依存するが、その
ままガラス化するか、あるいは結晶相を析出した
りするかのどちらかである。結晶化する場合でも
配向化することはまずない。本発明による結晶配
向以現象はセラミツクス融液の超急冷過程におい
て一方向凝固が行われていることに関係している
と思われる。すなわち2枚の金属急冷板に接する
成膜の表面部分はその中央部分より急冷効果が大
きく、そのために膜厚方向に温度勾配が生じ、一
方向凝固が可能となつたからである。その結果と
して成膜の垂直方向に結晶配向化すると推察され
る。
The oriented NaNbO 3 film formation method of the present invention is to completely process NaNbO 3 or a mixture of NaNbO 3 to which a small amount of a fluxing agent such as boron oxide, borax, sodium silicate, etc. is added in a platinum nozzle at a temperature of 1300 to 1700°C. A ribbon-shaped oriented sodium niobate film is obtained by melting, rolling and ultra-quenching the melt between two quenching plates sandwiched between rubber rollers as shown in Figure 1. . The rapid cooling treatment from a ceramic melt depends on conditions such as material composition, but it either vitrifies it as it is or precipitates a crystalline phase. Even if it crystallizes, it is unlikely to become oriented. The phenomenon of crystal orientation according to the present invention is thought to be related to the fact that unidirectional solidification occurs during the ultra-rapid cooling process of the ceramic melt. That is, the surface portion of the formed film in contact with the two metal quenching plates had a greater quenching effect than the central portion, which created a temperature gradient in the film thickness direction, making unidirectional solidification possible. As a result, it is presumed that crystal orientation occurs in the direction perpendicular to the film formation.

実施例として酸化ホウ素を4モル%添加した
NaNbO3粉末を白金ノズル中に1500℃、20分溶融
した後、2枚の急冷板で圧延しつつ超急冷するこ
とによつて均一性のよい配向性NaNbO3セラミツ
クス膜を得ることが出来た。無配向のNaNbO3
成粉末と配向化したNaNbO3超急冷膜を比較する
ために、それらのX線回折パターンを第2図及び
第3図に示す。第2図は固相反応によつて得た
NaNbO3結晶粉末で、ペロブスカイト型構造に特
徴的なX線回折パターンを示している。この結晶
は室温では斜方晶に歪み、大きな単位胞で指数付
けすることが出来るが、ここでは理解しやすいよ
うに通常の単位胞で表現した。第3図は配向化し
たNaNbO3の超急冷膜のX線回折パターンで、合
成粉末の場合と同じX線回折条件で自動記録した
ものである。第2図及び第3図は比較から
{00l}面に配向化したNaNbO3膜であることは明
らかである。
As an example, 4 mol% of boron oxide was added.
By melting NaNbO 3 powder in a platinum nozzle at 1500°C for 20 minutes and then ultra-quenching it while rolling it with two quenching plates, we were able to obtain an oriented NaNbO 3 ceramic film with good uniformity. In order to compare the non-oriented NaNbO 3 synthetic powder and the oriented NaNbO 3 ultra-quenched film, their X-ray diffraction patterns are shown in FIGS. 2 and 3. Figure 2 was obtained by solid phase reaction.
It is a NaNbO 3 crystal powder and shows an X-ray diffraction pattern characteristic of a perovskite structure. This crystal is distorted into an orthorhombic crystal at room temperature and can be indexed using a large unit cell, but here we have expressed it using an ordinary unit cell for ease of understanding. Figure 3 shows the X-ray diffraction pattern of an ultra-quenched oriented NaNbO 3 film, automatically recorded under the same X-ray diffraction conditions as for the synthetic powder. From comparison, it is clear that FIGS. 2 and 3 are NaNbO 3 films oriented in the {00l} plane.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した際に用いた超急冷装
置の概略図である。図中の各番号の説明はつぎの
通りである。 1……白金ノズル(外径8mm、内径6mm、長さ
100mm)、2……電気炉(炭化ケイ素発熱体)、3
……金属板(ステンレス製)、4……ゴムローラ
ー、5……ワイヤロープ、6……巻取機、7……
モーター(クラツチ・ブレーキ付)。 第2図は、NaNbO3粉末のX線回折パターン
で、配向性試料と比較のために示した。第3図は
本発明により得た配向性NaNbO3超急冷膜のX線
回折パターンである。なお第2図および第3図の
X線回折パターンは対陰極として銅を用いて自動
記録した。
FIG. 1 is a schematic diagram of an ultra-quenching apparatus used in carrying out the present invention. The explanation of each number in the figure is as follows. 1...Platinum nozzle (outer diameter 8 mm, inner diameter 6 mm, length
100mm), 2...Electric furnace (silicon carbide heating element), 3
... Metal plate (stainless steel), 4 ... Rubber roller, 5 ... Wire rope, 6 ... Winding machine, 7 ...
Motor (with clutch and brake). FIG. 2 is an X-ray diffraction pattern of NaNbO 3 powder, shown for comparison with an oriented sample. FIG. 3 is an X-ray diffraction pattern of the oriented NaNbO 3 ultra-quenched film obtained according to the present invention. The X-ray diffraction patterns shown in FIGS. 2 and 3 were automatically recorded using copper as an anticathode.

Claims (1)

【特許請求の範囲】[Claims] 1 ニオブ酸ナトリウム(NaNbO3)あるいはそ
れに融剤として酸化ホウ素、ホウ砂、リン酸ソー
ダ類、ケイ酸ナトリウムなどを若干量加えて、完
全に溶融し、そのセラミツク融液を2枚の金属急
冷板の間に落下させ、瞬間的に圧延しつつ超急冷
することを特徴とする薄膜状の配向性ニオブ酸ナ
トリウムセラミツクスの製造法。
1. Add a small amount of sodium niobate (NaNbO 3 ) or a flux such as boron oxide, borax, sodium phosphate, or sodium silicate to it, melt it completely, and pour the ceramic melt between two metal quench plates. A method for producing oriented sodium niobate ceramics in the form of a thin film, which is characterized by dropping the ceramic material onto a substrate, instantaneously rolling it, and ultra-quenching it.
JP57011222A 1982-01-27 1982-01-27 Method of producing orientation sodium niobate Granted JPS58165208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011222A JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011222A JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Publications (2)

Publication Number Publication Date
JPS58165208A JPS58165208A (en) 1983-09-30
JPS6236323B2 true JPS6236323B2 (en) 1987-08-06

Family

ID=11771929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011222A Granted JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Country Status (1)

Country Link
JP (1) JPS58165208A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692652B2 (en) * 2001-04-23 2004-02-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Grain oriented ceramics

Also Published As

Publication number Publication date
JPS58165208A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
KR100394348B1 (en) Process for producing piezoelectric ceramics
JP3985144B2 (en) Method for producing oxide ion conductive crystal
CN111533457A (en) Bi with continuous and tunable ferroelectric property2GeO5Ferroelectric glass ceramics and preparation method thereof
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
JPS6236323B2 (en)
JPH0476970A (en) Manufacture of piezoelectric element utilizing crystallization of spherulite from amorphous substance
JPS6251206B2 (en)
JPS6235993B2 (en)
JPS582289A (en) Manufacture of single crystal body
JPH01219014A (en) Production of dielectric material powder
CN109704584B (en) SrNb-containing steel6O16Phase titanate and niobate compounded glass ceramic with low dielectric loss and preparation method thereof
JPS593091A (en) Production of oxide single crystal
JPH0336798B2 (en)
JPH03257018A (en) Precursor for oxide high-temperature superconductor and its production
JPH01239026A (en) Production of oxide superconducting form
JPH01176608A (en) Manufacture of oxide superconductive linear body
JPS58192665A (en) Production of quenched thin metallic strip
Yin et al. Fabrication Processes for Functional Ceramics
CN116768623A (en) Potassium sodium niobate-based texture piezoelectric ceramic with temperature stability and preparation method thereof
RU2439004C2 (en) Glassceramic pyroelectric material and method of producing said material
JPS6084712A (en) Method of producing lead titanate pyroelectric element
JPH01103999A (en) Formation of single domain in ferroelectric single crystal
JPS6033216A (en) Manufacture of acicular calcined powdered body of lead titanate
JPH0453805B2 (en)
JPS5896844A (en) Very rapidly cooled shape memory ni-ti alloy