JPS58165208A - Method of producing orientation sodium niobate - Google Patents

Method of producing orientation sodium niobate

Info

Publication number
JPS58165208A
JPS58165208A JP57011222A JP1122282A JPS58165208A JP S58165208 A JPS58165208 A JP S58165208A JP 57011222 A JP57011222 A JP 57011222A JP 1122282 A JP1122282 A JP 1122282A JP S58165208 A JPS58165208 A JP S58165208A
Authority
JP
Japan
Prior art keywords
oriented
ultra
sodium niobate
film
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57011222A
Other languages
Japanese (ja)
Other versions
JPS6236323B2 (en
Inventor
鳥居 保良
忠 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57011222A priority Critical patent/JPS58165208A/en
Publication of JPS58165208A publication Critical patent/JPS58165208A/en
Publication of JPS6236323B2 publication Critical patent/JPS6236323B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は配向性NaNbO3成膜の製造法に関するもの
である。NaNbO3は高誘電率を示すBaTio3と
同様のペロブスカイト型構造をとり、更に強誘電性を示
すので、誘電圧電材料として有望な素材となっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing oriented NaNbO3 films. NaNbO3 has a perovskite structure similar to BaTio3, which exhibits a high dielectric constant, and also exhibits ferroelectricity, making it a promising material as a dielectric voltage material.

一般にセラミックス焼結体は微結晶の集合体であり、粒
界が存在し、各微結晶の結晶軸はランダムに配列してい
るために、その物性は各結晶軸の平均値を示す。酸化物
誘電材料では、結晶配向化することによって誘電率や圧
電性が大きくなったりまた結晶粒界の減少によって機械
的強度が増すことが知られている。セラミックス材料の
結晶配向化技術は工業的な観点からも最近の重要な課題
となっている。セラミックス焼結材料の電磁的性質に異
方性をもたらす手段として、(1)  磁場中での成形 (1)トポタキシャル効果の利用 (曹) ホットプレスによる熱間加工 などがあるが、(1)の方法は材料が強磁性体やフェリ
磁悸怖である必要があり、(1)では出発物質の一部が
顕著な形状異方性を持つものでなければならない。また
(曹)の方法は高温で加圧するので、量産に適さない欠
点があり、更にセラミック薄膜を作ることは困難である
。その点本発明は従来の方法とは全く異なっており誘電
率などの電気的性質を有効的にならしめるための配向性
NaN′bO3成膜法である。
Generally, a ceramic sintered body is an aggregate of microcrystals, grain boundaries exist, and the crystal axes of each microcrystal are arranged randomly, so that its physical properties indicate the average value of each crystal axis. It is known that in oxide dielectric materials, dielectric constant and piezoelectricity increase due to crystal orientation, and mechanical strength increases due to reduction of crystal grain boundaries. Crystal orientation technology for ceramic materials has recently become an important issue from an industrial perspective. Methods for bringing anisotropy to the electromagnetic properties of sintered ceramic materials include (1) forming in a magnetic field, (1) utilizing topotaxial effects (so), and hot processing by hot pressing. The method requires that the material be ferromagnetic or ferrimagnetic, and in (1), a part of the starting material must have significant shape anisotropy. Furthermore, since the method of (Cao) involves pressurization at high temperatures, it has the drawback of not being suitable for mass production, and furthermore, it is difficult to produce ceramic thin films. In this respect, the present invention is completely different from conventional methods, and is a method of forming an oriented NaN'bO3 film for effectively equalizing electrical properties such as dielectric constant.

本発明の配向性NaNbO3成膜法はNaNbO3ある
いはそれに酸化ホウ素、ホウ砂、ケイ酸ナトリウムなど
のような融剤を若干量加えたものを白金ノズル中で73
00〜7700°Cの温度で完全に溶融し、第1図に示
すようなゴムロー→−で狭まれた2枚の急冷板でその融
体を圧延及び超急冷することによって、リボン状の配向
したニオブ酸ナトリウム膜を得るものである。セラミッ
クス融体がらの急冷処理は、材料組成などの条件に依存
するが、そのままガラス化するか、あるいは結晶相を析
出したりするかのどちらかである。結晶化する場合でも
配向化することはまずない。本発明による結晶配向化現
象はセラミックス融液の超急冷過程において一方向凝固
が行われていることに関係していると思われる。すなわ
ち2枚の金属急冷板に接する成膜の表面部分畔その中心
部分より急冷効果が大きく、そのために膜厚方向に温度
勾配が・′1 生じ、一方向凝固が可能となったからである。その結果
として成膜の垂直力:、向に結晶配向化すると推察され
る。
In the oriented NaNbO3 film forming method of the present invention, NaNbO3 or a mixture containing a small amount of a fluxing agent such as boron oxide, borax, sodium silicate, etc. is deposited in a platinum nozzle at 73°C.
The melt is completely melted at a temperature of 00 to 7,700°C, and the molten material is rolled and super-quenched between two quenching plates sandwiched between rubber rows as shown in Figure 1, thereby forming an oriented ribbon. A sodium niobate film is obtained. The quenching treatment of a ceramic melt depends on conditions such as material composition, but it either vitrifies it as it is or precipitates a crystalline phase. Even if it crystallizes, it is unlikely to become oriented. It is thought that the crystal orientation phenomenon according to the present invention is related to the fact that unidirectional solidification is performed during the ultra-quenching process of the ceramic melt. That is, the quenching effect was greater on the surface portion of the film that was in contact with the two metal quench plates than on the central portion, and as a result, a temperature gradient of .'1 occurred in the film thickness direction, making unidirectional solidification possible. As a result, it is presumed that the crystal orientation occurs in the direction of the normal force of film formation.

実施例として酸化ホウ素をグモ)v%添加したNaNb
O3粉末全白金/ X iv中1/C/A;00”Cl
2O分溶融l廿升セヤツ枚の急冷板で圧延しつつ超急冷
することによって均一性のよい配向性NaNbO3セラ
ミックス膜を得ることが出来た。無配向のNaNbO3
合成粉末と配向化したNaNbO3超急冷膜を比較する
ために、それらのX線回折パターンを第2図及び第3図
に示す。第2図は固相反応によって得たNaNb03結
晶粉末で、ペロブスカイト型構造に特徴的なX線回折パ
ターンを示している。
As an example, NaNb with v% of boron oxide added
O3 powder total platinum/X iv in 1/C/A; 00”Cl
An oriented NaNbO3 ceramic film with good uniformity could be obtained by ultra-quenching while rolling with a quenching plate with a thickness of 200 mol/l. Unoriented NaNbO3
In order to compare the synthesized powder and the oriented NaNbO3 ultra-quenched film, their X-ray diffraction patterns are shown in FIGS. 2 and 3. Figure 2 shows NaNb03 crystal powder obtained by solid-phase reaction, showing an X-ray diffraction pattern characteristic of a perovskite structure.

この結晶は室温では斜方晶に歪み、大きな単位胞で指数
付けすることが出来るが、ここでは理解しやすいように
通常の単位胞で表現した。第3図は配向化したNaNb
O3の超急冷膜のX線回折パターンで、合成粉末の場合
と同じX線回折条件で自動記録したものである。第2図
及び第3図の比較から(001)面に配向化したN a
 Nb O3膜であるこ、1111゜ とは明らかで□・ある。
This crystal is distorted into an orthorhombic crystal at room temperature and can be indexed using a large unit cell, but here we have expressed it using an ordinary unit cell for ease of understanding. Figure 3 shows oriented NaNb
This is an X-ray diffraction pattern of an ultra-quenched film of O3, automatically recorded under the same X-ray diffraction conditions as for the synthetic powder. From the comparison between Figures 2 and 3, Na oriented in the (001) plane
Since it is a NbO3 film, it is clear that the angle is 1111°.

グ 図面の簡、、単な説明 ′1.1 第7図は超急冷膜を作製した装置の概略図であ′ る。Simple explanation of the drawing '1.1 FIG. 7 is a schematic diagram of an apparatus for producing an ultra-quenched film.

第2図はNaN1)03粉末のX線回折パターンで、配
向性試料と比較のために示した。第3図は本発明により
得た配向性NaNbO3超急冷膜のX線回折パターンで
ある。
FIG. 2 is an X-ray diffraction pattern of NaN1)03 powder, shown for comparison with an oriented sample. FIG. 3 is an X-ray diffraction pattern of an oriented NaNbO3 ultra-quenched film obtained according to the present invention.

特許出願人工業技術院長  石板im−図面の浄書(内
容に変更なし) 手続補正書(試) 57名技特第 gO号 昭和57年6月10日 特許庁長官 島田春樹 殿   11[n57年6月1
48 差出/ 事件の表示 昭和!7年特許願第1/22.2号 λ 発明の名称 事件との関係  特許出願人 住所(〒700)東京都千代田区霞が関/丁目3番/号
コウギョウギジュツインチョウ イシヂカ  セイイチ
氏名(//41)工業技術院長 石板 誠−グ 指定代
理人 昭和57年S月78−1 乙 補正の対象 (1)明細書の図面の簡単な説明の欄 (2)図面7 
補正の内容           ■(1)明m書の(
4、図面の簡単な説明の欄の全文を別紙のとおり補正し
ます。
Patent applicant Director of the Agency of Industrial Science and Technology Stone tablet im - Engraving of drawings (no change in content) Procedural amendment (trial) 57 Special Technical Special No. gO June 10, 1980 Commissioner of the Japan Patent Office Haruki Shimada 11 [n June 1957 1
48 Submission/Display of the incident Showa! 7 Year Patent Application No. 1/22.2λ Name of Invention Relationship with Case Patent Applicant Address (〒700) 3-chome/Kasumigaseki, Chiyoda-ku, Tokyo/No. Kogyogijutsuincho Ishijika Seiichi Name (//41) Kogyo Director of the Agency of Technology Seigu Ishiban Designated Agent Sep 1980 78-1 B Subject of amendment (1) Brief description of drawings in the specification (2) Drawing 7
Contents of amendment ■(1) Memorandum (
4. Correct the entire text in the brief description column of the drawing as shown in the attached sheet.

(2)明細書(図面)の浄書(内容に変更なし)第1図
は本発明を実施した際に用いた超急冷装置の概略図であ
る。図中の各番号の説明はつぎの通りである。
(2) Reproduction of the specification (drawings) (no changes to the contents) FIG. 1 is a schematic diagram of the ultra-quenching apparatus used in carrying out the present invention. The explanation of each number in the figure is as follows.

/・・・・・白金ノズル(外径g yxm、内径4朋、
長さ10011) 2・・・・・・電気炉(炭化ケイ素発熱体)3・・・・
・・金属板(ステンレス製)グ・・・・・・ゴムローラ
ー S・・・・・ワイヤロープ 乙・・・・・・巻取機 配向性試料と比較のために示した。
/・・・・・・Platinum nozzle (outer diameter g y x m, inner diameter 4 mm,
Length 10011) 2... Electric furnace (silicon carbide heating element) 3...
...Metal plate (stainless steel) G...Rubber roller S...Wire rope B...Rewinder orientation sample shown for comparison.

111: 第3図は本発明により得た配向性Na、NbO3超急″
1N(DXliA@J’!4.Ap −=yT:あ6・
秒第2図nび第3図のx i”曲折パターンは対陰極と
して銅を用いて自動記録した。
111: Figure 3 shows the oriented Na, NbO3 ultra-steeply obtained according to the present invention.
1N(DXliA@J'!4.Ap -=yT:A6・
The x i'' bending patterns in Figures 2 and 3 were automatically recorded using copper as the anticathode.

Claims (1)

【特許請求の範囲】[Claims] ニオブ酸ナトリウム(Nal’JbO3)あるいはそれ
に融剤として酸化ホウ素、ホウ砂、リン酸ソーダ類、ケ
イ酸ナトリウムなどを若士量加えて、完全に溶融し、そ
のセラミック融液を2枚の金属急冷板の間に落下させ、
瞬間的に圧、延しつつ超急冷することを特徴とする薄膜
状の配向性ニオブ酸す) IJウムセラミックスの製造
法。
Add a small amount of sodium niobate (Nal'JbO3) or a fluxing agent such as boron oxide, borax, sodium phosphate, or sodium silicate to it, melt it completely, and quench the ceramic melt between two metal sheets. drop it between the boards,
A method for producing oriented niobium ceramics in the form of a thin film, which is characterized by instantaneous rolling and ultra-quenching.
JP57011222A 1982-01-27 1982-01-27 Method of producing orientation sodium niobate Granted JPS58165208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011222A JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011222A JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Publications (2)

Publication Number Publication Date
JPS58165208A true JPS58165208A (en) 1983-09-30
JPS6236323B2 JPS6236323B2 (en) 1987-08-06

Family

ID=11771929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011222A Granted JPS58165208A (en) 1982-01-27 1982-01-27 Method of producing orientation sodium niobate

Country Status (1)

Country Link
JP (1) JPS58165208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143781A (en) * 2001-04-23 2008-06-26 Toyota Central R&D Labs Inc Grain oriented ceramic and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143781A (en) * 2001-04-23 2008-06-26 Toyota Central R&D Labs Inc Grain oriented ceramic and production process thereof

Also Published As

Publication number Publication date
JPS6236323B2 (en) 1987-08-06

Similar Documents

Publication Publication Date Title
Zhang et al. Phase diagram and electrostrictive properties of Bi0. 5Na0. 5TiO3–BaTiO3–K0. 5Na0. 5NbO3 ceramics
Ren et al. BaTiO 3/CoFe 2 O 4 particulate composites with large high frequency magnetoelectric response
Sabolsky et al. Textured-Ba (Zr, Ti) O 3 piezoelectric ceramics fabricated by templated grain growth (TGG)
Bai et al. Grain-orientated lead-free BNT-based piezoceramics with giant electrostrictive effect
JP5766870B2 (en) Indium cylindrical sputtering target and method for manufacturing the same
CN111188086A (en) Preparation method of ultrahigh-conductivity multilayer single crystal laminated copper material and copper material
Zeng et al. Plate‐like Na0. 5Bi0. 5TiO3 template synthesized by a topochemical method
TW574377B (en) Sintered tungsten target for sputtering and method for preparation thereof
JPS58165208A (en) Method of producing orientation sodium niobate
Shi et al. Achievement of high electric performances for bismuth titanate-based piezoceramics via hot press sintering
Gautam et al. Fabrication methods of lead titanate glass ceramics and dielectric characteristics: a review
CN114560698B (en) Method for enhancing performance of calcium bismuth niobate high-temperature piezoelectric ceramic by inducing texture through oxide sintering aid
Du et al. Highly< 001>-textured BaTiO3 ceramics with high piezoelectric performance prepared by vat photopolymerization
Li et al. Phase Structures and Piezoelectric Properties of (K, Na, Li)(Nb, Sb) O 3-(Bi, Ag) ZrO 3 Lead-Free Ceramics
JPS58161924A (en) Manufacture of transparent thin strip of crystalline oriented lanthanum niobate
JP2646058B2 (en) Sputter target material and method for producing the same
An et al. Piezoelectric properties of Ca-modified Pb0. 6Bi0. 4 (Ti0. 75Zn0. 15Fe0. 10) O3 ceramics
Duan et al. Growth and electrical properties of Pb (In0. 5Nb0. 5) O3–PbTiO3 crystals by the solution Bridgman method
Hussin et al. Structural and electrical properties of Bi0. 5Na0. 5TiO3 templates produced by topochemical microcrystal conversion method
JPS62277780A (en) Manufacture of piezoelectric ceramic body
JP2817181B2 (en) Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density
JPS6291458A (en) Manufacture of piezoelectric ceramics
Chen et al. Thick Nb‐Doped Bismuth Titanate Film with Controllable Grain Orientation
JPS582289A (en) Manufacture of single crystal body
JPH0769722A (en) Production of piezoelectric material for actuator