JPS5896844A - Very rapidly cooled shape memory ni-ti alloy - Google Patents

Very rapidly cooled shape memory ni-ti alloy

Info

Publication number
JPS5896844A
JPS5896844A JP19448281A JP19448281A JPS5896844A JP S5896844 A JPS5896844 A JP S5896844A JP 19448281 A JP19448281 A JP 19448281A JP 19448281 A JP19448281 A JP 19448281A JP S5896844 A JPS5896844 A JP S5896844A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
thickness
ultra
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19448281A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 廣田
Mitsuo Satomi
三男 里見
Harufumi Sakino
先納 治文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19448281A priority Critical patent/JPS5896844A/en
Publication of JPS5896844A publication Critical patent/JPS5896844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a homogeneous shape memory alloy having a very small thickness and superior mechanical characteristics by spouting a molten Ni- Ti alloy in an inert gas toward the surface of a metallic roll rotating at a high speed. CONSTITUTION:A molten alloy consisting of 50 atomic% Ni and 50 atomic% Ti is melted in inert gaseous Ar and pelletized. The pelletized mother alloy is put in a quartz pipe 1-1 and melted by heating with an electric furnace 1-3 to prepare a molten metal 1-2. By rapidly introducing gaseous Ar into the pipe 1-1 from one end 1-7, the molten metal 1-2 is spouted from the slit of the other end of the pipe 1-1 toward the surface of a metallic roll 1-4 rotating at a high speed to obtain a metallic thin strip 1-6 having <=100mum thickness and about 50mum average thickness by very rapid cooling. The thin strip alloy 1-6 has [110] axes oriented in the longitudinal direction and [100] axes oriented in the vertical direction. A circular hole may be used in place of the slit to obtain a linear alloy having <=100mum diameter.

Description

【発明の詳細な説明】 本発明は、従来から加工が困難であったNi−Ti系形
状記憶合金に対して、新規なNi−Ti系形状記憶合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new Ni-Ti-based shape memory alloy, which has conventionally been difficult to process.

従来のNi−Ti系形状記憶合金は、所定の組成を持っ
ている母体の合金を、真空中、不活性ガス中又は通常の
大気中で溶解し、鋳込むことによって作成し、500℃
〜600℃の高温度で焼鈍したのち、冷間圧延するもの
である。この焼鈍と冷間圧延作業を繰返しながら、板材
又は線引加工などによって線材を製造する。この方法は
、製品に対して加工賃が極めて高価になる。得られる板
材は、組成にもよるが、粗雑な加工性の、ものであって
、その厚さは1lII11であり、線材の場合はその直
径は1■となる。この数字は厚さ又は直径の可能な最小
限を示す数値であって、その数値の大きさのために使用
する範囲が限定される。
Conventional Ni-Ti-based shape memory alloys are made by melting and casting a base alloy with a predetermined composition in vacuum, inert gas, or normal air, and then heating the alloy at 500°C.
After annealing at a high temperature of ~600°C, it is cold rolled. While repeating this annealing and cold rolling operation, a wire rod is manufactured by plate material or wire drawing processing. This method requires extremely high processing costs for the product. The obtained plate material has rough workability, depending on the composition, and its thickness is 1lII11, and in the case of a wire material, its diameter is 1cm. This number indicates the minimum possible thickness or diameter, and the range of use is limited due to the size of this number.

本発明は、Ni−Ti系形状記憶合金の作成において、
超急冷法により製品の大巾なコストの引下げと、量産性
の向上゛をはかり、出来るだけ薄く、細く、しかも機械
的特性のすぐれた均質の金属薄帯と、線状の記憶合金を
作成することを目的とするものである。本発明の超急冷
法によれば、厚さが100μm以下の薄帯および直径が
100μm以下の線状のものが作成できる。
In the production of a Ni-Ti-based shape memory alloy, the present invention provides the following steps:
By using the ultra-quenching method, we aim to significantly reduce the cost of products and improve mass production, and create homogeneous metal ribbons and linear memory alloys that are as thin and thin as possible and have excellent mechanical properties. The purpose is to According to the ultra-quenching method of the present invention, ribbons with a thickness of 100 μm or less and linear products with a diameter of 100 μm or less can be produced.

本発明によれば、薄帯では合金の結晶粒が長手方向に(
110)軸が、板面と垂直な方向に〔100〕軸がそれ
ぞれ配向し、線状のものでは長手方向に(110)軸が
配向した記憶合金を提供することができる。
According to the present invention, in the ribbon, the crystal grains of the alloy are arranged in the longitudinal direction (
110) It is possible to provide a memory alloy in which the [100] axis is oriented in the direction perpendicular to the plate surface, and in the case of a linear one, the (110) axis is oriented in the longitudinal direction.

形状記憶合金は所定の温度まで加熱してから急冷すると
、そのとき形を変えても、温度を上げていくと、元の形
にもどってしまう。
Even if shape memory alloys change shape when heated to a predetermined temperature and then rapidly cooled, they return to their original shape as the temperature is increased.

形状記憶合金の組成としては、Fe Pt + In−
Cd+Fe−Nr * Ni−Atlステンレス鋼、T
i −Ni +Cu−Zn−Atなどがあるが、現在商
品化されているものは、多結晶で使用できるT i −
N i合金とCu−Zn−At合金だけである。Cu−
Zn−At合金は価格が安いが、Ni−Ti合金と比較
すると、形状回復性能が非常に劣るために、必要な回復
応力、回復歪量などが大きな個所、又は繰返し使用する
個所などKは適さない。
The composition of the shape memory alloy is FePt + In-
Cd+Fe-Nr *Ni-Atl stainless steel, T
i -Ni +Cu-Zn-At, etc., but the one currently commercialized is Ti - which can be used in polycrystalline form.
Only Ni alloy and Cu-Zn-At alloy. Cu-
Zn-At alloys are cheap, but compared to Ni-Ti alloys, their shape recovery performance is very poor, so K is not suitable for locations where the required recovery stress, recovery strain, etc. are large, or where repeated use is required. do not have.

特に、回数の多い繰返しを必要とする用途にはTi−N
i合金が適している。しかしながら、Ti−Ni合金は
高温度で酸化され易く400℃を越えると大気中で酸化
するので、500℃以上の熱処理を行うときは、真空中
又は不活性ガス中で行なう必要がある。焼鈍、冷間圧延
などの加工においては、その雰囲気、温度などに注意し
なければならない。
In particular, for applications that require a large number of repetitions, Ti-N
i-alloy is suitable. However, Ti--Ni alloys are easily oxidized at high temperatures and will oxidize in the air at temperatures above 400°C, so when performing heat treatment at 500°C or higher, it is necessary to carry out the heat treatment in vacuum or in an inert gas. In processing such as annealing and cold rolling, care must be taken regarding the atmosphere, temperature, etc.

本発明は、加工が困難であるTi−Ni系合金、ならび
に比較的に加工が容易であるCu−Zn−At系合金な
どあらゆる形状記憶合金に応用することができる。
The present invention can be applied to all shape memory alloys, such as Ti-Ni alloys that are difficult to process and Cu-Zn-At alloys that are relatively easy to process.

本発明の詳細な説明する。所定の組成であるNi50原
子チ、Ti50原子チの母合金を、Arの不活性ガス中
、又は真空中で溶解したのち、適当の量に分ける。超急
冷法の一例として第1図に示すように、一端1−7にス
リット状の穴をあけた石英管1−11C,前記母合金の
ベレットを入れ、電気炉1−3、又は高周波誘導加熱な
どで、合金の融点以上に加熱して溶融する。溶融した金
属1−2は、石英管1−1の一端1−7から急激にAr
ガスを導入しながら、高速で回転する金属製ローラー1
−4の表面に噴出させて、超急冷操作を行うことによっ
て、厚さが100μm以下で、平均50μm前後の金属
製薄帯1−6を得る。之等の操作は、Ti−Ni合金が
酸化し易いので真空中、又は不活性ガス中で行う。1−
5にその真空容器を示す。Cu−Zn−At合金は、化
学的に比較的安定なので大気中で超急冷を行って金属製
薄帯を得る。線状の場合は、石英管1−1の一端にスリ
ットの代りに円形の穴をあけたものを用いればよい。本
発明の超急冷形状記憶合金は、作成の・セラメーターを
適当に選ぶことによって、金属製薄帯の厚さを制御でき
るが、冷却速度に、試料の厚さに反比例するので、厚い
薄帯に超急冷効果が少く、酸化し易い点からしても作成
しにくい。よって、本発明の薄帯状合金では厚さが10
0μm以下、線状合金では直径が100μm以下のもの
が、製品のコストや量産性などの点から、望ましい。更
に、本発明は従来の焼鈍、圧延、及び線引などの加工法
で作成されたものと異り、試料の結晶粒が配向している
ということが大きな特徴である。第2図に示すように、
超急冷形状記憶合金の薄帯2−2、又は線状の合金2−
IH1長手方向に〔110〕軸が配向し、薄帯では帯面
と垂直方向に[100)軸が配向する。之等によって、
本発明の合金は従来の加工品に比べて、機械的特性が優
れており、回復力では、その性能が50%以上も向上し
た。この結晶配向性aXX線図図法及び薄板面にX線を
照射した際、結晶の(hkt)面からの反射強度I (
hkt)などから求められる。Ti−Ni系では冷却速
度が大きい程、配向度がよくなり、又、結晶粒径も小と
なり、機械的強度も増加する。
The present invention will be described in detail. A master alloy having a predetermined composition of 50 atoms of Ni and 50 atoms of Ti is melted in an inert gas of Ar or in vacuum, and then divided into appropriate amounts. As an example of the ultra-quenching method, as shown in FIG. 1, a quartz tube 1-11C with a slit-shaped hole made at one end 1-7, a pellet of the above-mentioned master alloy is inserted, and the tube is heated in an electric furnace 1-3 or by high-frequency induction heating. The alloy is heated above the melting point of the alloy to melt it. The molten metal 1-2 is suddenly exposed to Ar from one end 1-7 of the quartz tube 1-1.
Metal roller 1 that rotates at high speed while introducing gas
-4 and performs an ultra-quenching operation to obtain a metal ribbon 1-6 with a thickness of 100 μm or less and an average of about 50 μm. These operations are performed in vacuum or in an inert gas because the Ti-Ni alloy is easily oxidized. 1-
5 shows the vacuum container. Since the Cu-Zn-At alloy is chemically relatively stable, it is ultra-quenched in the atmosphere to obtain a metal ribbon. In the case of a linear shape, a circular hole may be used instead of a slit at one end of the quartz tube 1-1. The thickness of the ultra-quenched shape memory alloy of the present invention can be controlled by appropriately selecting the ceramic material, but since the cooling rate is inversely proportional to the thickness of the sample, it is possible to control the thickness of the thin ribbon. It is difficult to create because it has little ultra-quenching effect and is easily oxidized. Therefore, the ribbon-shaped alloy of the present invention has a thickness of 10
A diameter of 0 μm or less, and in the case of a linear alloy, a diameter of 100 μm or less is desirable from the viewpoint of product cost and mass productivity. Furthermore, a major feature of the present invention is that the crystal grains of the sample are oriented, unlike those produced by conventional processing methods such as annealing, rolling, and wire drawing. As shown in Figure 2,
Ultra-quenched shape memory alloy thin strip 2-2 or linear alloy 2-
The [110] axis is oriented in the IH1 longitudinal direction, and the [100] axis is oriented in the direction perpendicular to the ribbon surface in the ribbon. By these, etc.
The alloy of the present invention has superior mechanical properties compared to conventional processed products, and its recovery strength has improved by more than 50%. When using this crystal orientation aXX diagram and irradiating the thin plate surface with X-rays, the reflection intensity from the (hkt) plane of the crystal I (
hkt) etc. In the Ti-Ni system, the higher the cooling rate, the better the degree of orientation, the smaller the crystal grain size, and the higher the mechanical strength.

実施例−1 純度99.9%のT1を89.5gと、純度999%の
Niを110.5Fを、Ti O,498−Ni O,
502の組成になるように配合し、Arガス中で、高周
波誘導加熱をもって溶解し、これを5〜8crn”の体
積をもった金型に分けて鋳込み、超急冷用せレットとす
る。
Example-1 89.5g of T1 with a purity of 99.9%, 110.5g of Ni with a purity of 999%, TiO, 498-NiO,
502, melted in Ar gas by high-frequency induction heating, and cast into molds having a volume of 5 to 8 crn to form ultra-quenched inlets.

このベレットを、長さ15■、巾0.45oaO長方形
のスリットを一端にもつ石英管に入れて、内部に高速回
転する金属性ローラーの入った真空管の中に入れ、内部
をロータリーポンプと油拡散ポンプを用いて、10−6
Torrの圧力まで真空とする。次に、石英管を135
0℃まで加熱し、金属ベレットが完全に溶解したのち、
石英管の他端から0.3〜05気圧のHe又はArガス
を急激に導入すると共に、石英管のスリットから溶融金
属を、直径が300m、巾が40crnで、1600r
pmの回転をする銅製ローラーの円周面の表面に吹き付
け、超急冷を行なって得た金属製薄帯は、巾15■、厚
さ50μm、長さが20mの長尺ものであり、平均結晶
粒径は5〜8μmであった。X線回折の結果、結晶粒径
は長手方向で〔110〕軸の配向度が90%以上、薄板
面と垂直方向に(100)軸の配向度が95%以上であ
った。なお、この時の配向度Q(110)又はQ(10
0)は各測定面KX線を照射したとき、結晶の(hkz
)面からの回折強度を■hヮとした場合、 Q(110)−(ΣIhho/ΣIhkt−Σ■hho
””hM V(’−Σ■hho/1% )Q(100)
=(ΣIhoo’1Ihkj−Σ工hoo””F )/
”−ΣILo’りI論)で計算したものである。
This pellet is placed in a quartz tube with a rectangular slit of 15 cm in length and 0.45 oaO in width at one end, and placed in a vacuum tube containing a high-speed rotating metal roller inside. Using a pump, 10-6
Vacuum to a pressure of Torr. Next, attach the quartz tube to 135
After heating to 0℃ and the metal pellet completely melts,
He or Ar gas at 0.3 to 0.5 atm was rapidly introduced from the other end of the quartz tube, and the molten metal was heated through the slit of the quartz tube with a diameter of 300 m and a width of 40 crn for 1600 r.
The metal ribbon obtained by ultra-quenching by spraying onto the circumferential surface of a copper roller rotating at pm is a long strip with a width of 15 cm, a thickness of 50 μm, and a length of 20 m, with an average crystalline The particle size was 5-8 μm. As a result of X-ray diffraction, the degree of orientation of the [110] axis in the longitudinal direction was 90% or more, and the degree of orientation of the (100) axis in the direction perpendicular to the thin plate surface was 95% or more. In addition, the degree of orientation Q(110) or Q(10
0) is the (hkz
) surface, then Q(110)-(ΣIhho/ΣIhkt-Σ■hho
””hMV('-Σ■hho/1%)Q(100)
=(ΣIhoo'1Ihkj−Σ工hoo””F )/
”-ΣILo'ri I theory).

ここでIhktは本発明の試料。■chktは従来の無
配向性試料の(hkt)面からの回折強度である。
Here, Ihkt is the sample of the present invention. (2) chkt is the diffraction intensity from the (hkt) plane of a conventional non-oriented sample.

このri−Ni超急冷金属薄帯は、温度650℃の不活
性ゲス中、又は真空中で、希望する形状を覚えさせてか
ら急冷して、室温で塑性変形させる。
This ri-Ni ultra-quenched metal ribbon is formed into a desired shape in an inert gas at a temperature of 650° C. or in a vacuum, and then rapidly cooled and plastically deformed at room temperature.

その後、この形状記憶合金を、温度90℃の湯の中に漬
けて、形状を回復させたところ、その回復量は最大20
チとなり、回復応力は最大90−2であって、通常の加
工法で得られる特性を大巾に50%以上も上まわった。
Afterwards, this shape memory alloy was soaked in hot water at a temperature of 90°C to recover its shape, and the amount of recovery was up to 20°C.
The recovery stress was 90-2 at maximum, which exceeded the properties obtained by normal processing methods by more than 50%.

量産化したときの製品コストを求めると、通常の加工法
によるものに比べて115〜1/10となった。
When mass-produced, the product cost was found to be 115 to 1/10 of that of a product produced using a normal processing method.

実施例−2 実施例−1と同様に作成した合金ベレットを、直径が0
.11の円形状のオリフィスをもった石英管に入れて、
実施例−1と同様に真空容器内で超急冷を行って得られ
た試料は、線状の直径力&80μmの断面形状がやや楕
円形をした記憶合金であった。X線回折によって、線状
の記憶合金の長手方向の〔110〕軸の配向け、配向度
Q (110)が90チ以上であり、形状記憶させたと
きの回復量は15〜20%、回復応力は最大80〜90
 kg/mであった。
Example 2 An alloy pellet made in the same manner as Example 1 was made with a diameter of 0.
.. Put it in a quartz tube with 11 circular orifices,
The sample obtained by ultra-quenching in a vacuum container in the same manner as in Example-1 was a memory alloy with a linear diameter and a slightly elliptical cross-sectional shape of 80 μm. X-ray diffraction shows that the orientation of the [110] axis in the longitudinal direction of the linear memory alloy, the degree of orientation Q (110), is 90 degrees or more, and the amount of recovery when shape memorized is 15 to 20%. Maximum stress is 80-90
kg/m.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超急冷装置の一例を示す図、第2図は
超急冷された線状又は薄帯状の形状記憶合金を示す図で
ある。 1−1・・・下端にスリ、ト状の穴を持つ石英管、1−
2・・・溶融した金属、1−3・・電気炉、1−4・・
金属性ローラー、1−5・・真空容器、1−6・・・超
急冷された金属薄帯、1−7・・・石英管の不活性ガス
導入口、2−1・・・線状の合金、2−2・・記憶合金
の薄帯。 第1図
FIG. 1 is a diagram showing an example of the ultra-quenching apparatus of the present invention, and FIG. 2 is a diagram showing a linear or ribbon-shaped shape memory alloy that has been ultra-quenched. 1-1...Quartz tube with slotted and T-shaped holes at the bottom end, 1-
2... Molten metal, 1-3... Electric furnace, 1-4...
Metal roller, 1-5... Vacuum container, 1-6... Ultra-quenched metal ribbon, 1-7... Inert gas inlet of quartz tube, 2-1... Linear Alloy, 2-2... Thin ribbon of memory alloy. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1) 100μm以下の厚みをもっ是薄帯状、又は直
径が10011m以下の線状であって、超急冷法によっ
て作製されたことを特徴とする超急冷Ni−Ti系形状
記憶合金。
(1) An ultra-quenched Ni-Ti-based shape memory alloy, which is in the form of a thin strip with a thickness of 100 μm or less, or in the form of a line with a diameter of 10011 m or less, and is produced by an ultra-quenching method.
(2)薄帯状では、合金の結晶粒が長手方向に(110
)軸と、薄板面と垂直方向に[100]軸が配向し、線
状のものでは、長手方向に[110)軸が配向すること
を特徴とする特許請求の範囲第(1)項記載の超急冷N
i−Ti系形状記憶合金。
(2) In the ribbon shape, the crystal grains of the alloy are aligned in the longitudinal direction (110
) axis and the [100] axis is oriented in the direction perpendicular to the thin plate surface, and in the case of a linear type, the [110) axis is oriented in the longitudinal direction. Super rapid cooling N
i-Ti shape memory alloy.
JP19448281A 1981-12-04 1981-12-04 Very rapidly cooled shape memory ni-ti alloy Pending JPS5896844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19448281A JPS5896844A (en) 1981-12-04 1981-12-04 Very rapidly cooled shape memory ni-ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19448281A JPS5896844A (en) 1981-12-04 1981-12-04 Very rapidly cooled shape memory ni-ti alloy

Publications (1)

Publication Number Publication Date
JPS5896844A true JPS5896844A (en) 1983-06-09

Family

ID=16325267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19448281A Pending JPS5896844A (en) 1981-12-04 1981-12-04 Very rapidly cooled shape memory ni-ti alloy

Country Status (1)

Country Link
JP (1) JPS5896844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102178A (en) * 2019-02-21 2020-08-31 서울대학교산학협력단 Nanostructured shape memory alloys and manufacturing method thereof
CN111893348A (en) * 2020-07-03 2020-11-06 广东省材料与加工研究所 Preparation method of nickel-titanium alloy material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207134A (en) * 1981-06-16 1982-12-18 Furukawa Electric Co Ltd:The Manufacture of shape memorizing alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207134A (en) * 1981-06-16 1982-12-18 Furukawa Electric Co Ltd:The Manufacture of shape memorizing alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102178A (en) * 2019-02-21 2020-08-31 서울대학교산학협력단 Nanostructured shape memory alloys and manufacturing method thereof
CN111893348A (en) * 2020-07-03 2020-11-06 广东省材料与加工研究所 Preparation method of nickel-titanium alloy material

Similar Documents

Publication Publication Date Title
US4052201A (en) Amorphous alloys with improved resistance to embrittlement upon heat treatment
US5306363A (en) Thin aluminum-based alloy foil and wire and a process for producing same
JPH0696916A (en) Material for magnetic refrigerating work and its manufacture
JP4690650B2 (en) Method of manufacturing a metal strip
JP3479444B2 (en) Zirconium-based amorphous alloy
JPS62290857A (en) Metal half-finished product and its production
JPH0387338A (en) Rare earth metal-base alloy foil or rare earth metal-base alloy fine wire and its manufacture
JPS5896844A (en) Very rapidly cooled shape memory ni-ti alloy
JPH0387339A (en) Magnesium-base alloy foil or magnesium-base alloy fine wire and its manufacture
JPS581183B2 (en) High magnetic permeability amorphous alloy with high magnetic flux density and large squareness ratio
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6169931A (en) Method for making intermetallic compound amorphous by chemical reaction
JPS6253585B2 (en)
JP2664055B2 (en) Manufacturing method of functional alloy members
JP3849004B2 (en) Method for producing rapidly solidified bulk amorphous alloy material
JPS60138036A (en) Thin strip of ultra-quickly cooled nickel-titanium alloy and its production
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
JPS63125663A (en) Production of thin amorphous ta-w alloy film
JPS59185743A (en) Production of functional alloy wire
JPS5924165B2 (en) Manufacturing method of semi-hard magnetic alloy
JPS58107467A (en) Metallic electric resistance material
JPS63125665A (en) Production of thin amorphous ta-w alloy film
CA1178181A (en) Method of making permanent magnets and product
JPS63125664A (en) Production of thin amorphous ta alloy film
JPH0423404A (en) Manufacture of anisotropic permanent magnet by hot rooling