JPS6236038B2 - - Google Patents

Info

Publication number
JPS6236038B2
JPS6236038B2 JP56067136A JP6713681A JPS6236038B2 JP S6236038 B2 JPS6236038 B2 JP S6236038B2 JP 56067136 A JP56067136 A JP 56067136A JP 6713681 A JP6713681 A JP 6713681A JP S6236038 B2 JPS6236038 B2 JP S6236038B2
Authority
JP
Japan
Prior art keywords
group
compound
formula
lower alkyl
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067136A
Other languages
Japanese (ja)
Other versions
JPS57183794A (en
Inventor
Shigeru Torii
Hideo Tanaka
Junzo Nogami
Takashi Shiroi
Michio Sasaoka
Norio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP56067136A priority Critical patent/JPS57183794A/en
Priority to US06/370,034 priority patent/US4482491A/en
Priority to GB08212330A priority patent/GB2101986B/en
Priority to FR8207398A priority patent/FR2504927B1/en
Priority to DE3216256A priority patent/DE3216256A1/en
Priority to DE3249934A priority patent/DE3249934C2/de
Priority to DE3249933A priority patent/DE3249933C2/en
Publication of JPS57183794A publication Critical patent/JPS57183794A/en
Priority to FR8220933A priority patent/FR2522662B1/en
Priority to US06/625,621 priority patent/US4603014A/en
Priority to GB08418485A priority patent/GB2144418B/en
Priority to GB08500025A priority patent/GB2152051B/en
Publication of JPS6236038B2 publication Critical patent/JPS6236038B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なチアゾリノアゼチジノン誘導体
及びその製造法に関する。 本発明のチアゾリノアゼチジノン誘導体は文献
未載の新規化合物であり、下記一般式〔〕で表
わされる。 〔式中R1はアリール基又はアリールオキシ基
を示す。R2はフエニル環上にニトロ基を有する
ことのあるアリール低級アルキル基、フエニル環
上にニトロ基を有することのあるアリールオキシ
低級アルキル基又はハロゲン原子を置換基として
有することのある低級アルキル基を示す。X1
びX2は水素原子又はハロゲン原子を示す。〕 上記一般式〔〕で表わされるチアゾリノアゼ
チジノン誘導体はペニシリン系、セフアロスポリ
ン系抗生物質を合成するための中間体として有用
な化合物である。例えば下記反応式に従い本発明
の化合物から抗菌剤として有用なセフアロスポリ
ン系化合物〔a〕又は〔b〕に誘導し得る。 〔式中R1,R2,X1及びX2は前記に同じ。〕 上記一般式〔〕で表わされるチアゾリノアゼ
チジノン誘導体は種々の方法により製造される
が、その好ましい一例を挙げれば例えば一般式 〔式中R1,R2,X1及びX2は前記に同じ。〕で表
わされる塩素化チアゾリノアゼチジノン誘導体に
塩基性化合物を作用させることにより製造され
る。 本発明において、R1で示されるアリール基と
しては例えばフエニル基、トリル基、キシリル
基、ナフチル基、p−クロルフエニル基、p−メ
トキシフエニル基、p−ニトロフエニル基、p−
ヒドロキシフエニル基等を挙げることができ、ま
たアリールオキシ基としては例えばフエノキシ
基、トリルオキシ基、キシリルオキシ基、ナフチ
ルオキシ基、p−クロルフエニルオキシ基、p−
メトキシフエニルオキシ基、p−ニトロフエニル
オキシ基、p−ヒドロキシフエニルオキシ基等を
挙げることができる。R2で示されるフエニル環
上にニトロ基を有することのあるアリール低級ア
ルキル基としては例えばベンジル基、p−ニトロ
ベンジル基、ジフエニルメチル基、2−フエニル
エチル基、2−(p−ニトロフエニル)エチル
基、3−フエニルプロピル基、3−(p−ニトロ
フエニル)プロピル基等を挙げることができ、フ
エニル環上にニトロ基を有することのあるアリー
ルオキシ低級アルキル基としては例えばフエノキ
シメチル基、p−ニトロフエノキシメチル基、2
−フエノキシエチル基、2−(p−ニトロフエノ
キシ)エチル基、3−フエノキシプロピル基、3
−(p−ニトロフエノキシ)プロピル基等を挙げ
ることができ、またハロゲン原子を置換基として
有することのある低級アルキル基としては例えば
メチル基、エチル基、n−プロピル基、イソプロ
ピル基、n−ブチル基、tert−ブチル基、2−ク
ロロエチル基、2,2,2−トリクロロエチル基
等を挙げることができる。またX1及びX2で示さ
れるハロゲン原子としては例えば塩素原子、臭素
原子、弗素原子等を挙げることができる。 本発明において出発原料として用いられる一般
式〔〕で表わされる塩素化チアゾリノアゼチジ
ノン誘導体は新規化合物であり、例えば下記反応
式に示す方法により製造される。 〔式中R1,R2,X1及びX2は前記に同じ。〕 一般式〔〕で表わされる化合物の電解ハロゲ
ン化は、例えば水と酢酸メチル、酢酸エチル、ギ
酸メチル、プロピオン酸エチル、クロロホルム、
四塩化炭素等の有機溶媒との混合溶媒中、公知の
ハロゲン酸及び/又はハロゲン化物の存在下に一
般式〔〕で表わされる化合物を電解処理すれば
よい。電解処理の条件としては、通常約5〜
500mA/cm2の範囲の電流密度で約2〜50F/mol
の電気量を通電し、約20〜100℃の範囲の温度で
電解を行なえばよい。 一般式〔〕で表わされる化合物と塩素との反
応は、光照射下適当な有機溶媒中にて行なわれ
る。使用される有機溶媒としては塩素に対して不
活性な溶媒をいずれも使用でき、例えばジクロル
メタン、ジブロムエタン、ジクロルエタン、クロ
ロホルム、四塩化炭素等のハロゲン化炭化水素
類、酢酸メチル、酢酸エチル、ギ酸メチル、酢酸
ブチル、プロピオン酸エチル等のエステル類、ジ
エチルエーテル、ジブチルエーテル、テトラヒド
ロフラン、ジオキサン等のエーテル類、アセトニ
トリル、ブチロニトリル等のニトリル類、ペンタ
ン、ヘキサン、シクロヘキサン等の炭化水素類、
ベンビン、トルエン、キシレン、クロルベンゼン
等の芳香族炭化水素、二硫化炭素又はこれらの混
合溶媒等を挙げることができる。塩素としては通
常分子状塩素が用いられる。一般式〔〕で表わ
される化合物と塩素との使用割合としては特に限
定がなく、広い範囲内にて適宜選択することがで
きるが、通常前者に対して後者を0.5〜10倍モル
量、好ましくは1〜5倍モル量用いるのがよい。
該反応は通常−20〜100℃程度にて行なわれる。 一般式〔〕で表わされる化合物に塩基性化合
物を作用させると脱塩酸反応が起こり一般式
〔〕で表わされる本発明の化合物が生成する。
塩基性化合物としては従来公知のものを広く使用
できるが、有機アミン類を用いるのが好ましく、
具体的にはジメチルアミン、ジエチルアミン、ト
リエチルアミン、エチルジイソプロピルアミン、
ピペリジン、ルチジン、ピリジン、1,5−ジア
ザビシクロ〔5,4,0〕ウンデセン−5,1,
5−ジアザビククロ〔4,3,0〕ノネン−5等
を例示できる。塩基性化合物の使用量としては特
に限定がなく広い範囲内で適宜選択することがで
きるが、通常一般式〔〕で表わされる化合物に
対して0.5〜10倍モル量、好ましくは1〜5倍モ
ル量用いられる。この脱塩酸反応は有機溶媒中で
行なつてもよいし、或いは使用する塩基性化合物
を溶媒として使用することもできる。有機溶媒と
しては原料化合物、目的化合物及び塩基性化合物
に対して不活性な溶媒を広く使用でき、例えば塩
化メチレン、クロロホルム、四塩化炭素、ジクロ
ルエタン、ジブロムエタン等のハロゲン化炭化水
素類、ジエチルエーテル、ジブチルエーテル、テ
トラヒドロフラン、ジオキサン等のエーテル類、
ペンタン、ヘキサン、ヘプタン、オクタン等の炭
化水素類、ベンゼン、クロルベンゼン、トルエ
ン、キシレン等の芳香族炭化水素類等を挙げるこ
とができる。該反応は室温下、加温下及び冷却下
のいずれでも行なわれるが、通常−20〜80℃の範
囲内で行なうのがよい。 斯くして得られる本発明の化合物は通常行なわ
れている分離手段、例えば溶媒抽出、カラムクロ
マトグラフイー等の手段により反応混合物から容
易に単離精製される。 本発明の化合物に構造上類似する化合物として
は式 で示される化合物がJ.A.C.S.,97,5008(1975)
やPure Appl.Chem.,43,423(1975)に記載さ
れており、該化合物は下記反応式に従い合成され
る。 式〔〕の化合物から式〔〕の化合物を得る
反応はN−ブロモサクシンイミド及びラジカル開
始剤を用いて加熱、紫外線照射下に行なわれる。
このブロム化は3位にメトキシ基を有している式
〔〕の化合物であるからこそ可能であつたので
あり、メトキシ基の代りに水素原子で置換された
化合物の場合にはブロム化は進行しない。 これに対して本発明の方法によれば、特殊な試
薬を使用することなく、温和な条件下に簡便に且
つ高収率で目的化合物を収得し得る。しかも目的
物の分離、精製も容易であり、副生物等の廃棄物
の問題がなく、工業的にも極めて有利な方法であ
る。 以下に参考例及び実施例を挙げる。 参考例 1 塩化ナトリウム1gを水3mlに溶解し、これに
濃硫酸0.07ml、塩化メチレン5ml及び化合物
〔〕(R1=フエニル、R2=メチル)50mgを加え
電解液を調製する。3cm2の白金板電極を装入し
30mA定電流、1.6〜1.8V、25℃で約2時間電解を
行う。電解終了後塩化メチレン(30ml)で抽出を
行う。抽出液は亜硫酸ナトリウム水、重ソウ水、
食塩水で洗浄後無水硫酸ナトリウムで乾燥し、溶
媒を除去して淡黄色の液体74mgを得た。このもの
をシリカゲルカラムを用い、ベンゼン:酢酸エチ
ル(5:1)の混合溶媒で展開すると目的化合物
〔〕(R1=フエニル、R2=メチル、X1=X2
Cl)が62.5mg(収率96%)得られた。 (IR) 1780,1745cm-1 NMR(CDCl3) 3.75(3H,s,COOH3) 3.81(2H,s,−CH2Cl) 5.14(2H,s,C=CH2) 5.41(1H,s,
The present invention relates to a novel thiazolinoazetidinone derivative and a method for producing the same. The thiazolinoazetidinone derivative of the present invention is a novel compound that has not been described in any literature, and is represented by the following general formula []. [In the formula, R 1 represents an aryl group or an aryloxy group. R 2 is an aryl lower alkyl group that may have a nitro group on the phenyl ring, an aryloxy lower alkyl group that may have a nitro group on the phenyl ring, or a lower alkyl group that may have a halogen atom as a substituent. show. X 1 and X 2 represent a hydrogen atom or a halogen atom. ] The thiazolinoazetidinone derivative represented by the above general formula [ ] is a compound useful as an intermediate for synthesizing penicillin and cephalosporin antibiotics. For example, a cephalosporin compound [a] or [b] useful as an antibacterial agent can be derived from the compound of the present invention according to the following reaction formula. [In the formula, R 1 , R 2 , X 1 and X 2 are the same as above. ] The thiazolinoazetidinone derivative represented by the above general formula [] can be produced by various methods. [In the formula, R 1 , R 2 , X 1 and X 2 are the same as above. ] is produced by reacting a basic compound with a chlorinated thiazolinoazetidinone derivative. In the present invention, examples of the aryl group represented by R 1 include phenyl group, tolyl group, xylyl group, naphthyl group, p-chlorophenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-
Examples of aryloxy groups include phenoxy, tolyloxy, xylyloxy, naphthyloxy, p-chlorophenyloxy, and p-chlorophenyloxy groups.
Examples include methoxyphenyloxy group, p-nitrophenyloxy group, and p-hydroxyphenyloxy group. Examples of the aryl lower alkyl group that may have a nitro group on the phenyl ring represented by R2 include benzyl group, p-nitrobenzyl group, diphenylmethyl group, 2-phenylethyl group, 2-(p-nitrophenyl)ethyl group, Examples of aryloxy lower alkyl groups that may have a nitro group on the phenyl ring include 3-phenylpropyl group and 3-(p-nitrophenyl)propyl group, such as phenoxymethyl group and p-nitrophenyl group. dimethyl group, 2
-Phenoxyethyl group, 2-(p-nitrophenoxy)ethyl group, 3-phenoxypropyl group, 3
-(p-nitrophenoxy)propyl group, and examples of lower alkyl groups that may have a halogen atom as a substituent include methyl group, ethyl group, n-propyl group, isopropyl group, and n-butyl group. , tert-butyl group, 2-chloroethyl group, 2,2,2-trichloroethyl group, and the like. Examples of the halogen atom represented by X 1 and X 2 include a chlorine atom, a bromine atom, and a fluorine atom. The chlorinated thiazolinoazetidinone derivative represented by the general formula [] used as a starting material in the present invention is a new compound, and is produced, for example, by the method shown in the reaction formula below. [In the formula, R 1 , R 2 , X 1 and X 2 are the same as above. ] Electrolytic halogenation of the compound represented by the general formula [ ] can be carried out using, for example, water and methyl acetate, ethyl acetate, methyl formate, ethyl propionate, chloroform,
The compound represented by the general formula [] may be electrolytically treated in the presence of a known halogen acid and/or halide in a mixed solvent with an organic solvent such as carbon tetrachloride. The conditions for electrolytic treatment are usually about 5~
Approximately 2-50F/mol at current density in the range of 500mA/ cm2
It is sufficient to conduct electrolysis at a temperature in the range of about 20 to 100°C by applying an amount of electricity. The reaction between the compound represented by the general formula [] and chlorine is carried out in a suitable organic solvent under irradiation with light. As the organic solvent used, any solvent inert to chlorine can be used, such as dichloromethane, dibromoethane, dichloroethane, chloroform, halogenated hydrocarbons such as carbon tetrachloride, methyl acetate, ethyl acetate, methyl formate, Esters such as butyl acetate and ethyl propionate; ethers such as diethyl ether, dibutyl ether, tetrahydrofuran, and dioxane; nitriles such as acetonitrile and butyronitrile; hydrocarbons such as pentane, hexane, and cyclohexane;
Examples include aromatic hydrocarbons such as benbin, toluene, xylene, and chlorobenzene, carbon disulfide, and mixed solvents thereof. Molecular chlorine is usually used as chlorine. The ratio of the compound represented by the general formula [] and chlorine to be used is not particularly limited and can be appropriately selected within a wide range, but the latter is usually 0.5 to 10 times the molar amount of the former, preferably It is preferable to use 1 to 5 times the molar amount.
The reaction is usually carried out at about -20 to 100°C. When a basic compound is allowed to act on the compound represented by the general formula [], a dehydrochlorination reaction occurs to produce the compound of the present invention represented by the general formula [].
Although a wide range of conventionally known basic compounds can be used, it is preferable to use organic amines.
Specifically, dimethylamine, diethylamine, triethylamine, ethyldiisopropylamine,
piperidine, lutidine, pyridine, 1,5-diazabicyclo[5,4,0]undecene-5,1,
Examples include 5-diazabicucro[4,3,0]nonene-5. The amount of the basic compound to be used is not particularly limited and can be appropriately selected within a wide range, but it is usually 0.5 to 10 times the molar amount, preferably 1 to 5 times the molar amount of the compound represented by the general formula []. amount used. This dehydrochlorination reaction may be carried out in an organic solvent, or the basic compound used may be used as a solvent. As the organic solvent, a wide range of solvents can be used that are inert to the starting compound, target compound, and basic compound, such as halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and dibromoethane, diethyl ether, and Ethers such as butyl ether, tetrahydrofuran, dioxane,
Examples include hydrocarbons such as pentane, hexane, heptane, and octane, and aromatic hydrocarbons such as benzene, chlorobenzene, toluene, and xylene. The reaction may be carried out at room temperature, under heating or under cooling, but is preferably carried out usually within the range of -20 to 80°C. The compound of the present invention thus obtained can be easily isolated and purified from the reaction mixture by conventional separation means such as solvent extraction and column chromatography. Compounds structurally similar to the compounds of the present invention include the formula The compound shown in JACS, 97, 5008 (1975)
and Pure Appl.Chem., 43 , 423 (1975), and the compound is synthesized according to the following reaction formula. The reaction for obtaining the compound of formula [] from the compound of formula [] is carried out using N-bromosuccinimide and a radical initiator under heating and ultraviolet irradiation.
This bromination was possible because the compound of the formula [] has a methoxy group at the 3-position; in the case of a compound in which a hydrogen atom is substituted for the methoxy group, bromination can proceed. do not. In contrast, according to the method of the present invention, the target compound can be obtained simply and in high yield under mild conditions without using any special reagents. Moreover, separation and purification of the target product are easy, there is no problem of waste such as by-products, and this method is extremely advantageous from an industrial perspective. Reference examples and examples are listed below. Reference Example 1 1 g of sodium chloride is dissolved in 3 ml of water, and 0.07 ml of concentrated sulfuric acid, 5 ml of methylene chloride, and 50 mg of the compound [] (R 1 = phenyl, R 2 = methyl) are added to prepare an electrolytic solution. Insert a 3 cm 2 platinum plate electrode.
Electrolyze at 30 mA constant current, 1.6 to 1.8 V, and 25°C for about 2 hours. After the electrolysis is complete, extract with methylene chloride (30ml). Extract liquid is sodium sulfite water, hydrogenated sodium water,
After washing with brine and drying over anhydrous sodium sulfate, the solvent was removed to obtain 74 mg of a pale yellow liquid. When this product was developed using a silica gel column with a mixed solvent of benzene:ethyl acetate (5:1), the target compound [] (R 1 = phenyl, R 2 = methyl, X 1 = X 2 =
Cl) was obtained in an amount of 62.5 mg (yield 96%). (IR) 1780, 1745cm -1 NMR (CDCl 3 ) 3.75 (3H, s, COOH 3 ) 3.81 (2H, s, -CH 2 Cl) 5.14 (2H, s, C=CH 2 ) 5.41 (1H, s,

【式】 6.05(2H,s,【formula】 6.05(2H,s,

【式】 7.3〜7.9(5H,m,フエニル) 参考例 2 化合物〔〕(R1=フエニル、R2=メチル、X1
=X2=Cl)50mgを塩化メチレン0.5mlに溶解し、
塩素の飽和した塩化メチレン溶液1.5mlを加え
る。直ちに750Wタングステンランプを用いて光
照射しながら20〜27℃の範囲で1時間反応を行
う。反応終了後反応液を氷水に注ぎ、塩化メチレ
ン層を分離する。チオ硫酸ナトリウム水溶液、飽
和食塩水で洗浄した後、無水硫酸ナトリウムで乾
燥する。減圧下溶媒を除去し、残渣をベンゼン−
酢酸エチル(9:1)を溶媒としてシリカゲルカ
ラムで分離、精製すると50.05mgの化合物〔〕
R1=フエニル、R2=メチル、X1=X2=Cl)を得
る。収率86% IR(cm-1)1770、1760 NMR(CDCl3δ) 3.80(s,3H)、3.98(bs,2H) 4.12(s,2H)、5.12(s,1H) 6.10(d,1H)、6.28(d,1H) 7.2〜7.5(m,3H) 7.5〜7.8(m,2H) 実施例 1 化合物〔〕(R1=フエニル、R2=メチル、X1
=X2=H)55mgを塩化メチル0.6mlに溶解し、こ
れにトリエチルアミン88μを加え、室温で撹拌
する。2時間反応を行つた後エーテル5mlを加
え、次に水を加えて洗浄する。続いて10%塩酸、
飽和食塩水で洗浄する。エーテル層を無水硫酸ナ
トリウムで乾燥し、減圧下溶媒を除去する。残渣
をシリカゲルカラムで精製すると、無色油状物と
して目的物〔〕(R1=フエニル、R2=メチル、
X1=X2=H)を得る。収率98% IR(cm-1) 1770,1720 NMR(CDCl3δ) 3.76(s,3H)、3.90(s,2H) 4.07(bs,2H)、4.63(bs,2H) 5.83(d,1H)、6.30(bd,1H) 7.25(s,5H) 実施例 2〜7 実施例1と同様の操作、処理を行う。結果を第
1〜2表に示す。尚表中Phはフエニル基を意味
する。
[Formula] 7.3-7.9 (5H, m, phenyl) Reference example 2 Compound [] (R 1 = phenyl, R 2 = methyl, X 1
=X 2 =Cl) 50mg was dissolved in methylene chloride 0.5ml,
Add 1.5 ml of chlorine saturated methylene chloride solution. Immediately, reaction is carried out for 1 hour at 20 to 27°C while irradiating with light using a 750W tungsten lamp. After the reaction is completed, the reaction solution is poured into ice water and the methylene chloride layer is separated. After washing with an aqueous sodium thiosulfate solution and saturated saline, drying with anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was dissolved in benzene.
Separation and purification with a silica gel column using ethyl acetate (9:1) as a solvent yielded 50.05 mg of the compound []
R 1 = phenyl, R 2 = methyl, X 1 = X 2 = Cl). Yield 86% IR (cm -1 ) 1770, 1760 NMR (CDCl 3 δ) 3.80 (s, 3H), 3.98 (bs, 2H) 4.12 (s, 2H), 5.12 (s, 1H) 6.10 (d, 1H) ), 6.28 (d, 1H) 7.2-7.5 (m, 3H) 7.5-7.8 (m, 2H) Example 1 Compound [] (R 1 = phenyl, R 2 = methyl, X 1
=X 2 =H) 55mg is dissolved in 0.6ml of methyl chloride, 88μ of triethylamine is added thereto, and the mixture is stirred at room temperature. After 2 hours of reaction, 5 ml of ether was added and then water was added for washing. followed by 10% hydrochloric acid,
Wash with saturated saline. The ether layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. When the residue was purified with a silica gel column, the desired product [] (R 1 = phenyl, R 2 = methyl,
X 1 =X 2 =H) is obtained. Yield 98% IR (cm -1 ) 1770, 1720 NMR (CDCl 3 δ) 3.76 (s, 3H), 3.90 (s, 2H) 4.07 (bs, 2H), 4.63 (bs, 2H) 5.83 (d, 1H ), 6.30 (bd, 1H) 7.25 (s, 5H) Examples 2 to 7 The same operations and processes as in Example 1 are performed. The results are shown in Tables 1 and 2. In addition, Ph in the table means a phenyl group.

【表】【table】

【表】【table】

【表】 実施例 8〜19 実施例1と同様の操作、処理を行う。結果を第
3表に示す。尚表中Phはフエニル基を意味す
る。
[Table] Examples 8 to 19 The same operations and treatments as in Example 1 were performed. The results are shown in Table 3. In addition, Ph in the table means a phenyl group.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 〔式中R1はアリール基又はアリールオキシ基
を示す。R2はフエニル環上にニトロ基を有する
ことのあるアリール低級アルキル基、フエニル環
上にニトロ基を有することのあるアリールオキシ
低級アルキル基又はハロゲン原子を置換基として
有することのある低級アルキル基を示す。X1
びX2は水素原子又はハロゲン原子を示す。〕で表
わされるチアゾリノアゼチジノン誘導体。 2 一般式 〔式中R1はアリール基又はアリールオキシ基
を示す。R2はフエニル環上にニトロ基を有する
ことのあるアリール低級アルキル基、フエニル環
上にニトロ基を有することのあるアリールオキシ
低級アルキル基又はハロゲン原子を置換基として
有することのある低級アルキル基を示す。X1
びX2は水素原子又はハロゲン原子を示す。〕で表
わされるチアゾリノアゼチジノン誘導体に塩基性
化合物を作用させて一般式 〔式中R1,R2,X1及びX2は前記に同じ。〕で表
わされるチアゾリノアゼチジノン誘導体を得るこ
とを特徴とするチアゾリノアゼチジノン誘導体の
製造法。
[Claims] 1. General formula [In the formula, R 1 represents an aryl group or an aryloxy group. R 2 is an aryl lower alkyl group that may have a nitro group on the phenyl ring, an aryloxy lower alkyl group that may have a nitro group on the phenyl ring, or a lower alkyl group that may have a halogen atom as a substituent. show. X 1 and X 2 represent a hydrogen atom or a halogen atom. ] A thiazolinoazetidinone derivative represented by 2 General formula [In the formula, R 1 represents an aryl group or an aryloxy group. R 2 is an aryl lower alkyl group that may have a nitro group on the phenyl ring, an aryloxy lower alkyl group that may have a nitro group on the phenyl ring, or a lower alkyl group that may have a halogen atom as a substituent. show. X 1 and X 2 represent a hydrogen atom or a halogen atom. ] By reacting a basic compound with a thiazolinoazetidinone derivative represented by [In the formula, R 1 , R 2 , X 1 and X 2 are the same as above. A method for producing a thiazolinoazetidinone derivative, which comprises obtaining a thiazolinoazetidinone derivative represented by the formula:
JP56067136A 1981-05-01 1981-05-01 Thiazolinoazetidinone derivative and its preparation Granted JPS57183794A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP56067136A JPS57183794A (en) 1981-05-01 1981-05-01 Thiazolinoazetidinone derivative and its preparation
US06/370,034 US4482491A (en) 1981-05-01 1982-04-20 Thiazolinoazetidinone derivatives and process for the preparation of the same
GB08212330A GB2101986B (en) 1981-05-01 1982-04-28 Thiazolinoazetidinone derivatives
FR8207398A FR2504927B1 (en) 1981-05-01 1982-04-29 THIAZOLINOAZETIDINONE DERIVATIVES, METHODS FOR THEIR PREPARATIONS AND THEIR USE IN THE PREPARATION OF CEPHALOSPORINS
DE3249934A DE3249934C2 (en) 1981-05-01 1982-04-30
DE3216256A DE3216256A1 (en) 1981-05-01 1982-04-30 THIAZOLINOAZETIDINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
DE3249933A DE3249933C2 (en) 1981-05-01 1982-04-30 Process for the preparation of 2- [4- (aryl or heteroaryldithio) -2-azetidinon-1-yl] -3-halomethyl-3-butenoic acid derivatives
FR8220933A FR2522662B1 (en) 1981-05-01 1982-12-14 PROCESS FOR THE PREPARATION OF CEPHALOSPORINS
US06/625,621 US4603014A (en) 1981-05-01 1984-06-28 Thiazolinoazetidinone derivatives and process for the preparation of the same
GB08418485A GB2144418B (en) 1981-05-01 1984-07-19 Thiazolinoazetidinone derivatives and process for the preparation of the same
GB08500025A GB2152051B (en) 1981-05-01 1985-01-02 Process for the preparation of azetidinone derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067136A JPS57183794A (en) 1981-05-01 1981-05-01 Thiazolinoazetidinone derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS57183794A JPS57183794A (en) 1982-11-12
JPS6236038B2 true JPS6236038B2 (en) 1987-08-05

Family

ID=13336177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067136A Granted JPS57183794A (en) 1981-05-01 1981-05-01 Thiazolinoazetidinone derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS57183794A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185295A (en) * 1981-05-08 1982-11-15 Otsuka Chem Co Ltd Thiazolinoazetidinone derivative and its preparation

Also Published As

Publication number Publication date
JPS57183794A (en) 1982-11-12

Similar Documents

Publication Publication Date Title
US4784734A (en) Azetidinone derivatives and process for the preparation of the same
US4603014A (en) Thiazolinoazetidinone derivatives and process for the preparation of the same
CA1058615A (en) Process for benz(f)-2,5-oxazocines
JPS6236038B2 (en)
JPH0141152B2 (en)
Gunda et al. 2-Amino-1-phenyl-propan-1, 3-diol as chiral auxiliary. Application in the synthesis of cis 3-Phthalimido-4-styryl-2-azetidinones
JPS632435B2 (en)
JPS6236037B2 (en)
JPH0459310B2 (en)
US4464237A (en) Process for preparing β-lactam derivatives
JPH0247473B2 (en)
EP0122002B1 (en) Process for preparing azetidinone derivatives
JPH0141153B2 (en)
JPS6024187B2 (en) Method for producing β-lactam derivatives
EP0120094B1 (en) Azetidinone compounds
JPS6043340B2 (en) Chlorinated azetidinone derivatives and their production method
JPS6236036B2 (en)
JPH0244474B2 (en) KARUBASE FUEMUKAGOBUTSU
JPH09227542A (en) Production of tetrahydrofuran derivative
JPH05221947A (en) Production of cyclopropane derivative
JP3201998B2 (en) Method for producing (S) -benzoxazine derivative and method for racemizing (R) -benzoxazine derivative
JPH0154435B2 (en)
JP2669961B2 (en) Azetidinone derivatives and their production
EP0831156A1 (en) Process for the preparation of 3-alkoxymethylcephems
JPS6221072B2 (en)